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Abstract

Articular cartilage is a connective tissue consisting of a relatively few
number of cells, the chondrocytes (CCs), that are immersed in an exten-
sive hydrated matrix, composed primarily of proteoglycans and collagens.
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In vitro tissue engineering has been investigated as a potential source of
functional tissue constructs for cartilage repair, as well as a model system
for controlled studies of cartilage development and function. Among the
different kinds of devices for the cultivation of 3D cartilage cell colonies, we
consider here polymeric scaffold-based perfusion bioreactors. The perfusion
fluid supplies nutrients and oxygen to the growing biomass. At the same
time, the fluid-induced shear acts as a physiologically relevant stimulus for
the metabolic activity of CCs, because it may enhance cell proliferation and
metabolism, provided that the shear stress level is moderate. In this com-
plex environment, mathematical and computational modeling may help in
the optimal design of the bioreactor configuration. In this perspective, we
propose a computational model for the simulation of the biomass growth,
under given inlet and geometrical conditions. Precisely, we consider a two-
step approach. First, we perform a simplified short term analysis in which
only biomass growth is taken into account, the nutrient concentration and
the fluid-induced shear stress being assumed constant in time and uniform
in space. This allows us to calibrate the biomass growth model with re-
spect to the shear stress dependence on experimental data. Then, we carry
out a full analysis where the nutrient concentration and perfusion velocity
change in time and space and the growing biomass modifies the porosity
of the scaffold matrix, altering the fluid flow. The model parameters are
consistently derived from volume averaging techniques that allow us to up-
scale the microscopic structural properties to the macroscopic level. The
predictions we obtain in this way are significant for long times of culture.

1 Introduction

A basic concept in the design of ex vivo tissue reconstruction is to provide a
proper biophysical microenvironment to cells [28, 21, 37]. In scaffold-based car-
tilage regeneration, a procedure for tissue growth based on interstitial flow of
the culture medium, also called “direct” or “confined” perfusion, is found to be
particularly effective, compared both to static culture and to surface (or “free
flow”) perfusion, in preserving cell viability, promoting cell proliferation and up-
regulating the synthesis of matrix proteins specific to cartilaginous tissue, such
as collagens and glycosaminoglycan (GAG) [11, 30, 10, 34, 35, 14]. These bene-
ficial effects are primarily related to an improved cell oxygenation and catabolite
removal induced by interstitial convective flow in the internal regions of densely
cell-populated constructs. Perfusion flow also exerts shear stresses on the cell
surface, causing membrane stretch [12, 20]; this mechanism, far from being just
a side effect, is recognized to activate specific signalling pathways in articular
cartilage cells, which in turn may stimulate cell proliferation and/or enhance cell
metabolism, provided that the shear stress level is appropriately tuned [19, 40].
As a matter of fact, increasing the hydrodynamic shear level in cellular con-
structs is recognized to inhibit the synthesis of sulphated GAG (sGAG) [33]
and of collagen type II [36], which are phenotypic markers of articular carti-
lage. The above considerations suggest that an efficient bioreactor should be
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able to provide the growing cells with the highest oxygenation level compatible
with a moderate fluid-mechanical loading. Achieving such a balance is a diffi-
cult task, since there is a nonlinear interplay between the biophysical conditions
experienced at the microscopic pore scale and at the subcellular scale and the
macroscopic project parameters of the bioreactor, for example the fluid velocity
gradient across the bioreactor thickness or the pressure drop, which are directly
related to input control parameters of the system (in our case, the inlet velocity
of the perfusion fluid). Furthermore, when designing a bioreactor, one must also
face the difficulty that measurements -to name one, the shear stress levels in the
growing biomass- cannot be easily accessible and data elaboration does not often
allow to draw a clear rationale of the phenomena leading to an optimal design.
In this scenario, mathematical and computational modeling can be profitably
used to provide a supporting insight in the design of a bioreactor configuration,
according to the following conceptual methodological approach:

Task 1): simulation of the dynamical evolution of the environmental con-
ditions to which cells are subjected, in particular, oxygenation level and
shear stress distribution, as a function of the macroscopic control param-
eters.

Task 2): simulation of biomass growth under the action of the above com-
puted biochemical and mechanical stimuli.

Task 3): introduction of a feedback mechanism, simulating the effect of the
newly formed biomass on the environment (change of geometry, change of
nutrient absorption).

In the following, we illustrate in detail how we carry out each item in the
above programme, with special care on emphasizing specific contributions of
the present research activity compared to existing approaches in the literature.
Task 1): in the context of dynamically perfused bioreactors, the implementation
of this task requires to couple computational fluid dynamic (CFD) models with
diffusion-advection-reaction equations for the nutrient. A starting approach con-
sists of performing a detailed pore-scale CFD simulation to compute the fluid
dynamical field over the scaffold walls [34, 31, 41, 6, 3, 24, 42]. These attempts
have proven useful in capturing a basic understanding of the conditions which
favor the initial development of engineered tissues such as bone [23] and cartilage
[34, 35, 33, 36, 27]. Accounting for oxygenation level within the local pore struc-
ture is usually carried out by a convection-diffusion-reaction equation where cells
are incorporated as sources or sinks of chemical species in the consumption rate
in the nutrient mass balance equation [18, 17]. Time evolution of these sources
and sinks, representing cell proliferation and migration, is predicted by the use
of multicellular algorithms [4, 29]. A significant limitation of this class of models
is that the increasing oxygen transfer from the culture medium to the growing
cell biomass is included in the mass transport calculation without accounting for
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the alteration of the fluid flow due to the growing cell volume (Task 3), so that
the above simulation results are valid only for very low cell volume fractions,
corresponding to culture conditions at early stages. A further limitation of the
pore size-based CFD approach is its validation with respect to experiments. As
a matter of fact, microscopic pore and biomass sections are, most often, visually
compared to the corresponding results of computational models at the pore size,
so that, in order to come up with a quantitative response, a fundamental (and
still open) question arises about the statistical significance of the microscopic
pore/biomass samples that have been chosen. These limitations are a strong
motivation to abandon the analysis at the pure micro-pore level, and replace
it with an investigation capable to range from the microscale up to the macro-
scopic scale, in order to account for the coexistence of multiple temporal and
spatial scales, all relevant for the overall behavior of the system. An effective
manner to deal with the multiscale behavior of the bioreactor is the so-called
Volume Averaging Method (VAM) [44]. The VAM is used in this article as
a systematic technique to derive the Stokes-Brinkman equations for perfusion
fluid flow and the diffusion-advection-reaction equation for nutrient mass trans-
port, by upscaling to the macroscopic level (over a suitably defined averaging
volume) the corresponding microscopic equations. While performing the upscal-
ing procedure, a remarkable bonus provided by the VAM is the identification of
“effective” parameters (effective diffusivity and effective hydraulic permeability)
which synthetically characterize the system behavior at the macroscopic level by
inheriting the properties of the microscale structure. It is in this crucial model-
ing step that all the available information (geometric, experimental, theoretical)
on the sub-scale environment can be profitably used to enhance the accuracy
of the upscaled model. Explicit examples of this statement are given later in
the discussion of Tasks 2) and 3). Task 2): unlike Task 1), this second task
is less consolidated and more open to fundamental questions, since it requires
to develop, solve and validate models based on ordinary differential equations
(ODE) and/or partial differential equations (PDE) to describe the evolution of
the biomass under different stimulating or inhibitory factors. In the present ar-
ticle, we address this issue by the definition of a novel biomass growth model,
which is a generalization of the one proposed in [16, 15] through the introduction
of the dependence of the biomass growth parameters on the local or mean shear
stress. To do this, we carry out a calibration procedure using experimentally
measured data previously obtained from one of the Authors [33]. Task 3): this
step is a very delicate issue, as it requires, in principle, a detailed representa-
tion of the microscale phenomena and their effect on the variation of the porous
structure of the scaffold. This problem is dealt with in the present article by
the explicit characterization, using the VAM, of the effective nutrient diffusion
coefficient and hydraulic permeability as a function of the spatially and time
varying volume fraction occupied by the growing biomass [22, 16, 45]. As al-
ready remarked in the discussion of Task 2), an important improvement with
respect to existing formulations [5] is the direct inclusion of measured data in the
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derivation of the model for the effective mass and fluid transport coefficients. In
particular, since for the construct we consider [33] the volume fraction occupied
by the scaffold porous matrix is significant unlike what assumed in [13, 5], the
inclusion of such a term is expected to provide a more accurate prediction of
the bioreactor performance, especially in the early stages of culture, where the
volume fraction occupied by the growing biomass is small.

2 Material and Methods

Our computational model of the bioreactor structure shown in Fig. 1a encom-
passes three different phases, a polymeric porous scaffold, a perfusing fluid and a
growing biomass, which coexist and evolve in space and time within the cellular
construct shown in Fig. 1b. From now on, with the term “biomass” we denote
the entire volume of biological matter resulting from cell proliferation and ECM
synthesis, and we indicate by εs, εf and εb the scaffold, fluid and biomass volume
fractions, respectively. A schematic of the three considered phases is depicted
in Fig. 1c, where the averaging volume used for the application of the VAM is
represented. Some simplifying assumptions are in order to set up the bioreactor
model. We start assuming the volume of the scaffold structure to be time invari-
ant, according to the fact that scaffold degradation is very slow compared to the
overall culture time interval, which implies that εs is a given constant quantity.
Instead, the biomass volume varies with culture time, while consequently the
fluid volume is modified in order to satisfy, at each spatial position x in the
construct and at each time t the following constraint

εs + εf (x, t) + εb(x, t) = 1. (1)

To implement Tasks 1)-3), that is, to develop a mathematical model capable
to mutually couple biomass growth, oxygen consumption and tissue perfusion,
we proceed as follows. First of all, we address Task 2) by proposing a novel
biomass growth model that accounts simultaneously for the dependence on oxy-
gen concentration as well as the mechanical stimulus. In order to calibrate the
model with respect to this latter quantity we perform a short term analysis in
which the nutrient concentration and the fluid-dynamic shear stress can be con-
sidered constant in time and uniform in space. This allows us to determine the
growth model parameters via a fitting procedure. Then, we use the resulting
parameters to address Tasks 1) and 3) by a long term analysis where the nu-
trient concentration and perfusion velocity evolve in time and space with tissue
growth, consequently modifying the construct properties.

2.1 Biomass growth model

The increase in the biomass volume fraction can be derived starting from the
mass conservation principle. This approach can be equivalently applied at dif-
ferent spatial scales. On one side, if the control volume is the entire scaffold,

5



Figure 1: Schematic of the modeled system: bioreactor chamber (a); macroscale
representation of the cellular construct (b); details at the microscale level (c).

then the biomass volume fraction that is obtained is a single macroscopic value.
On the other side, a point–wise mass balance and a corresponding governing
equation can be obtained starting from an infinitesimal control volume centered
at point x. At this level, we do not make any difference between these two
approaches, although such a difference will become significant as we will distin-
guish between the short and long term analysis of the engineered tissue growth.
Mass conservation allows us to state that biomass growth is governed by the
evolution equation

dεb

dt
= (rg − rd)εb = rbεb, (2)

where rd is the death rate accounting for the physiological cell apoptosis, rg is
a growth regulation factor and rb is the net growth rate. Following [16, 15], in
order to model rg, we use the Monod growth kinetics modified by Contois in [8]

rg(εb, c) =
kgc

ksρbεb + c
, (3)

where c is the nutrient (oxygen) concentration, ρb is a reference biomass den-
sity, kg is the maximum specific growth rate and ks is the Contois saturation
constant. In [16, 15], the model parameter kg is adjusted to fit experimental
data obtained for different scaffold thicknesses in static culture conditions. As
an established model for biomass growth regulation with respect to biomechan-
ical stimuli in dynamical conditions is not yet present in the literature, in our
modeling procedure we propose to modify relation (3) in such a way that the
parameter kg is a function of the bio-mechanical stimulus (an averaged or local
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shear stress state τ , according to the time span of the analysis) experienced by
the cells

rg(εb, c, τ ; p) =
kg(τ ; p)c

ksρbεb + c
, (4)

where p denotes a set of unknown parameters to be determined by means of a
calibration procedure based on experimental data.

2.2 Short term analysis and model calibration

Assumptions. In order to determine the set of parameters p in Eq.(4), we
consider a short term culture time T = 15 days. In this working condition,
Eq.(2) can be regarded as the mathematical model for the time evolution of
the average value of the biomass over the whole construct upon assuming space
uniform and time invariant control variables c and τ . These latter hypotheses
are legitimate due to the following considerations:

1. the cell volume fraction is small. As a result of that, the oxygen consump-
tion is negligible, which implies that the inlet concentration c0 (saturation
concentration in the fluid) can be used as a representative value for c;

2. the biomass volume fraction is small. As a result of that, the biomass
does not yet significantly influence the fluid dynamics shear stresses on
the scaffold walls. As a consequence, the median shear stress computed
in [37] by CFD models applied to the nude scaffold can be used as a
representative value for τ .

Under the above assumptions, the biomass growth model (2)-(4) is uncoupled
from nutrient transport and tissue perfusion and can be solved independently.

Model calibration. The experimental set-up for model calibration is the
bioreactor system described in [37] and consisting of a bioreactor chamber in
which chondrocyte-seeded cellular constructs are fixed on sterile discs, 1 mm in
thickness, made of a biodegradable polyestherurethane foam with average poros-
ity 77% [6]. The constructs had their periphery sealed, and were cultured under
interstitial perfusion of the culture medium (refer to Fig. 1a for the chamber
configuration). Four independent culture chambers were mounted in parallel;
culture conditions were identical in each chamber, except for the construct di-
ameter, equal to 2, 3, 4, or 7 mm, respectively. Keeping constant the inlet
flow rate for each scaffold yields four different bioreactor configurations, each
one being characterized by a given mean inlet velocity vi, i = 1, . . . 4 and by a
median shear stress τi, this latter quantity being determined by CFD pore-scale
simulations [37]. Tab. 1 lists the values of vi and τi, as well as the labels used to
identify the four bioreactor configurations. Our calibration procedure is based on
the complementary information provided in Figs. 4-a and 4-b of [37], where the
DNA and sGAG contents measured at t = T = 15 culture days are reported for
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each of the four culture conditions A, B, C and D as a function of i, i = 1, . . . , 4.
From these data, it is possible to extract the cellular and ECM volume fractions,
denoted by εm

c,i and εm
ECM,i, corresponding to the discrete values τi and reported

as well in Tab. 1. Noting that εm
b,i = εm

c,i + εm
ECM,i, we obtain the pairs of data

(τi, ε
m
b,i), i = 1, . . . , 4, to be used in the parameter fitting for Eq.(2). With this

aim, we assume a linear dependence of kg on the shear stress, i.e.

kg = kg0(α + βτ), (5)

where kg0 is the maximum growth rate in static conditions and α, β are the
unknown fitting parameters of our model. Then, letting p = [α, β], the vector
pfit that best fits in the least square sense the measured values of biomass volume
is the solution of the following minimization problem

pfit = arg min
4

∑

i=1

(εb(T, c, τi; p) − εm
b,i)

2. (6)

Calibration of the cell growth model is carried out by solving Eq.(2) with kg0 =
5.8 · 10−6s−1 (corresponding to an average cell division time of 2 days), ks =
4.2 · 10−3 (obtained using the standard Monod kinetics at equilibrium and nor-
malizing the result to the initial value of the biomass fraction as done in [8]) and
an apoptosis rate rd = 3.85 · 10−7 s−1 (corresponding to an average cell lifetime
of 30 days). The initial value of the biomass is set equal to 0.02145 (see Sect. 3
for an extensive discussion of this choice). Using in relation (4) the best fit pa-
rameters computed by solving Eq. (6) up to a tolerance of 10−5, the obtained
best fit values are α = 0.8761 and β = 0.1045. These results yield in Eq. (5) an
amplification factor of the maximum growth rate of about 7 in correspondence of
τ = τ4. The small reduction of the value of kg in static conditions (τ = 0) should
be ascribed to the fact that no experimental data are available for the fitting
procedure in this situation. Fig. 2(top) shows the computed biomass volume
fraction as a function of culture time superposed with the experimentally mea-
sured quantities at t = T = 15 days (denoted by circles), while Fig. 2(bottom)
shows the biomass growth rate as a function of culture time as given by Eq. (4).

2.3 Long term analysis: a fully coupled model for biomass growth,

tissue perfusion and nutrient transport

Flow of the culture medium. In order to derive a macroscopic description
of interstitial fluid flow perfusion throughout the scaffold porous matrix, we
introduce the following assumptions:

1. low perfusion regimes. This allows us to neglect inertial terms in the
momentum balance equation;

2. the scaffold and biomass are rigid and impermeable to the fluid. This
allows us to treat the fluid problem as a homogenized biphasic system
(fluid and solid phases).
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Figure 2: Biomass volume fraction εb (top) and cell growth rate rb (bottom) as
a function of culture time. The plots are obtained from the short–time model
by solving Eq.(2), with the coefficients given in relation (4) and using the best
fit parameters solution of Eq.(6).
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Table 1: Scaffold configurations for model calibration (from [37]).

Scaffold diameter Label Index Inlet velocity Median shear stress
[cm] i vi [cm/s] τi [mPa]

0.2 A 1 0.884 56
0.3 B 2 0.393 25
0.4 C 3 0.221 14
0.7 D 4 0.072 4.6

Cell volume fraction ECM volume fraction

0.0343 0.0366
0.0216 0.0231
0.0164 0.0187
0.0094 0.0125

Applying the VAM over the averaging volume of Fig. 1c, yields the following
macroscopic Stokes equation system with Brinkman correction [22, 46]

∇ · v = 0,

∇p = −µεfK−1(εf )v + µ△v,
(7)

where µ is the dynamic viscosity of the culture medium, v is the Darcy velocity, p
is the fluid pressure and K is the effective hydraulic permeability. An established
closure relation expressing K as a function of the space and time dependent fluid
volume fraction εf (related to the solid volume fraction by Eq. (1)) is provided
by the Carman-Kozeny equation [2, 22, 46]

K(εf ) = Kp

ε3
f

(1 − εf )2
, (8)

where the Kozeny constant Kp is a reference permeability to be later specified.
To achieve a full coupling with biomass growth, the interstitial perfusion

model must be complemented with a precise definition of the expression of shear
stress to be used in the context of VAM averaged equations. In the context
of low perfusion regimes, an acceptable model is an adaptation of the Darcy-
Carman-Kozeny formula proposed in [43] to the case of a variable permeability

τ(εb, |v|) =
µ|v|

√

K(εf )
=

µ|v|
√

K(1 − εs − εb)
. (9)

The above formula connects in an almost linear fashion the variation of the aver-
age shear stresses on the porous matrix walls to the average filtration velocity, as
expected in these flow regimes. Moreover, the formula establishes a dependence
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of the stress on the actual biomass fraction. In order to characterize the Kozeny
permeability Kp required to compute the effective hydraulic permeability given
by Eq. (8), we use again a least square fitting between the values predicted by
Eq. (9) by setting εb = 0 and |v|i = vi, where vi, i = 1, ..., 4 are the inlet veloci-
ties listed in Tab. 1, and the median (pore-scale) shear stress computed in [37]
and reported in Tab. 1. More precisely, we aim to find

Kp,fit = arg min
4

∑

i=1

(

τ(0, |v|i) − τi

)2
.

The best fit value is Kp,fit = 1.97 · 10−7 cm2, which produces an extremely
accurate fitting, the corresponding residual being of the order of 10−10. The
functions τ(εb, |v|i) obtained from relation (9) using the optimal value of Kp,fit

are plotted in Fig. 3 in correspondence of |v|i = vi, i = 1, ..., 4, showing that
the shear stress is an increasing function of the biomass fraction, consistently
with the fact that hydraulic resistance increases with cell proliferation. This
analysis is particularly interesting in our case, because it provides an indication
of the range of construct porosities where the present model can be considered
to be reliable according to experimental validation. Indeed, it suggests that
for long term cultures, where the biomass volume fraction is expected to grow
significantly, only experiments with moderate inlet velocity, i.e. values C, D
of Tab. 1, would correspond to shear stresses in the range where the present
biomass growth model has been validated.

Oxygen mass transport. Applying again the VAM over the averaging vol-
ume of Fig. 1c, and neglecting accumulation terms, yields the following mass
conservation law in advective-diffusive-reactive form for the volume averaged
oxygen concentration, c, in the homogenized phase

∇ · (−D∇c + vc) + R(c) = 0, (10)

where c = εscs + εfcf + εbcb, and cf , cb are the volume averaged oxygen concen-
trations in the fluid and biomass phases, respectively, cs is the negligible oxygen
concentration inside the scaffold, v is the fluid velocity predicted by (7), and
R is the biomass oxygen volumetric consumption rate, which is assumed to be
a function of the local oxygen concentration according to the Michaelis-Menten
kinetics

R(c) =
Rmc

Km + c
εb, (11)

Rm and Km being the maximal consumption rate and the half saturation con-
stant, respectively. The effective diffusivity D in Eq. (10) can be characterized
as in [45], resorting to an approximate solution of the so called closure problem.
Applying such an approach in a multiphase system like the one at hand (where
we have three phases: fluid, biomass and solid scaffold) is a very challenging
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problem. However, for the specific problem at hand, we point out some realistic
assumptions that allow us to simplify this process:

1. the scaffold matrix is impermeable to oxygen. This is equivalent to as-
suming that the oxygen diffusivity into the scaffold is negligible. This also
allows us to conclude that the oxygen concentration into the scaffold is
vanishing.

2. the diffusivity of oxygen in the fluid phase is almost equivalent to the one
in the biomass [28]. We notice that this property would not be valid for
molecules considerably larger than oxygen, such as glucose.

Owing to these assumptions, we can consider a biphasic system made of a
”fluid-equivalent phase” (culture medium + biomass) and a solid phase (scaf-
fold), i.e. we have c = εf cf + εbcb since cs = 0 and define εfb = εf + εb and
cfb = εf cf + εbcb, cfb being the average concentration of the “fluid-equivalent
phase”. We notice that c = cfb in this particular case.

Then, we use Maxwell’s model [26, 45] to find a closure relation for the
diffusive flux into a biphasic system characterized by the scaffold and by a ”fluid-
equivalent phase”. More precisely, we define the diffusive flux as

j = −D∇c = −Dfb∇cfb (12)

where D = Dfb is the effective diffusivity to be suitably approximated. We focus
on the equivalent problem of determining Dfb, that is the effective diffusivity
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relative to the “fluid-equivalent phase” average concentration. Since we assume
that the diffusivity of oxygen in the fluid is almost equivalent to the one in
the biomass we denote with D′

f = D′
b = D′

fb the diffusivity of oxygen into a
medium composed by either pure fluid or pure biomass or any mixture of these
components. Maxwell model states that

Dfb

D′
fb

= M
(

εfb, κfb

)

, κfb = keq
D′

s

D′
fb

where M(ε, κ) denotes Maxwell’s formula [26]. and keq is a suitable equilibrium
constant, see [45]. However, the value of keq is irrelevant for us, because we
assume that oxygen does not diffuse into the scaffold, hence D′

s = 0 and κfb = 0
for any possible finite value of keq. In the case where the scaffold resembles to
an array of disjoint spheres, we use

M(ε) =
3κ − 2ε(κ − 1)

3 + ε(κ − 1)
,

while in the case it resembles to an array of cylinders, we use

M(ε) =
2κ − ε(κ − 1)

2 + ε(κ − 1)
.

We believe that in our case the former formula is more appropriate. Combining
the previous expressions, we finally obtain

D

D′
f

=
2(1 − εs)

2 + εs

where D′
f is the oxygen diffusivity in the pure fluid phase, which can be easily

determined by measurements. We also notice that, in this specific case, the
effective diffusivity coefficient, D, only depends on the scaffold volume fraction
εs. This is a direct consequence of the assumption that the nutrient diffuses
equivalently in the fluid and in the biomass.

Solution algorithm and numerical approximation. Let N be the number
of time subdivisions of the culture time interval [0, T ], ∆t = T/N the time step
and tk = k∆t the k-th time level, k = 0, . . . ,N . Then, the solution of the time–
dependent nonlinear coupled system describing engineered tissue growth under
interstitial nutrient flow and constituted by the ODE (2) and by the PDEs (7)
and (10) is reduced to the solution of a sequence of decoupled linearized sub-
problems according to the following block Gauss–Seidel iteration:
Given εn

b = εb(t
n) , vn = v(tn) and cn = c(tn), for all n = 0, . . . ,N − 1:
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Step 1: solve the Stokes-Brinkman problem

∇ · vn+1 = 0,

∇pn+1 = −µεn
f K−1(εn

f )vn+1 + µ△vn+1,

and then set v(tn+1) = vn+1 and p(tn+1) = pn+1.

Step 2: solve the nutrient balance equation

∇ · (−D∇cn+1 + vn+1cn+1) + R(cn) = 0,

and then set c(tn+1) = cn+1.

Step 3: compute the Darcy stress

τn+1 =
µ|vn+1|

√

K(1 − εs − εn
b )

and then set τ(tn+1) = τn+1.

Step 4: solve the biomass growth equation using a one-step explicit time–
marching method

εn+1
b − εn

b

∆t
= Φb(ε

n
b , cn+1, τn+1;∆t)

Φb being a suitable increment function, and then set εb(t
n+1) = εn+1

b .

The temporal stability of the above solution algorithm is determined by the
appropriate choice of ∆t. To this purpose, we first need to study the stability
properties of the biomass growth model (2). For this analysis, we assume c and
τ to be parameters allowed to vary in the admissible space P = (0, c0] × [τ4, τ1]
and set f(εb) := rbεb. The equation f(εb) = 0 has two roots, εb,1 = 0 and

εb,2(c, τ) =
c(kg(τ) − rd)

rdρbks
.

It is easy to verify that, since kg(τ) − rd > 0 for all τ ∈ [τ1, τ4], εb,2 > 0. To
investigate the mathematical nature of the two equilibrium points, we consider
the linearized version of the growth model (2) [1]

dεb

dt
= λ(εb; c, τ)εb + g
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where g is an inhomogeneous term that has no influence on the stability of the
problem, and

λ(εb; c, τ) :=
∂f

∂εb
=

kg(τ)c2

(ksρbεb + c)2
− rd.

Replacing into the above formula the expressions of the equilibrium points yields
λ(εb,1; c, τ) = kg(τ)−rd > 0 for all τ and λ(εb,2; c, τ) = rd(rd−kg(τ))/kg(τ) < 0,
from which we conclude that εb,1 is an unstable equilibrium point while εb,2 is
an asymptotically stable equilibrium point. We can now turn to the analysis
of the scheme in Step 4, which is the discrete counterpart of problem (2), and
we investigate its absolute stability in the sense of Dahlquist [9]. For ease of
presentation, we consider the simplest case of the Forward Euler (FE) method,
corresponding to Φb = rb(ε

n
b )εn

b . The study of the sign of λ reveals that λ < 0
provided that εb > εb,lim = c((kg(τ)/rd)

1/2 − 1)/(ksρb), condition that is largely
satisfied by the initial value ε0

b for every choice of (c, τ) ∈ P. In particular, we
need to characterize the maximum absolute value of λ. This occurs at εb =
εb,2, in correspondence of τ = τ1 and irrespective of the value of the nutrient
concentration c. Moreover, setting Iε = [εb,lim, εb,2], we have

max
εb∈Iε;

(c,τ)∈P

|λ(εb; c, τ)| = rd

(

1 −
rd

kg(τ1)

)

< rd := λmax,

so that we can conclude that the FE method in Step 4 is absolutely stable,
provided that

∆t <
2

λmax
= 60 days,

which by far exceeds the actual time step used due to accuracy requirements in
the simulations. We notice that a similar analysis applies if a higher-order one-
step explicit method is used in Step 4, for instance, a 4th–order Runge–Kutta
method.

The spatial discretization of each PDE subproblem in the solution algorithm
Steps 1-4 is carried out using the Galerkin Finite Element Method (see, e.g.,
[32]). In particular, the stable Taylor-Hood pair is used for the approximation
of fluid velocity and pressure in Step 1, while piecewise linear elements are used
for the approximation of the nutrient concentration in Step 2.

3 Results

The numerical simulations have been carried out by coding the algorithm Steps
1-4 within the Matlab software environment. The geometry of the computational
domain is shown in Fig. 4, along with the boundary conditions. In Fig. 4, W
is the scaffold thickness, taken equal to 1mm as in the experimental devices
described in Sect. 2.2, while H is the scaffold diameter, chosen as in Tab. 1 for
the different configurations. Moreover, n is the outward unit normal vector, j is
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the diffusive flux for the concentration field defined in (12) and T = 2µε(v) −
pId is the stress tensor, where ε(v) and Id denote the rate–of–strain tensor
of the velocity field and the identity matrix, respectively. The inlet velocity
field is a plug flow of modulus vin (see Tab. 1). Numerical simulations carried
out adding prior to the scaffold inlet section (x = 0) a sufficiently long tract
where a clear fluid flows, demonstrate that this is a reasonable choice for the
entrance fluid velocity profile. The initial biomass volume fraction is computed
from the prescribed total number Ncells of seeded cells, supposing that at t =
0 the biomass is constituted only by cells. Cells can be seeded uniformly in
the scaffold or be unevenly distributed. In the first case, denoting by Vcell =
4
3π(Hcell/2)

3 the volume of the single cell, Hcell being the cell diameter, and
by Vscaff = π(H/2)2W the scaffold volume, the density of seeded cells can be

straightforwardly computed as ε0
b = Ncells

Vcell

Vscaff
= 0.02145. The second case is

discussed in detail later in the section. In the numerical simulations, only scaffold
configurations C and D are considered, in accordance with the previously drawn
conclusions that the calibration of the full model is valid only for moderate
median shear stresses. The values of the model parameters are listed in Tab. 2.

Figure 4: Geometry of the domain and boundary conditions for the numerical
simulations of the PDE/ODE model.

The first set of results refers to uniform seeding conditions. Fig. 6 illustrates
the comparison between predictions of the average biomass volume fraction (de-
fined as the mean integral value of εb(x, t) over the scaffold area at each time
t) obtained by running the sole ODE model (2) (dashed lines) and the full
PDE/ODE model described in Steps 1-4 (solid lines) up to a final culture time
of T = 90 days. The discrepancy between the two models is related to the effect
of the shear stresses, which are higher in the fully–coupled model predictions
with respect to the fixed value considered in the simple ODE model, because
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Table 2: Numerical values of the parameters used in the simulations.

Parameter Dimension Definition Value Ref.

c0 [g/cm3] culture medium inlet O2 concentration 6.4·10−6 [28]
Df [cm2/s] O2 diffusivity in H2O and biomass at 37◦C 2.1·10−5 [28]
Ncells [ ] number of seeded cells 8 ·104 [37]
Hcell [mm] diameter of the cell 8·10−3 [37]
εs [ ] scaffold volume fraction 0.23 [37]
kd [1/s] cell death rate 1/(30 · 24 · 3600) [16]
kg0 [1/s] maximum specific cell growth rate 1/(2 · 24 · 3600) [28]
ks [ ] Contois cell saturation constant 4.2 · 10−3

µ [g/cm/s] culture medium dynamic viscosity at 37◦C 8.26·10−3 [34]
ρb [g/cm3] reference biomass density 1
Rm [1/s] O2 maximal consumption rate 3.9·10−8 [7]
Km [g/cm3] O2 half saturation constant 3.2·10−6 [28]

of the variation of permeability caused by the increasing biomass. Moreover,
as biomass production and increase of stress are mutually coupled in a positive
feedback loop, discrepancies are more significant in scaffold C, where the ve-
locity field is higher. Fig. 7 shows the median Darcy stresses obtained by the
PDE/ODE model as a function of culture time. Fig. 8 shows for scaffold C
how the increased biomass fraction affects the shear stress distribution pattern.
At advanced cell growth stages, as expected, higher shear values are recorded.
Moreover, a narrower distribution of the values is observed, in accordance with
the results of [24]. Figs. 9 and 10 refer again to the scaffold configuration C, and
show the snapshots of the spatial distribution, at various culture times, of the
normalized oxygen concentration field and the biomass volume fraction (sampled
at y = H/2).

The second set of results aims to investigate the effects of a non–uniform
initial seeding of cells in the scaffold. To this purpose, we keep constant the total
number of cells as indicated in Tab. 2, while we allow the density of seeding to
be a function of the spatial position inside the scaffold domain, so that also the
initial biomass volume fraction is a function of the spatial position. In particular,
we suppose to have a certain seeding density ρ1 in a cylindrical central region of
diameter Hi of the 3D scaffold and a different seeding density ρ2 in the remaining
surrounding toroidal region (see Fig. 5).

The two densities are related by the convex combination

ρ1

ρseed
ξ2 +

ρ2

ρseed
(1 − ξ2) = 1,

where ξ = Hi/H and ρseed = Ncells/Vscaff is the cell density in the uniform
seeding case. We set ξ = 0.5 and consider the scaffold configuration C. Then
we carry out a first set of simulations choosing ρ1 = 2ρseed, corresponding to
ρ2 = 2

3ρseed, so that the cell seeding density is higher in the central region,
and a second set of simulations in the opposite situation with ρ1 = 0.5ρseed,
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corresponding to ρ2 = 5
4ρseed. In Fig. 11, we represent the 3D surf plot of the

biomass volume fraction at t = 7, 30, 90 days of culture, from bottom to top,
respectively, for the case ρ1 = 2ρseed, while in Fig. 12, we represent the results
in the case ρ1 = 0.5ρseed. In both conditions, after an initial transient, the
distribution of the biomass volume fraction tends to become homogeneous over
the domain, because of the greater availability of nutrient in the scaffold regions
less densely seeded, which in turn promotes biomass growth.

4 Discussion and conclusions

The aim of this work was to set up a multiphysics/multiscale computational
model for the simulation of the process of biomass growth in an engineered
cartilaginous construct, cultured under interstitial perfusion in a bioreactor.
The model comprises three phases: cells and ECM (treated as a single phase,
biomass), the culture medium, and the time–invariant scaffold porous structure,
and it provides a self–consistent coupling among the fluid-dynamical environ-
ment, the nutrient delivery and consumption and the biomass growth. Com-
pared to previous pore–scale CFD simulations, this approach allows to study
long-term interstitial perfusion in scaffolds with high cell volume fractions, at
affordable computational costs, and to perform simulations for any scaffold pore
geometry, regular (for example the idealized scaffold pore structures considered
in [3, 24]) or irregular (for example the ones obtained from the µCT images
of [38]).

Concerning the critical issue of the description of the temporal and spatial
evolution of the developing biomass, our approach is based on the fundamental
experimental observation that in perfused bioreactors biomass growth is influ-
enced primarily by two factors, oxygen tension and fluid dynamical shears [39].
While the role of oxygen delivery to cells has been extensively investigated in
several computational studies (see for example, [16, 15, 12]), considerably less
attention has been paid to account for the effect of mechanical stimuli in the
prediction of biomass growth. Therefore, in this article, we have focused our
analysis on the extension of the Monod growth model proposed in [16, 15], in
such a way that the coupling of cell behavior and mechanical environment is
captured through the introduction of a stress–dependent relation for the specific
growth rate. The parameters entering such relation have been calibrated on the
experimental data of [33] using a simplified reduced model for which the nutri-
ent and stress distributions are assumed to be constant in time and uniform in
space, consistently with the environmental conditions of the early culture times
of [33]. The simplified growth model is also used as a paradigm for investigat-
ing the stability of the functional iteration employed to successively solve the
fully–coupled ODE/PDE problem.

In the derivation of the fully–coupled model, the VAM is systematically em-
ployed to obtain macroscopic equations which keep into account microscopic
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scale contributions by an appropriate definition of effective parameters, such as
hydraulic permeability and nutrient diffusivity. Concerning with the permeabil-
ity, similarly to what done for the biomass growth model, a calibration procedure
is carried out to determine its reference value, in such a way that the range of
values attained by the correspondingly computed Darcy stresses are compatible
with the pore–scale analysis of [33]. This approach allows to overcome a critical
issue arising in the comparison between shear stress predictions of microscale
vs. macroscale approaches (see [6, 5]). As for the effective oxygen diffusivity,
a simplified two–phase model comprising a solid phase (scaffold) and a “fluid–
equivalent” phase (biomass and perfusion medium) has been considered, so that
the theory of [45] can be applied to the problem at hand to yield a closed ex-
pression for the nutrient diffusion coefficient.

An extensive numerical validation of the above described computational
model has been carried out. Our results can be directly compared to those
obtained in [5], even if in this reference the effect of the shear stress in the
growth model as well as of the presence of the scaffold volume fraction in the
calculations of the permeability were not considered. The computed increase
in biomass volume fraction with culture time is in good qualitative agreement
with published data from perfusion experiments [10, 14, 25]. Only qualitative
agreement may be expected in this regard, because the flow rates, scaffold ma-
terials, cell densities and culture medium compositions differ among the various
studies. Also, most bioreactor studies are based on the comparison, at the end of
cultivation, of constructs subjected to perfused versus non perfused conditions.

Future developments will include 2D axisymmetric and 3D implementations
of the model, a more thorough investigation of the biomass growth model, featur-
ing independent balance equations for the cellular and the extracellular fractions,
and the development of new experimental protocols to be interfaced to the nu-
merical simulations. Transport of solutes other than oxygen can be easily added
due to the modular structure of the simulation tool.
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Figure 5: Geometry and notation for the non–uniform seeding case study.
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Figure 6: Comparison between average biomass fraction predictions as a function
of culture time obtained using different computational models. Dashed lines refer
to the ODE model (2), while solid lines refer to the PDE/ODE model described
in Steps 1-4.
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Figure 7: Median Darcy stresses as a function of culture time for different scaffold
configurations and computed by using the PDE/ODE model described in Steps
1-4.
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Figure 8: Shear stress distributions at different times of culture for scaffold C.
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Figure 9: Oxygen concentration (normalized to the inlet concentration c0) at
different culture times computed by using the PDE/ODE model described in
Steps 1-4. The x axis represents the dimensionless coordinate along the scaffold
thickness.
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Figure 10: Average biomass volume fraction at different culture times computed
by using the PDE/ODE model described in Steps 1-4. The x axis represents the
dimensionless coordinate along the scaffold thickness.
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Figure 11: Spatial distribution of the biomass volume fraction at t = 7, 30, 90
days of culture (from bottom to top) under non–uniform seeding conditions. The
seeding density in the inner region is 2 times greater than the seeding density in
the uniform–seeding case.
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Figure 12: Spatial distribution of the biomass volume fraction at t = 7, 30, 90
days of culture (from bottom to top) under non–uniform seeding conditions. The
seeding density in the inner region is 0.5 times lower than the seeding density in
the uniform–seeding case.
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