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Abstract

Recent technological advances havemade it possible to

collect diverse biomedical data sources for each individual,

ranging from imaging to genetics and digital health records.

Integrating such heterogeneous information in a coherent

and informative way is a key challenge for modern biomedi-

cal data analysis. In this work, we present a unified perspec-

tive that bridges the fields of multi-view learning and multi-

omics integration, which have traditionally developed in par-

allel but share the same underlying objective. We organize

this vast methodological landscape with respect to learning

objectives, providing a structured overviewof core paradigms,

associated challenges, and emerging directions. Through

a case study on UK Biobank data, we highlight the impor-

tance of interpretability in biomedical contexts by apply-

ing two representative methods, AJIVE and SGCCA, which

bridge themulti-omics andmulti-view learning streams. The

results show that integrative approaches provide more in-

formative and clinicallymeaningful insights than single-view
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analyses, underscoring their practical relevance for biomed-

ical research.

Keywords — multi-view learning, multi-omics, data fu-

sion, interpretability, joint and individual components, cross-

modal correlation

1 | INTRODUCTION

In recent years, the exponential growth in data availability has profoundly transformed the landscape of scientific

research and clinical practice. The growing heterogeneity in the nature and structure of data sources has opened up

unprecedented opportunities to enhance our understanding of complex systems [83]. Traditionally, biomedical anal-

yses have relied on structured data such as demographic variables, diagnostic codes, and laboratory results, some-

times complemented by unstructured information such as medical notes [38]. Today, advances in data acquisition

technologies allow for the large-scale collection of complex and high-dimensional information at reduced cost. Exam-

ples include high-throughput omics data (e.g., genomics, transcriptomics, proteomics), radiological imaging (MRI, CT),

records of medication prescriptions, environmental exposure metrics, and behavioral data from wearable devices or

mobile applications [16, 27, 41]. Large-scale initiatives such as The Cancer Genome Atlas (TCGA) [71] have further

highlighted the potential of combining diverse data modalities to enable more comprehensive disease modeling and

biomarker discovery.

These different modalities provide complementary and often non-redundant perspectives on the biological, clin-

ical, and environmental factors that shape health and disease. Integrating such diverse sources in a principled way is

essential to fully exploit their potential, as each modality captures a specific aspect of the underlying system and no

single data type provides a complete picture.

However, traditional statistical techniques are generally ill-equipped to address these complexities. Most classical

methods rely on strong assumptions such as linearity, independence between variables, and low dimensionality, which

rarely hold for modern biomedical data. They struggle with heterogeneity in scale and noise structure, mismatched

sample sizes across modalities, and sparse or high-dimensional feature spaces. Moreover, they typically analyze each

data source in isolation, making it difficult to capture relationships that emerge only when modalities are considered

jointly [24].

Cross-modal interactions are precisely where much of the meaningful biological signal resides: gene expression

changes may influence imaging phenotypes; environmental exposure can modulate clinical biomarkers; wearable-

based behavioral patterns can predict treatment response only in combination with molecular profiles. Capturing

such dependencies enables more accurate prediction, improved patient stratification, and deeper mechanistic insight.
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Properly linking data sets can be regarded as introducing a new form of diversity, and this diversity is the basis and

driving force of data fusion [32].

Over the past two decades, a broad array of integrative methods has been developed to tackle the challenges

associated with combining multiple data modalities [83, 23, 55, 5]. A prominent category of these approaches falls

under the umbrella of multi-view learning [73], which focuses on leveraging multiple sources of information—known

as views—of the same underlying entities. Originating primarily in the context of machine learning tasks involving web

pages, signals, or images, this field has produced a wide range of models capable of jointly analyzing multiple sources

of information without resorting to naive concatenation of features [62, 82].

In parallel, the field of multi-omics data integration has gained traction within the biomedical community, with

the goal of jointly analyzing different layers of omics data—such as genomics, transcriptomics, proteomics, and epige-

nomics—to gain deeper insights into biological systems [60].

Despite originating in distinct application domains, multi-view learning and multi-omics share a common goal:

integrating complementary sources of information while preserving the specific structure and role of each modality,

and avoiding simplistic feature concatenation. However, the corresponding lines of research have largely evolved in

parallel, with limited interaction between the two fields. Reviews in multi-omics integration [23, 60, 7, 11, 50, 53, 46,

28] typically do not refer to methods developed within the multi-view learning literature, while surveys on multi-view

learning [62, 82, 35, 73, 20, 78, 3, 32, 69] omit the extensive body of work emerging from the multi-omics community.

This separation is difficult to justify, especially given that the underlying methods are not tied to the nature of

the data they process. Techniques originally developed for omics integration can be readily applied to non-biomedical

scenarios, just as multi-view models from general-purpose machine learning can prove effective in multi-omics appli-

cations. To the best of our knowledge, no existing review systematically connects the literature onmulti-view learning

with that of multi-omics data integration, despite the strong methodological analogies and the potential for mutual

enrichment between the two fields.

The aim of this review is precisely to bridge this gap, offering a unified perspective that helps researchers nav-

igate this vast landscape and encouraging a more integrated understanding of approaches that, although currently

developed in separate communities, share a common foundation.

In what follows, we will adopt the term multi-view learning to refer broadly to this unified landscape of ap-

proaches that aim to extract information frommultiple, complementary data views—regardless of whether the context

is general-purpose or biomedical.

The remainder of this paper is structured as follows. Section 2 presents a unified overview of the methodological

landscape, structured around core principles, key challenges, and a taxonomy ofmulti-view learning approaches based

on learning objectives—including supervised, unsupervised, semi-supervised, and representation learning paradigms.

Using data from UK Biobank, Section 3 presents a case study aimed at demonstrating the effectiveness of multi-view

integration techniques for extracting clinically meaningful insights from heterogeneous biomedical data. We focus
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on two representative methods—AJIVE and SGCCA—drawn from the multi-omics and multi-view learning literature,

respectively. These approaches enable a gray-box modeling strategy, striking a balance between predictive power

and interpretability. By leveraging the structure across multiple data modalities, both methods identify informative

latent components that highlight clinically or biologically relevant variables, and demonstrate how integrative multi-

view analysis can outperform single-modality models by offering a more nuanced understanding of complex health

phenomena. Finally, Section 4 offers concluding reflections and highlights future research directions.

2 | A UNIFIED PERSPECTIVE ON MULTI-VIEW LEARNING AND MULTI-OMICS

Whendealingwith amulti-viewdataset, severalmodeling goalsmay arise. Onemay aim to construct a low-dimensional

joint representation that captures the relationships between modalities, to exploit this representation in downstream

tasks such as prediction or stratification, or to directly combine the views for supervised or unsupervised modeling

without any prior embedding step. These alternatives reflect different learning objectives and determine the most

suitable methodological framework.

To bring structure to this variety, it is helpful to adopt a taxonomy based on the primary learning objective. This

perspective allows us to distinguish fourmajor paradigms ofmulti-view learning: multi-view supervised learning, multi-

view unsupervised learning, multi-view semi-supervised learning, and multi-view representation learning [62]. Table 1

summarizes these paradigms by outlining their typical objectives and representative methods.

In parallel, several complementary paradigms have emerged—such as ensemble multi-view learning [74], active

multi-view learning [45], and multi-view transfer learning [12]—which reflect different strategies for leveraging multi-

ple modalities in more dynamic or adaptive settings. These paradigms are often built upon or combined with the core

categories, expanding the applicability of multi-view learning to more complex or data-constrained scenarios.

Before delving into these paradigms, Section 2.1 introduces the key principles of multi-view learning, outlines

the main challenges, and presents the different fusion strategies based on the timing of integration. The subsequent

sections explore in greater detail the paradigms listed in Table 1, followed by an overview of the complementary

strategies mentioned above.

2.1 | Principles, challenges and fusion strategies

At its core, multi-view learning is guided by two fundamental principles: the complementary principle and the con-

sensus principle [79]. The complementary principle posits that different views should be jointly exploited to achieve

a more comprehensive and accurate understanding of the system under study. Recent studies have demonstrated

that integrating omics and imaging data can significantly improve predictive performance compared to unimodal ap-

proaches. In the context of non–small cell lung cancer, a cross-attention deep learning model combining transcrip-
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TABLE 1 Summary taxonomy of multi-view learning paradigms.

Multi-view paradigm Main objective Methods

Supervised learning Predict a specific target using
features from multiple views

MFDA [13], SVM-2K [17], multi-view repre-
sentation learning [35] + standard supervised
methods

Unsupervised learning Discover latent structures or
clusters from unlabeled multi-
view data

Graph-based approaches (SNF [68], ANF [40],
SRF [22]), multi-view representation learning
[35] + standard unsupervised methods

Semi-supervised learning Leverage partial supervision to
guide learning on unlabeled
data

Co-training [9], co-regularization [56], graph-
based methods [61]

Representation learning Extract informative low-
dimensional embeddings that
preserve relevant structures
across views

Dimensionality reduction techniques (CCA
[26], KCCA [33], JIVE [39], AJIVE [19]), proba-
bilistic models (MOFA [2], iCluster [54]), deep
learning architectures (AEs [18], GANs [65],
GNNs [77]), graph-based models [29]

tomic profiles, clinical data, and CT scans outperformedmodels based on singlemodalities [66]. Similarly, in glioma and

renal cell carcinoma, the Pathomic Fusion framework showed that fusing histopathological images with genomic fea-

tures led to enhanced diagnostic and prognostic accuracy [14]. Conversely, the consensus principle aims to promote

consistency across views by identifying latent structures that are reflected in multiple modalities, thereby enhancing

robustness and interpretability [39].

Although significantmethodological advances, multi-view learning continues to face a number of open challenges.

These include designing integration strategies that preserve relevant information without redundancy, coping with

heterogeneous noise across modalities, managing high-dimensional data with limited sample sizes—as often encoun-

tered in biomedical settings—balancing views of differing dimensionality, resolving inconsistencies between views,

and ensuring computational scalability [35, 32].

Despite these challenges, the multi-view framework remains attractive even when natural view separation is not

explicitly available. In cases where data are collected from clearly distinct sources—such as different sensors or omics

layers—the multi-view structure is straightforward. However, it has been empirically demonstrated that artificially

creating views by randomly splitting features from a single-view dataset can also enhance performance in downstream

tasks [10]. This finding suggests that the benefits of multi-view modeling may extend beyond cases with inherently

distinct modalities. Nevertheless, this approach currently lacks theoretical support and offers limited interpretability,

highlighting the need for more principled criteria in defining and validating view separations.

Another key question in this domain is when to fuse the data, a challenge that arises naturally due to the hetero-

geneity and varying informativeness of each data type [3]. The decision on the timing of integration can significantly
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affect both the performance and interpretability of the resulting models. In fact, depending on whether fusion oc-

curs before, during, or after model training, different integration strategies are adopted, each with distinct theoretical

underpinnings and computational implications.

Three principal integration strategies have emerged [49]. Early fusion, or fusion in the data, is an approach in

which all view matrices are first concatenated into a single representation, and then standard single-view algorithms

are applied to this combined matrix. This enables joint modeling from the outset, but may obscure modality-specific

patterns. Late fusion, or fusion in the results, builds separate models for each modality and then combines their

outputs, offering flexibility but limiting cross-modal interaction [25, 43]. Both strategies have the advantage of allow-

ing the use of standard machine learning models and software tools. In contrast, intermediate fusion integrates the

modalities during the learning process itself. Although this approach often requires the development of dedicated

algorithms and cannot rely on off-the-shelf tools, it enables more expressive modeling of cross-view interactions and

has the potential to achieve superior performance [83]. For these reasons, the remainder of this paper focuses on

intermediate fusion, organizing the review around learning goals and methodological frameworks.

2.2 | Multi-view supervised learning

Multi-view supervised learning addresses scenarios in which multiple data modalities are available and the outcome

variable is fully observed. The goal is to exploit complementary information across views to improve predictive per-

formance in tasks such as classification or regression [62]. Unlike semi-supervised settings, this framework relies

exclusively on labeled data, which simplifies aspects such as model selection and evaluation.

Several methods have been developed to explicitly model the multi-view structure in supervised tasks. A notable

example is the multi-view Fisher discriminant analysis (MFDA) [13], which extends classical discriminant analysis to

jointly exploit information from multiple views in both binary and multi-class classification problems. This method

seeks discriminative projections across modalities simultaneously, capturing shared class-relevant signals. Similarly,

multi-view extensions of support vector machines, such as SVM-2K [17], incorporate cross-view consistency directly

into the objective function by enforcing agreement between classifiers trained on each view.

However, in many real-world applications, a more common and pragmatic strategy involves a two-step pipeline:

first, a multi-view representation learning method is used to derive informative latent features that summarize the

joint structure of the modalities; then, standard statistical models—such as logistic regression, linear discriminant

analysis, or Cox proportional hazards models—are applied to these latent representations to perform the final pre-

diction [47, 57, 70]. This hybrid approach benefits from the expressiveness of unsupervised multi-view techniques

in capturing shared and complementary patterns, while preserving the interpretability, simplicity, and robustness of

well-established supervised models.
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2.3 | Multi-view unsupervised learning

Multi-view unsupervised learning, by contrast, seeks to uncover latent structures within multi-modal datasets in the

absence of supervision. Prominent applications include clustering and dimensionality reduction, where the objective

is to reveal meaningful patterns and structures that emerge from the integrated analysis of all available modalities

[8, 20, 79, 64].

Clustering is particularly relevant in biomedical contexts, where researchers are often interested in identifying

latent subgroups of patients—such as molecular subtypes of cancer or groups with different response to treatment.

Among the various families of clustering algorithms, graph-based approaches have gained significant traction formulti-

view data integration.

Graph-based approaches [29] model inter-sample relationships by representing observations as nodes in a graph,

with edges encoding pairwise similarity between them. Typically, similarity networks are first constructed indepen-

dently for each modality, then integrated into a fused graph structure. Representative methods in this family include

Similarity Network Fusion (SNF) [68], Affinity Network Fusion (ANF) [40], and Similarity Regression Fusion (SRF) [22].

A key advantage of graph-based approaches is their ability to seamlessly integrate heterogeneous data types, encom-

passing both categorical and numerical variables, provided that an appropriate similarity measure is defined. Once

the fused graph is obtained, spectral clustering is commonly applied to extract group structure from the network.

As in the supervised setting, latent representations learned through multi-view embedding techniques are some-

times used as input for traditional clustering algorithms in a modular, two-step pipeline [49].

Dimensionality reduction represents another important objective within multi-view unsupervised learning. Al-

though unsupervised, it is not tied to a specific task such as clustering or classification. Its primary goal is to learn

compact, informative representations that capture the joint structure of multiple views. Given its foundational role

across a variety of downstream tasks, we address dimensionality reduction methods in more detail in Section 2.6,

within the broader context of multi-view representation learning.

2.4 | Multi-view semi-supervised learning

Multi-view semi-supervised learning operates in settings where labeled data are scarce but large volumes of unlabeled

data can be exploited [73]. The goal is to leverage both labeled and unlabeled samples by integrating complementary

information from multiple views, improving learning performance when full supervision is not feasible.

A well-established approach within this class is co-training [9], which assumes that each view is sufficient on its

own to make a prediction, and that views are conditionally independent given the label. In its classical form, two

classifiers are trained separately on distinct views using the available labeled data; each classifier then labels the most

confident examples among the unlabeled data, and these pseudo-labels are iteratively added to the training set of the

other view. This mutual reinforcement process allows the models to gradually expand their labeled set and improve
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generalization.

Beyond co-training, various other strategies have been developed, including co-regularization frameworks [56],

graph-based approaches, and agreement maximization. Co-regularization methods typically train separate models

on each view while introducing regularization terms that penalize discrepancies between their outputs on unlabeled

data. This encourages the models to agree where they are confident, without forcing alignment in noisy regions.

Graph-based methods construct similarity graphs for each view and propagate label information over a fused or

jointly-regularized graph, capturing both view-specific geometry and shared structure [61]. Agreement maximiza-

tion techniques, on the other hand, explicitly optimize for consistency between predictions across views, often by

minimizing divergence measures or enforcing consensus in latent representations [15].

While a large portion of multi-view semi-supervised learning focuses on propagating labels to unlabeled data,

another relevant objective is to guide an unsupervised task using partial supervision. For instance, S2GC (Survival

Supervised Graph Clustering) [37] incorporates survival time as a weak supervisory signal to guide the clustering of

items. Themethod integrates a Coxmodel into the similarity graph construction, encouraging the formation of patient

groups that share not only similar characteristics but also similar survival times.

More broadly, semi-supervised methods of this kind aim to strike a balance between the exploratory nature of

unsupervised learning and the outcome-awareness of supervised approaches. By using outcome information as a

guiding signal—rather than a strict target—they help uncover clinically meaningful patterns without fully constraining

the discovery process. This makes them particularly suitable for biomedical contexts, where outcome information

must inform—but not constrain—the discovery of complex phenotypic subgroups.

At the same time, the presence of supervision, even if weak, can introduce biases that limit the emergence of novel

structures unrelated to the outcome. In this sense, supervision becomes a double-edged sword: it improves relevance,

but may reduce discovery. Compared to fully supervised models, semi-supervised approaches are more flexible and

capable of capturing subgroup structures that do not align neatly with a single predictive goal. However, they are often

more challenging to design and tune, as they require balancing exploration and guidance without explicit optimization

targets. In contrast, supervised models benefit from well-defined objectives and clearer criteria for model selection

and evaluation, which makes them generally easier to implement and validate.

2.5 | Emerging directions in multi-view learning

Beyond the main learning paradigms, several emerging directions have broadened the methodological landscape of

multi-view learning. These include ensemble approaches, active learning, and transfer learning, each addressing spe-

cific challenges in real-world multi-view scenarios.

Ensemble multi-view learning combines predictions from multiple models trained on different views, often im-

proving robustness and generalization by leveraging view-specific insights. For example, the extension of AdaBoost
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to the multi-view setting has been proposed, where weak learners are independently trained on each view and com-

bined through a boosting strategy that adaptively reweights the contributions of each classifier [74].

Active multi-view learning focuses on minimizing annotation costs by selecting the most informative samples to

label, while considering the complementary nature of multiple views. One of the earliest approaches adapts the co-

training framework by selecting unlabeled examples on which classifiers trained on different views disagree the most.

These disagreement-based strategies exploit the assumption that each view is sufficient for learning and that high

disagreement signals potential information gain [45].

Multi-view transfer learning, on the other hand, aims to transfer knowledge from one domain or set of modalities

to another, enabling learning even in cases with limited labeled data in the target domain. Several strategies have

been developed, including co-training for domain adaptation and boosting-based frameworks that leverage multi-

view information from source domains to improve performance in target domains [12, 75, 76].

2.6 | Multi-view representation learning

Multi-view representation learning [35] pursues the objective of constructing informative latent representations from

multiple sources of information. In contrast to supervised and semi-supervised approaches, representation learning

is agnostic to any specific downstream task. Its goal is to embed multi-modal data into a latent space that captures

the essential structure of the system under study, thereby facilitating a wide range of subsequent analyses, including

clustering, supervised analysis, and exploratory investigations.

Representation learning approaches can be broadly conceptualized as belonging to four principal methodological

families: dimensionality reduction approaches, probabilistic models, deep learning-based methods, and graph-based

techniques. These categories reflect different modeling paradigms and offer complementary perspectives for captur-

ing multi-view structure. In the following, we examine each of these families in more detail, with particular emphasis

on dimensionality reduction techniques, which represent a central focus of our methodological exploration.

2.6.1 | Dimensionality reduction approaches

Dimensionality reduction techniques aim to project high-dimensional multi-modal data into a compact latent space

that captures the most informative structures across modalities. This step is critical for enhancing interpretability and

computational efficiency, while alsomitigating the risk of overfitting. High-dimensional data often contains substantial

redundancy, which can obscure relevant signals and degrade the quality of learned representations [20]. By extracting

salient patterns and discarding irrelevant variation, dimensionality reduction facilitates more robust and generalizable

downstream analyses [42].

Within the broad family of dimensionality reduction methods, we distinguish two main subcategories that are
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particularly relevant and widely adopted in multi-view applications: methods based on Canonical Correlation Analy-

sis (CCA) and its extensions, and methods designed to explicitly separate shared and modality-specific components,

among which Joint and Individual Variation Explained (JIVE) [39] is one of the most widely used and well-established

approaches. While both approaches aim to capture the underlying structure of multi-modal data, the former em-

phasizes cross-view correlation, and the latter focuses on disentangling shared and individual sources of variation.

Notably, while many of these methods are developed within the generic multi-view learning paradigm [26, 21, 52],

several have emerged more specifically in the context of multi-omics data integration [39, 67].

Latent space construction via cross-modal correlation

CCA-basedmethods represent a foundational class of techniques in multi-view learning. The original Canonical Corre-

lation Analysis (CCA) [26] seeks linear projections of two data views such that the corresponding projected variables—

known as canonical variates—are maximally correlated. Rather than producing a single latent variable, CCA yields a

sequence of canonical variates: each pair represents a direction in the respective data spaces that maximizes corre-

lation, subject to being orthogonal to the previously identified directions. This sequential process, analogous to the

extraction of principal components in PCA, constructs a low-dimensional representation that captures multiple axes

of cross-view dependence.

Several extensions of CCA have been developed to address its limitations. Kernel CCA (KCCA) [33] introduces

non-linear mappings through kernel functions, enabling the capture of more complex relationships between views.

Generalized CCA (GCCA) [30] extends classical CCA to handle more than two data sources by maximizing shared

correlation across multiple datasets. In contrast, Tensor CCA (TCCA) [31] extends CCA to handle multi-view data

structured as high-order tensors—i.e., multidimensional arrays that capture not only features but also internal structure

such as spatial or temporal dimensions—by modeling multi-way correlations within and across views through tensor

decompositions.

Structured decomposition of shared and modality-specific components

A second important family of dimensionality reduction methods focuses on structured decompositions that separate

shared and modality-specific sources of variation. These approaches decompose the input data into three distinct

components: a joint structure common to all modalities, individual structures unique to each view, and a residual

noise term. This modeling framework provides a valuable tool for dissecting the relative contributions of each data

source and has gained particular traction in biomedical applications, where distinguishing between systemic signals

and view-specific effects is key to interpretability.

A number of methods have been proposed within this class, which also exhibit methodological intersections with

other representation learning paradigms. Prominent examples include Joint and Individual Variation Explained (JIVE)

[39], Angle-based Joint and Individual Variation Explained (AJIVE) [19], Bayesian Group Factor Analysis (Bayesian GFA)
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[67], Distinct and Common Simultaneous Component Analysis (DISCO-SCA) [52], and Structural Learning and Integra-

tive Decomposition (SLIDE) [21]. These methods differ in modeling assumptions and algorithmic formulation: JIVE

adopts a PCA-based iterative optimization framework that decomposes the data into joint, individual, and residual

noise matrices through alternating low-rank approximations; AJIVE refines this idea by introducing a rigorous geo-

metric approach for subspace decomposition, enabling a mathematically well-defined solution; Bayesian GFA incor-

porates structured priors into a Bayesian generative model to achieve similar decomposition; DISCO-SCA draws from

sparse component analysis to induce parsimony in shared and individual components; and SLIDE applies structured

regularization to enhance interpretability and scalability in large multi-view settings, with the additional capability of

identifying partially shared variation by assuming block-sparsity across domains.

2.6.2 | Probabilistic modeling approaches

Probabilistic modeling approaches leverage generative models and Bayesian inference to incorporate domain-specific

prior knowledge and to impose explicit assumptions on the statistical properties of the data. These methods provide

a rigorous framework for modeling uncertainty, accommodating missing data, and encoding structural assumptions

in the learning process. Prominent examples, such as iCluster [54] and MOFA [2], come from the multi-omics set-

ting. iCluster employs a joint latent variable model to integrate multiple data modalities by inferring a shared low-

dimensional representation. MOFA (Multi-Omics Factor Analysis), on the other hand, is based on Bayesian group

factor analysis and identifies both shared and modality-specific factors underlying variability across views. Although

MOFA also distinguishes between shared and unique sources of variation, this separation is not achieved through an

explicit matrix decomposition. Instead, it arises from the probabilistic structure of the model, where each latent factor

captures patterns of variation with differing relevance across the input modalities. While these approaches are appeal-

ing from amodeling standpoint, their complexity and computational demands can limit practical usability. The need for

careful model specification, longer runtimes, and advanced statistical expertise may reduce their accessibility in set-

tings that require straightforward and efficient workflows. Moreover, some models rely on strong assumptions—such

as data normality—that may not hold in real-world applications, further constraining their applicability.

2.6.3 | Deep learning-based approaches

Deep learning-based approaches employ neural architectures capable of modeling complex, non-linear interactions

across multiple modalities [78, 69]. These include a wide range of architectures, such as multi-view Convolutional

Neural Networks [59], multi-view Autoencoders [18], multi-view Generative Adversarial Networks [65], multi-view

Graph Neural Networks [77], multi-view Restricted BoltzmannMachines [80], Deep CCA [1], and contrastive learning

frameworks [81]. These methods are particularly well suited to capturing intricate cross-modal dependencies and
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leveraging large-scale datasets. However, they are typically black-box in nature and offer limited interpretability, a

notable drawback in domains where transparency and explainability are essential.

2.6.4 | Graph-based approaches

Graph-based approaches [29] model inter-sample relationships by representing observations as nodes in a graph, with

edges encoding pairwise similarity between them. As previously discussed in Section 2.3, similarity networks are typ-

ically constructed independently for each modality and subsequently integrated into a fused graph that combines

complementary information across views. In the context of representation learning, to derive a compact and infor-

mative embedding for each observation, spectral methods such as Laplacian Eigenmaps [6] are commonly applied to

the fused graph. These techniques project the data into a low-dimensional space that preserves the local geometry

of the graph, enabling downstream tasks such as clustering or visualization.

3 | CASE STUDY

One of the most critical challenges in the integration of heterogeneous biomedical data is interpretability. In clini-

cal settings, understanding how and why a model reaches a certain output is not just desirable—it is essential. Be-

yond predictive accuracy, what ultimately matters is the capacity to extract reliable insights that can support medical

decision-making and potentially influence clinical guidelines.

Interpretability allows researchers and clinicians to assess the relevance of specific data modalities, identify the

variables that drive associations, and evaluate the consistency of findings with known biological or physiological mech-

anisms. For example, a latent factor extracted from multi-modal integration that is predominantly explained by a par-

ticular ECG-derived feature, or by a region-specific radiomic signature from medical imaging, can shed light on the

prognostic or diagnostic relevance of that variable. Such insights, when grounded in a transparent modeling frame-

work, can be used to guide further clinical investigations or be incorporated into evolving standards of care.

However, not all integrativemodels support this level of transparency. Many state-of-the-art approaches—including

deep learning architectures and graph-based methods—achieve impressive results, but do so at the cost of acting as

black boxes [51, 36]. Their internal representations are often inaccessible or uninterpretable, making them less suit-

able for domains in which accountability and mechanistic understanding are key.

In this section, we present a case study aimed at evaluating how interpretable multi-view learning methods can

enhance cardiovascular risk prediction. To this end, we use UK Biobank data to assess whether integrative approaches

that explicitly preserve interpretability can offer improved predictive performance compared to single-modality mod-

els, while also providing clinically meaningful insights into the structure and relevance of the contributing variables.

In light of this, in Section 3.1 we focus on two well-established methods representative of the multi-view learning
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and multi-omics integration paradigms that explicitly preserve interpretability while integrating diverse data sources.

The results of their application to UK Biobank data are reported in Section 3.2.

3.1 | Methods

We focus on two interpretable methods for multi-view integration: Angle-based Joint and Individual Variation Ex-

plained (AJIVE) and Sparse Generalized Canonical Correlation Analysis (SGCCA). These methods belong to two dis-

tinct families of approaches and offer complementary insights.

AJIVE [19] falls within the class of structured decomposition techniques, which disentangle joint from modality-

specific sources of variation. This modeling framework provides a principled way to quantify the relative contribution

of each view, assess redundancy, and identify clinically or biologically relevant components. By decomposing variation

into shared and individual subspaces, AJIVE enables a fine-grained understanding of how information is distributed

across data modalities.

SGCCA [63], on the other hand, belongs to the family of Canonical Correlation Analysis extensions. These meth-

ods aim to identify maximally correlated latent directions across views. SGCCA introduces sparsity constraints to

classical CCA, allowing the discovery of interpretable and focused components. These sparse latent directions high-

light the variables that contribute most to cross-modal associations, facilitating interpretability and variable selection.

3.1.1 | Angle-based Joint and Individual Variation Explained

Angle-based Joint and Individual Variation Explained (AJIVE) is a recent extension of JIVE that overcomes several of

its key limitations. Unlike the original JIVE, which relies on an iterative procedure without guaranteed convergence

and potentially unstable rank selection, AJIVE adopts a non-iterative, geometrically principled framework yielding

mathematically well-defined and robust decompositions.

Let us consider K data blocks X1, . . . ,XK , where each matrix Xk ∈ Òpk ×n represents a different data view mea-

sured on the same set of n subjects. Each data block is assumed to be generated according to the following model:

Xk = Jk + Ik + Ek , for k = 1, . . . ,K ,

where Jk is a low-rank joint matrix that captures the variation that is common across views, Ik is a low-rank individ-

ual component that represents view-specific signal orthogonal to the joint structure, and the noise component Ek

accounts for residual unexplained variation.

This decomposition relies on a set of structural assumptions that guarantee identifiability and interpretability.

First, all joint components {Jk }Kk=1 are assumed to share the same row space, that is, row(J1 ) = · · · = row(JK ) =
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row(J ) , where row(J ) ⊆ Òn denotes the common subspace in which the joint variation across all blocks lies. Second,

each individual component Ik is orthogonal to the joint space, meaning that row(Ik ) ⊥ row(J ) , for all k = 1, . . . ,K .

Finally, the individual components are mutually non-overlapping, in the sense that their row spaces do not share any

direction. Formally, this means that ⋂K
k=1 row(Ik ) = {®0}, to guarantee that no variation is simultaneously individual

in all views.

The AJIVE procedure begins by approximating each data block with a low-rank matrix, retaining the dominant

directions of variation to separate signal from noise via a truncated singular value decomposition. These reduced

representations are then analyzed to identify shared variation across blocks by assessing the alignment between

their row spaces through principal angles, where smaller angles reflect stronger similarity. To guard against spurious

alignments due to noise, thresholds based on perturbation bounds, such as theWedin bound and the randomdirection

bound, are applied to reliably estimate the joint score space. Finally, each block is projected onto the estimated

joint subspace and its orthogonal complement, enabling the decomposition into joint, individual, and residual noise

components. As a result, AJIVE provides latent scores for each subject, capturing both their joint and block-specific

patterns of variation, which can then be used for downstream analyses.

3.1.2 | Sparse Generalized Canonical Correlation Analysis

Sparse generalized canonical correlation analysis (SGCCA) extends the regularized generalized canonical correlation

analysis (RGCCA) framework by introducing an explicit mechanism for variable selection. While RGCCA applies regu-

larization to classical generalized canonical correlation analysis (GCCA) to stabilize the estimation in high-dimensional

and collinear settings, SGCCA goes one step further by encouraging sparsity. In this way, it identifies only a relevant

subset of variables within each block, improving interpretability and focusing on the most informative features. This

is particularly valuable in biomedical contexts, where underlying biological processes are often driven by a limited

number of key variables, and interpretability of the resulting latent factors is essential.

Consider K data blocks X1, . . . ,XK , with each block Xk ∈ Òn×pk , where n is the number of subjects and pk the

number of variables in block k . SGCCA searches for weight vectors ak ∈ Òpk , which determine linear combinations

of the original variables and define latent components tk = Xk ak . These latent components summarize each block’s

information along directions that maximize the association across the connected blocks, providing a low-dimensional

representation of the subjects. The elements of ak determine the direction in the variable space along which the data

are projected, while the sparsity constraint forces many entries of ak to zero. In this way, only a limited set of variables

effectively contributes to defining the latent direction, improving both interpretability and stability of the solution.

The inter-block connections are specified through a design matrix C ∈ ÒK×K , where ck j equals 1 if block k and
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block j are connected, and 0 otherwise. The SGCCA optimization problem takes the form

max
a1,...,aK

K∑
k ,j=1

ck j g
(
cov

(
Xk ak ,Xj aj

) )

subject to

∥ak ∥2 = 1, ∥ak ∥1 ≤ sk , k = 1, . . . ,K ,

where the scheme function g ( ·) can be selected among the identity g (x ) = x , the factorial g (x ) = x2, or the centroid

g (x ) = |x | form, depending on the type of association to be emphasized. The hyperparameters sk govern the degree

of sparsity applied to each block, and the optimization is usually performed via an alternating algorithm, updating one

ak at a time while keeping the others fixed until convergence.

The method allows the extraction of multiple latent components from each block by applying a deflation strategy

after estimating the first component, thereby removing its explained variability from the data and recovering subse-

quent orthogonal directions. Each additional component captures further structure not explained by the previous

ones, offering a richer characterization of the relationships across the data blocks. The resulting latent components

summarize the shared variation across the data sources in a compact set of features, which can then be used as inputs

for downstream analyses, such as predictive models, clustering, or time-to-event analyses, depending on the scientific

objective.

3.2 | Results

We considered common predictors of cardiovascular risk, electrocardiogram (ECG)-derived features and measures

extracted from cardiac magnetic resonance imaging (referred to as cardiac measures) from the UK Biobank, a large

scale United Kingdom-based study that followed over 500,000 participants aged 40-69 since 2006. Our objective

was to integrate these three data modalities to predict cardiovascular disease occurrence in a population of individuals

healthy at baseline, in a survival analysis framework. Cardiovascular risk factors included age, body mass index (BMI),

standing height, weight and systolic blood pressure - all measured during the first UKB imaging visit, which constituted

the baseline for our study. ECG measures were derived during the visit and comprised ventricular rate, P duration,

PP interval, PQ interval, number of QRS complexes, QRS duration, QT interval, QTC interval, RR interval, P axis,

R axis, T axis. Finally, the 84 cardiac measures we considered were extracted by [4] and directly available in UKB.

Presence of cardiovascular disease, the outcome of our case study, was defined according to Table 2; we excluded

from our analyses all the subjects who experienced an endpoint event and/or vascular dementia (ICD-10 code F01)
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before the baseline. The dataset used for the analyses includes 18,682 participants, among whom 909 experienced

a cardiovascular event during follow-up.

TABLE 2 Definition of cardiovascular disease based on ICD-10 (for hospital diagnoses and causes of death) and
ICD-9 (for hospital diagnoses) codes (ICD: International Classification of Diseases).

ICD-10 F01 I20 I21 I22 I23 I24 I25 I50 I60 I61 I62 I63 I64 I65 I66 I67 I68 I69

ICD-9 410 411 412 413 414 428 430 431 432 433 434 436 437 438

The AJIVE algorithm was applied using an adapted version of the publicly available code from https://github.

com/idc9/mvdr. Before analysis, the three data views previously described were standardized to zero mean and

unit variance to harmonize scales and prevent variables with higher variance from dominating the joint structure

estimation.

In the initial dimensionality reduction step, principal components explaining at least 90% of the variance were

retained for each view to preserve signal while reducing noise. This resulted in 36 components for cardiac measures,

7 for ECG-derived features, and 4 for clinical variables. This setup led to the identification of 4 joint components

shared across the views, along with 33 individual components for cardiac measures, 5 for ECG-derived variables, and

1 for clinical variables. Each subject was thus represented by latent scores summarizing shared and view-specific

variation, providing a comprehensive basis for downstream analyses.

Figure 1 summarizes the proportions of explained variance by partitioning each view into joint, individual, and

residual components, computed as the variance of each matrix relative to the original data. Overall, the joint structure

accounted for a substantial proportion of the variance, particularly for the clinical variables, while retainingmeaningful

view-specific patterns, especially for cardiac measures.

Among the cardiacmeasures, the loadings of the first joint component highlight several clinically relevant variables.

Notably, LV circumferential strain global shows the highest positive loading (0.254), indicating a strong contribution to

the shared latent structure. Circumferential strain is a well-established marker of myocardial deformation, revealing

subtle impairments in left ventricular mechanics [44, 58]. In contrast, LV radial strain global has a large negative loading

(–0.251), suggesting an opposite association; radial strain reflects myocardial thickening and provides complementary

information on ventricular function [44]. Likewise, LV ejection fraction shows a negative loading (–0.217), consistent

with its role as a global indicator of systolic performance [34].

For the clinical variables (Figure 2), the joint component shows a strong positive loading for systolic blood pressure

(0.926) and a negative loading for body mass index (–0.244), aligning with evidence that both blood pressure and

weight are key cardiovascular risk factors [72, 48]. Their opposite signs suggest the joint component captures a pattern

where higher systolic blood pressure co-occurswith lower BMIwithin the shared variation extracted by AJIVE. Overall,

these results confirm themethod’s ability to recover a clinically meaningful latent structure integrating complementary

signals across modalities.

https://github.com/idc9/mvdr
https://github.com/idc9/mvdr
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F IGURE 1 Explained variance for each data view (cardiac measures, ECG-derived variables, and clinical
variables), partitioned into joint, individual, and residual components obtained from the AJIVE decomposition.

The sparse generalized canonical correlation analysis (SGCCA) was then applied to the same three modalities

considered in the previous algorithm, using the RGCCA package in R. The variables were rescaled to zero mean and

unit variance as done previously, to ensure comparability across blocks.

The SGCCA was implemented using the centroid scheme function g (x ) = |x | , with sparsity hyperparameters

tuned via a 10-fold cross-validation procedure. A Cox penalized regression model with Lasso penalty was adopted

to maximize the concordance index for predicting the development of cardiac disease, motivated by the considerable

number of components involved. Consistentlywith the approach used for AJIVE, the number of variableswas selected

to retain at least 90% of the explained variance, as measured through the Average Variance Explained (AVE) metric.

This procedure led to the selection of 48 variables for the cardiac measures, 7 for the ECG-derived variables, and

4 for the clinical variables. The resulting latent components can be interpreted through their weight vectors, which

highlight themost relevant features driving inter-block associations. Among the cardiacmeasures, the largest absolute

weights in the first component were found for body surface area, RV end-diastolic volume, LV end-diastolic volume,

LV myocardial mass, and LV stroke volume, all with negative weights around –0.2 to –0.3, suggesting a coordinated

contribution of volumetric and structural metrics. In contrast, RA ejection fraction and average heart rate displayed
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smaller positive weights, indicating a weaker but distinct association.

Regarding the clinical variables (Figure 2), SGCCA assigned the strongest positive weight to weight (0.96), with

more moderate contributions from standing height and body mass index, while systolic blood pressure and age received

null weights. Overall, these results suggest that SGCCA emphasizes body size–related metrics as key contributors to

shared information across modalities.

F IGURE 2 Variable contributions to the first joint component (left, loadings from AJIVE) and to the first latent
component (right, weights from SGCCA) for the set of clinical variables.

To further evaluate the clinical utility of the latent representations derived through AJIVE and SGCCA, their cor-

responding scores were included as predictors in a Cox proportional hazards model with Lasso penalization. Figure 3

summarizes the results, comparing the prognostic performance of five sets of scores: the AJIVE-derived scores, the

SGCCA-derived latent components, and the scores obtained from applying PCA separately to each of the threemodal-

ities, where the number of principal components retainedwas selected to explain at least 90% of the variance, in order

to remain consistent with the previous choices.

The concordance index (C-index), estimated via 10-fold cross-validation, was used to assess discriminative ability,

with confidence intervals obtained across folds to quantify uncertainty. This framework enables a direct comparison

of integrative latent components versus single-modality features for survival prediction. In terms of point estimates,

AJIVE- and SGCCA-based features both reached the highest C-index (0.702), suggesting improved performance over

single-viewmodels. Lower mean C-index values were observed for cardiac measures (0.680), clinical variables (0.673),

and ECG features (0.590).

While these results indicate comparable predictive performance for the two integrative methods, AJIVE and

SGCCA differ in terms of interpretability: the former explicitly separates joint and individual sources of variation,

whereas the latter relies on latent components that are less directly interpretable.
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F IGURE 3 Mean C-index and corresponding 95% confidence intervals estimated via 10-fold cross-validation for
five different models. The models include latent scores derived from AJIVE, SGCCA, and principal components
extracted from each individual modality.

To assess whether multimodal integration leads to significantly improved predictive performance, we conducted

Wilcoxon signed-rank tests for paired data on the C-index values obtained across the 10 cross-validation folds. Specif-

ically, we compared the performance of the AJIVE- and SGCCA-based features with each of the single-view models.

All comparisons yielded statistically significant results: all p-values were equal to 9.8×10−4, except for the comparison

between SGCCA and cardiac measures, which had a p-value of 4.9 × 10−3. These results confirm that both integrative

approaches lead to significantly improved predictive performance compared to each of the single-modality models,

supporting the added value of multi-view integration in capturing complementary information across data sources.

These findings support the idea that joint modeling of multiple data modalities can yield more accurate and robust

survival predictions compared to single-source approaches. In the biomedical context, this improvement is particu-

larly valuable, as it suggests that methods capable of extracting complementary signals across views—while retaining

interpretability—may contribute to more informed clinical decision-making and ultimately enhance patient care.

4 | DISCUSSION

This work set out to offer a unified and structured perspective on the methodological landscape for multi-view data

integration. By bridging two historically parallel research communities, we have emphasized their shared conceptual

foundations and overlapping goals, grounded in the challenge of integrating heterogeneous data sources in a mean-

ingful way. The proposed taxonomy, organized by learning objective, offers researchers a systematic entry point
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into this diverse methodological space—one that not only maps the well-established paradigms, but also highlights

lesser-known but powerful learning strategies.

Crucially, the case study demonstrates how methods originating from both fields—such as AJIVE from multi-

omics and SGCCA from multi-view learning—can be fruitfully applied to the same real-world dataset with analogous

results. Their success confirms that there is no fundamental reason for these communities to remain isolated. On

the contrary, drawing from both can expand the range of tools available to researchers and increase the chances of

extracting clinically meaningful insights. Notably, we also showed that integrative approaches can lead to significant

improvements in predictive performance compared to single-modality models, further reinforcing their practical value.

It is worth noting, however, that although the two methods achieved similar results in terms of overall perfor-

mance, AJIVE and SGCCA produced quite discordant results in terms of variable selection. One possible explanation

is that the components extracted by the two algorithms may simply be ordered differently, giving the impression

of inconsistency even when it is not. However, the discrepancies may also be genuine, reflecting differences in the

underlying assumptions and sparsity mechanisms of the two algorithms. These two possibilities together point to

the importance of applying multiple integrative methods and carefully assessing the robustness of the findings, as

variable-level discrepancies may signal sensitivity to method-specific choices or potential instability in the results.

Combining these perspectives helps build models that are not only effective, but also transparent and inter-

pretable. The ability to disentangle shared from modality-specific variation, or to extract sparse correlated compo-

nents across views, proves essential in biomedical contexts—where each latent factor can be interpreted in terms of

measurable signals (e.g., from imaging or ECG)with potential clinical relevance. Such interpretability is not a luxury, but

a prerequisite for trust, adoption, and clinical translation, and is expected to play a central role in the next generation

of biomedical data analysis.
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