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Abstract

We propose a novel epidemiological model, referred to as SEIHRDV, for the numerical simulation of
the COVID-19 epidemic, which we validate using data from Italy starting in September 2020. SEIHRDV
features the following compartments: Susceptible (S), Exposed (E), Infectious (I), Healing (H), Recovered
(R), Deceased (D) and Vaccinated (V). The model is age-stratified, as it considers the population split into
15 age groups. Moreover, it takes into account 7 different contexts of exposition to the infection (family,
home, school, work, transport, leisure, other contexts), which impact on the transmission mechanism.
Thanks to these features, the model can address the analysis of the epidemics and the efficacy of non-
pharmaceutical interventions, as well as possible vaccination strategies and the introduction of the Green
Pass, a containment measure introduced in Italy in 2021. By leveraging on the SEIHRDV model, we
successfully analyzed epidemic trends during the COVID-19 outbreak from September 2020 to July
2021. The model proved instrumental in conducting comprehensive what-if studies and scenario analyses
tailored to Italy and its regions. Furthermore, SEIHRDV facilitated accurate forecasting of the future
potential trajectory of the epidemic, providing critical information for informed decision making and
public health strategies.

1 Introduction

Coronavirus pandemic was a public health emergency that has affected the whole World since its outbreak
in December 2019. Up to December 6, 2023, more than 6.9 million deaths have been registered, and over
770 million cases have been detected according to the World Health Organization. In this context, various
mathematical models have been proposed to describe the course of the epidemic and forecast its progression,
aiming to assist authorities in selecting optimal control strategies to mitigate the spread of the virus. The
primary objective is to prevent the collapse of the healthcare system and ultimately enhance the public
health response [1].

Most epidemiological models are derived from the compartmental framework originally proposed by
Kermack and McKendrick [2], known as the classic SIR model, which partitions the population into sus-
ceptible, infected, and recovered individuals; see also [3]. In recent years, numerous compartmental epi-
demiological models specifically designed to describe the COVID-19 pandemic have been proposed (see, e.g.,
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]). Generally, these models divide the population into subsets, referred to
as compartments, that represent different stages of disease progression. The associated mathematical formu-
lations are often deterministic systems of Ordinary Differential Equations (ODEs) governing the mobility of
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individuals among compartments. In addition, uncertainty in parameters can be incorporated by reformulat-
ing the problem as a set of stochastic differential equations [16, 17]. Beyond compartmental models, various
data-driven approaches have emerged. These include agent-based models [18, 19, 20] and machine learning
algorithms [21, 22, 23, 24, 25, 26], which offer complementary perspectives for studying the dynamics of
infectious diseases.

Building on the foundation of compartmental epidemiological models, the standard SIR model can be
generalized to incorporate specific features of the disease under investigation, such as its virological and
medical characteristics. Most of these models operate under the assumption of a homogeneous epidemic,
disregarding distinctions in factors such as age groups, exposure contexts, and geographical variations that
can influence transmission dynamics [27]. While this simplification may reduce the accuracy of forecasts,
homogeneous models are computationally efficient, straightforward to calibrate, and often yield results that
are interpretable and actionable for policy-making. Since the beginning of the pandemic, we have observed
that the impact of COVID-19 infection varies with the age of infected individuals, with clear evidence
showing that older people experience more severe outcomes than younger individuals. Additionally, the risk
of infection varies depending on the context in which susceptible individuals come into contact with infected
persons. Vaccinations, which were widely administered starting in 2021, have significantly impacted the
transmission mechanisms of the virus and reduced the severity of symptoms, thereby mitigating the effects
of COVID-19 [28].

In this work, we introduce a novel age-stratified ODE-based compartmental model, named SEIHRDV,
specifically designed to describe the spread of the Coronavirus epidemic in Italy. This model was applied
to analyze the period from September 2020 to July 2021, accounting for varying exposure contexts where
infection occurred with differing probabilities, as well as the effects of the vaccination campaign (see e.g.,
[29]). The model leverages on Tables of Contacts, also known as Mossong tables [30], which detail the average
daily number of contacts between members of different age groups across various exposure contexts. We
consider the following contexts: home, school, work, transport, leisure, and others. As a key innovation, we
refined the original home category in the Mossong tables by distinguishing between intra-household contacts
(family) and household-visitor contacts (home). This distinction is significant for capturing the impact of
Non-Pharmaceutical Interventions (NPIs) that imposed specific restrictions on interactions between relatives
and friends visiting different households, as was the case in Italy during certain periods of the first year of
the pandemic [31, 32]. This enhanced model enables detailed evaluations of the effects of various NPIs with
differing levels of restrictions on social behaviors across 15 age groups and 7 exposure contexts, supporting
both retrospective analyses and future scenario projections.

In this paper, we retrospectively assess the effectiveness of restrictions associated with the introduction
of the Green Pass, an NPI implemented in Italy in 2021 to maximize vaccination coverage, particularly in
public exposure contexts. By incorporating the Green Pass into the model, we aim to simulate a realistic
scenario, evaluate its efficacy in reducing infection rates across different contexts, and analyze its impact on
the health outcomes of vaccinated individuals.

The paper is organized as follows: in Section 2, we describe the multi-age/multi-context structure of the
mathematical model, introducing the different parameters and the way we derived the tables of contacts.
Then we describe the calibration process, and how we take into account the vaccination campaign and the
introduction of Green Pass restrictions. In Section 3, we show an extensive campaign of numerical results, set
in Italy and two Italian administrative regions: Lombardy and Lazio. In Section 4, we draw our conclusions
and we discuss possible improvements and possible future extensions of the SEIHRDV.

2 Mathematical model

Starting from the standard SEIR model [33], we develop an ODE-based compartmental model tailored to
COVID-19. In Section 2.1, we present the homogeneous SEIHRDV model as a foundational framework. In
Section 2.2, we extend this model to incorporate multi-age and multi-context dynamics. Section 2.3 details
the implementation of these multi-age and multi-context elements. Finally, in Section 2.4, we outline the
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calibration procedure, including the integration of vaccination data and considerations related to the Green
Pass policy.

2.1 SEIHRDV model

When a Susceptible individual (compartment S) is infected but still in the incubation period, transition to the
Exposed state (compartment E) occurs. After the incubation period, an Exposed individual becomes Infected
(compartment I) and can transmit the infection. Before recovery, infected individuals enter the Healing state
(compartment H), during which they remain positive but are no longer infectious. The progression of the
disease ultimately results in either full recovery (Recovered compartment R) or death (Dead compartment
D). To account for the vaccination campaign, we introduce a Vaccinated compartment (V ), which accounts
for individuals who have received at least the first dose of the vaccine. In this work, we neglect the effects of
second-dose vaccinations, as our analysis conclude in the summer of 2021, whereas widespread second-dose
administration in Italy only began in September 2021. A possible extension of the model, incorporating the
complete vaccination cycle, could be inspired by [34].

The SEIHRDV model (cf. Figure 1) is designed to describe all the stages an individual may undergo,
from being susceptible to entering the healing phase. The corresponding mathematical model is given by:

dS

dt
= −c β

S I

N
− d

S

S +R
+ µR R+ µV V,

dE

dt
= c β

(S + σV ) I

N
− αE,

dI

dt
= αE − γ I,

dH

dt
= γ I − ωH t ∈ (0, T ],

dR

dt
= (1− f(S, V ))ωH − µR R,

dD

dt
= f(S, V )ωH,

dV

dt
= −σ c β

V I

N
+ d

S

S +R
− µV V,

S(0) = S0, E(0) = E0, I(0) = I0, H(0) = H0,

R(0) = R0, D(0) = D0, V (0) = V0

(1)

where N denotes the total number of individuals of the population that is given by the sum of the number
of individuals belonging to one of the 7 compartments, namely N = S+E+ I+H+R+D+V . Albeit each
compartment changes in time, we assume that the total number of individuals N in the population remains
constant over time.

The SEIHRDV model is characterized by the following parameters:

• the product (c β) stands as the transmission rate due to contacts between a susceptible individual and
an infected individual, where β : (0, T ] → R is a time-dependent function that captures the variation
in contacts, which also depends on the implementation of possible NPIs, while c : (0, T ] → R embodies
changes in the transmission rate, which we will extract from data during the calibration process (cf.
Section 2.4.1);

• α > 0 denotes the rate at which an exposed individual becomes infectious and is defined as the inverse
of the average incubation time;

• γ > 0 denotes the rate at which an infectious individual becomes unable to infect, but still infected.
This rate is derived from the average infectious time;
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Figure 1: Sketch of SEIHRDV model (S = Susceptible, E = Exposed, I = Infectious, H = Healing, R =
Recovered, D = Deceased, V = Vaccinated).

• ω > 0 is a rate derived from the average removal time for deceased, and it is multiplied by f or 1− f ;

• σ ∈ [0, 1] denotes the inefficacy rate of the vaccine in transmissibility of the disease [35];

• f : [τ, T ] → [0, 1] is the fatality function, defined as

f(t) = f(S(t), V (t); τ) = f̂
S(t− τ) + θ σ V (t− τ)

S(t− τ) + σ V (t− τ)
, (2)

where f̂ is the infectious fatality rate ([36]) taken from an Imperial College report of October 2020
[37], and τ is the average elapsing time between the first exposition and death, that we set at 25 days
according to clinical studies [38]. We introduce the parameter θ ∈ [0, 1] which denotes the rate of
inefficacy of the vaccine in the reduction of the severity of the disease. In this way, f is obtained by
rescaling the original f̂ with the ratio between the sum of individuals susceptible and vaccinated in
which the vaccine is not effective either in reducing the transmissibility of the virus or in reducing the
severity of the disease, and all the individuals who can potentially contract the virus;

• d ∈ N is the number of the average of first doses administered daily, estimated from the data made
available from Dipartimento di Protezione Civile Italiana1;

• µR > 0 and µV > 0 denote the waning immunity rates for Recovered and Vaccinated individuals
respectively, i.e. the rate at which Recovered individuals and Vaccinated individuals, respectively,
come back to the susceptible compartment.

In our model, the parameters α, γ, ω, θ, f̂ , µR and µV are kept fixed in time, while d, β and σ are instead
functions of time. The values of these parameters have been deduced from established studies [28] or directly
from available data. Following the methodology in [39], we estimate the initialization of compartments that
are not directly accessible from the data provided by the Dipartimento di Protezione Civile Italiana2, such as
the Exposed and Infected individuals. This estimation is obtained thanks to algebraic relationships among
measurable quantities, including the CFR (Case Fatality Rate), IFR (Infection Fatality Rate) [37], and the
recorded number of deceased individuals. The number of delivered doses d in (1) is rescaled by the factor

S

S +R
in order to take into account that a portion of doses are administered to both detected and undetected

recovered individuals.

1https://github.com/italia/covid19-opendata-vaccini
2https://github.com/pcm-dpc/COVID-19
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Figure 2: Sketch of the SEIHRV model in a single exposure context and two ages group.

Figure 3: Interactions among the compartments in SEIHRDV multi-age and multi-group model, with K = 7
contexts of exposition and Na = 15 age groups.

2.2 The multi-age and multi-context SEIHRDV model

In this section we present the SEIHRDV model. We consider:

• Na = 15 age groups, by assigning to each of the following age groups the corresponding SEIHRDV
variables: {0÷ 4, 5÷ 9, 10÷ 14, 15÷ 19, 20÷ 24, 25÷ 29, 30÷ 34, 35÷ 39, 40÷ 44, 45÷ 49, 50÷ 54, 55÷
59, 60÷ 64, 65÷ 69, 70+};

• K = 7 contexts of exposition: family, home, school, work, transport, leisure and others.

The interactions among the compartments of the various age groups ([40]) in the different exposure
context are sketched in Figure 2. For the sake of simplicity, we limit ourselves to two age groups, named
group 1 and group 2, and only one exposure context for each age group. The corresponding compartments
are denoted with Si, Ei, Ii, Hi, Ri, Di, and Vi, with i ∈ 1, 2. The disease spreads as far as an individual
from S1 can have a contact with either an infectious individual from the same age group, I1, or an individual
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from I2. Therefore the transmission rate β of the virus is replaced by the expression
β11 I1 + β12 I2

I1
, that

takes into account both the possible contacts. The same holds for an individual in S2 with the appropriate
modifications.

Extending this argument for all theNa = 15 age groups, and considering theK = 7 contexts of exposition,
we obtain the complete SEIHRDV multi-age and multi-group model (Figure 3): an individual of age group i
can have contacts with infectious individuals belonging to the Na age groups in the K contexts of exposition.
In particular, we denote with Ek

i the number of individuals in age group i who become exposed in the context
k, and with βk

ij the transmission rate of Ij in contact with Si in the context of exposition k. In the multi-age

and multi-context SEIHRDV, β can be seen as a third order tensor with components βk
ij .

The equations describing the multi-age and multi-context model read as:

dSi

dt
= −

(
K∑

k=1

(
Na∑
j=1

c βk
ijIj

))
Si

Ni
− di

Si

Si +Ri
+ µR Ri + µV Vi,

dEk
i

dt
=

(
Na∑
j=1

c βk
ijIj

)
(Si + σ Vi)

Ni
− αEk

i ,

dIi
dt

= α

(
K∑

k=1

Ek
i

)
− γIi, k = 1, . . . ,K,

dHi

dt
= γIi − ωHi, t ∈ (0, T ]

dRi

dt
= (1− f(Si, Vi))ωHi − µRRi,

dDi

dt
= f(Si, Vi)ωHi,

dVi

dt
= −

(
K∑

k=1

(
Na∑
j=1

cβk
ijIj

))
σVi

Ni
+ di

Si

Si +Ri
− µV Vi,

Si(0) = Si0 , Ek
i (0) = Ek

i0 , Ii(0) = Ii0 , Hi(0) = Hi0 , Ri(0) = Ri0 , Di(0) = Di0 , Vi(0) = Vi0

∀ i = 1, ..., Na.
(3)

2.3 Tables of contacts and β −matrices

To estimate the transmissibility rate β for different age-groups in different exposure contexts, we use the tables
of contacts, based on those proposed by the POLYMOD study [30]. The social contact matrices reported in
[30] for different countries estimate the average number of contacts that individuals from an age group have
in the following contexts: home, school, work, transport, leisure and other. In particular, we use the table
referring to the Italian case that was also considered by the Italian Scientific Technical Committee (CTS) in
the early phase of the COVID-19 epidemics (see [41]). The CTS was established in Italy on February 2020
to provide advice and support for coordination activities to overcome the epidemiological emergency due to
the spread of the Coronavirus; see also [42]. In addition to the 5 exposure contexts outside the household,
as outlined in [30], we account for a total of K = 7 distinct exposure contexts. Specifically, based on data
from the Italian National Statistics Institute (ISTAT) regarding population and household composition, we
disaggregate household contacts into two categories: those occurring exclusively among family members
(”family”) and those involving both family and non-family members (”home”). This distinction enables the
consideration of different restrictions implemented in Italy during short periods in 2021. Notably, in specific
administrative regions, visits to family members were occasionally prohibited.. The actual social contact
matrix used in the present work is reported in Table 1.
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Exposure context
Ages Tot Family Home School Work Transport Leisure Other
0÷4 16.54 2.30 2.19 5.27 0.00 0.98 3.06 2.75
5÷9 20.49 2.27 2.34 8.87 0.00 1.12 4.53 1.37

10÷14 27.38 2.21 2.22 11.98 0.20 1.35 5.62 3.80
15÷19 29.28 2.05 2.54 13.22 0.05 1.74 6.83 2.87
20÷24 22.15 1.49 2.02 1.17 4.49 0.96 7.23 4.80
25÷29 21.00 1.04 2.43 2.23 5.21 1.13 6.30 2.66
30÷34 18.03 1.26 2.29 0.85 3.92 0.76 5.24 3.72
35÷39 21.25 1.75 2.63 0.68 7.78 1.05 3.92 3.45
40÷44 22.35 1.63 2.25 2.53 7.00 0.67 4.48 3.79
45÷49 19.27 1.50 1.49 2.61 8.24 0.88 1.93 2.64
50÷54 22.30 1.38 1.37 5.54 8.05 0.52 2.02 3.41
55÷59 18.27 1.11 1.77 1.41 4.60 0.68 3.62 5.06
60÷64 18.43 0.91 2.37 1.07 6.05 0.87 3.53 3.63
65÷69 12.74 0.71 2.39 0.55 0.48 0.95 3.33 4.33
70+ 10.55 0.71 2.53 0.06 1.04 0.22 4.22 1.77

Table 1: Average number of contacts by age groups, total and disaggregated by social context in which the
contact takes place, adding “family” context.

Age groups 0÷4 5÷9 10÷14 15÷19 20÷24 25÷29 30÷34 35÷39
riskA 0.34 0.34 0.34 1 1 1 1 1

Age groups 40÷44 45÷49 50÷54 55÷59 60÷64 65÷69 70+
riskA 1 1 1 1 1 1.47 1.47

Table 2: Susceptibility by age group

Level of the risk Low Medium-Low Medium Medium-High High Very High
riskE 0.25 0.5 1 1.5 2 2.5

Table 3: Levels of risk associated to the contexts of exposition

On the basis of the social contact data provided in [30], it is possible to estimate, for each context of
exposition, the daily contacts of each individual distributed in the different age groups (cf. Figure 4), as
well as the total number of daily contacts that each individual of a given age group has with individuals in
different age groups and in different contexts of exposition (cf. Figure 5).

These contact matrices have been used to determine the β −matrices that express the transmissibility
rate for each age class in each exposure contexts. However, the number of contacts is not the only factor
that should be taken into account. Indeed, as suggested in [41], age-dependent susceptibility to the infection
should also be considered, that we denote riskA (Table 2), as well as different levels of risk to contract the
virus in the different contexts of exposition [43], denoted as riskE (Table 3).

The risk associated to each age group is based on a CTS report, [41], which states that children under
14 have a 66% lower than average risk of contract the infection, while adults over the age of 65 have a 47%
above average risk of infection. On the other hand, the risk factor associated with each exposure context
depends on the relative contribution of the various sectors (sub-contexts) that constitute it. Specifically, we
assign a risk level to each sector by considering four key factors: the presence of closed spaces, the duration
of interactions, the density of the crowd, and activities involving forced exhalation (such as sneezing, yelling,
singing, and coughing). For the following contexts of exposition, we consider different sectors as follow:

• school context: it is split into six sectors (nursery, kindergarten, elementary school, middle school,
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Figure 4: POLYMOD matrices Mk
i,j , k = 1, ..., 7 = K, i, j = 1, ..., 15 = Na: total number of contacts that

each individual has with individuals from the 15 age groups, in the seven contexts of exposition.
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Figure 5: Total number of contacts that each individual has with individuals from the 15 age groups at left,
for each exposure context at right.

high school and university);

• work context: it is divided into seven sectors (essential, healthcare, manufacturing, trade, construc-
tion, restaurant/hotel, other);

• leisure context: is divided into six sectors (outdoor restaurants, indoor restaurants, outdoor pub/disco,
indoor pub/disco, indoor sport, outdoor sport);

• “other” context: is divided into three sectors (essential retail, other not essential retail, mass and
religious events).

The home context takes into account contacts that occur in households, but not among co-habitants, which
are instead referred to the family context. No split is considered for the transport context.

Then, a scenario can be defined by assigning values in [0, 1] for each sector of the various contexts, to
indicate their opening/closing considered according to the regulations in force (0 if the sector is totally
closed, 1 if it is totally opened, values in (0, 1) if there are other restrictions). To obtain the β − matrix
that expresses the effective risk of transmission for each age group in contact with other age groups in the
different contexts of exposition, we multiply the k-th contact matrix by a function depending on the risk
parameters defined above and on the chosen scenario, which expresses the level of opening/closure of the
sub-contexts:

βk
i,j = Mk

i,j hk(risk
Sk

E , riskA, scenario
l
k) for all sectors l = 1, . . . , Sk, for all context k = 1, . . . ,K, (4)

where i is the age of the individual, j is the age of the contact, Mk is the contact matrix of the context k, Sk

is the number of sectors of the kth context of exposition and hk is a piecewise constant context-dependent
function, in which for each age group we calculate a value expressing the global risk associated to the specific
context k. The latter function depends on:

• riskSk

E , that is the value of risk assigned to each of the Sk sectors of the context k between low,
medium-low, medium, medium-high, high and very high risk (Table 3);

• riskAi, that is the vector containing the risk for each age group (Table 2);
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Figure 6: β −matrices in school context, for yellow zone scenario at left, for red zone scenario at right.

• scenariolk, that is the level of opening/closing (in [0, 1]) of each sector l of the exposure context k, as
we defined before.

Starting from November 2020, in Italy, containment measures differentiated by region are introduced,
due to the fact that the spread of the virus was different on the peninsula. This differentiation is expressed
in colors: yellow for the regions with a transmissibility index less than 1.25, orange for regions with trans-
missibility index between 1.25 and 1.5, where the associated NPIs have more restrictions, and red for regions
with transmissibility index greater than 1.5. The NPIs associated to red regions are the more restrictive,
corresponding to almost complete lockdowns. These measures are issued with an order from the Minister of
Health, in agreement with the president of the region concerned and the CTS, and must have a minimum
duration of 15 days, since their impact on the transmission mechanism is delayed, as estimated, e.g., in
[44]. The conditions for the regions to switch the associated color have changed during the evolution of the
pandemic, and white zones have been also introduced in January 2021, corresponding to the almost complete
dismissal of mobility restrictions.

In Figure 6 we can see the β −matrices of school context associated to two different scenarios: yellow
zone and red zone. In yellow zone the restrictions included schools totally open up to the third year of middle
school and high schools open to 50%, while in red zone we had schools open up to the first year of middle
school, while second and third year of middle school, high schools and universities were totally closed.

With different containment measures in force for each region, to define the scenario we have to make
different considerations depending on whether we are simulating on a national or regional basis. At regional
level it is sufficient to reconstruct the temporal history of the regional restrictions, instead at national level
it is necessary to take into account the different containment measures in force in each region, and to
reconstructed an average measure for the restrictions. To do that, for each week, we analyzed the regional
restrictions in force (which regions where in yellow zone, which in orange, which in red, which in white zone),
and we set the final scenario weighing all these different scenarios on the population of each region. In fact
regions with small populations have less weight on Italian situation than large regions.

In the national case, we consider an array n in which each component corresponds to the number of
inhabitants of an Italian region. Moreover, we consider arrays for each color zone (for example red zone,
orange zone, yellow zone and green zone) having one entry for each region, in which we have 1 if the
corresponding region (in the same order of the previous array) has government restriction of that color, 0 if
there are other color restriction. For example, calling r the array of binary values corresponding to red zone,
o the respective array for the orange zone, y for the yellow zone and w for the white one. Multiplying the
inhabitants array n with each color zone array we obtain the number of the Italian population under that
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color zone restriction:

rn =

N∑
i=1

rini, on =

N∑
i=1

oini, yn =

N∑
i=1

yini, and wn =

N∑
i=1

wini,

where rn is the number of Italian people in red Zone restrictions, on is the number of Italian people in
orange zone restrictions, yn is the number of Italian people in yellow zone restrictions and wn is the number
of Italian people in White Zone restrictions.

Finally, we derive the national scenario by averaging as follows:

scenariolk =
rns

l
rk

+ ons
l
ok

+ yns
l
yk

+ wns
l
wk

rn + on + yn + wn
, l ∈ 1, ..., Sk, k ∈ 1, ...,K

where scenariolk is the value in [0, 1] assigned to the lth sector of the kth context of exposition of the
scenario, slrk . Instead, slok , s

l
yk

and slwk
are the values in [0, 1] assigned to the lth sector of the kth context

of exposition of the red zone scenario, the orange zone scenario, the yellow zone scenario and the white zone
scenario respectively.

2.4 Data generation and calibration of the parameters

In this section, we describe the calibration procedure (see Section 2.4.1) for determining model parameters
that could not be directly derived from clinical or population cohort studies. Furthermore, we detail the
processing of vaccination data (cf. Section 2.4.2) and describe the adjustments made to the model to
incorporate the social restrictions introduced under the Green Pass initiative (cf. Section 2.4.3).

2.4.1 Calibration

Model calibration poses significant challenges in epidemic modeling, as inaccurate reconstructions can criti-
cally compromise the quality of scenario analyses and forecasts. Special attention must be given to parameters
governing the transmission mechanism, particularly the function c(t) in our model, as it plays a pivotal role
in determining the model’s reliability [26].

For this purpose, we undergo a Least-Square calibration procedure based on reported deceased data
from Dipartimento di Protezione Civile Italiana (DPC). Indeed, the compartment of deceased individuals
is the only one with a direct counterpart in DPC data and is generally the least affected by monitoring
uncertainties. In our cases, both c(t) and β(t) (cf. Section 2.1) are piecewise constant functions. The values

of c(t) =

Nint∑
i

ciI(ti,ti+1](t) are calibrated separately for each time subinterval corresponding to a specific

scenario (e.g., a particular restriction level). The iterative calibration stage is carried out according to the
following steps:

1. Associate a β −matrix for each subinterval corresponding to the prescribed scenario;

2. Solve the following optimization problem:

min
{ci}i

J(c) =

T∑
t=0

(D(t)− D̂(t))2(
D̂(t)

)2 , (5)

where D̂ is the total number of deceased individuals provided by the DPC in [0,T]
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Figure 7: Vaccinated in first dose for DPC age groups.

2.4.2 Vaccination campaign

The Italian COVID-19 vaccination campaign included the administration of two doses and a booster (third)
dose in the late periods of the outbreak. These dynamics are incorporated into our model using vaccination
data provided by DPC, enabling us to track the participation of individuals in the vaccination campaign. At
the beginning of the vaccination campaign, vaccinations were initially delivered by age group. In particular,
these data are split into eight age groups {0 ÷ 9, 10 ÷ 19, 20 ÷ 29, 30 ÷ 39, 40 ÷ 49, 50 ÷ 59, 60 ÷ 69, 70+},
even though in our model we consider fifteen age groups {0÷ 4, 5÷ 9, 10÷ 14, 15÷ 19, 20÷ 24, 25÷ 29, 30÷
34, 35÷39, 40÷44, 45÷49, 50÷54, 55÷59, 60÷64, 65÷69, 70+}. Thus, to initialize our model we make the
following assumption: calling Ai the age groups provided by data, with i = 1, ..., 8, and Bj the age groups
used in our model, with j = 1, ..., 15, the number of the initial vaccinated individuals of the age groups Bj

is given by

|Bj | =
|Ak|
2

, j = 1, . . . , 14,

where

k =


⌊
j

2

⌋
+ 1 if j mod 2 = 1⌊

j

2

⌋
if j mod 2 = 0

(6)

and |B15| = |A8|. In this way, we are able to exploit the SEIHRDV multi-age and multi-group for reproducing
the curve of vaccinated people evolving over time for each age group. In Figure 7 we report this evolution
in the 8 DPC age-classes, finding agreement with the actual administrations per-age.

In our model, we explicitly include only individuals vaccinated with at least one dose in the compartment
V . The efficacy parameter σ, as estimated from clinical trials [28], was an appropriate choice when the
number of individuals with only the first dose surpassed that of fully vaccinated individuals. However, by
late 2021, approximately 78% of the Italian population had received at least one dose, with nearly 74% fully
vaccinated. Furthermore, vaccine effectiveness in reducing COVID-19 transmissibility is estimated to decline
approximately six months after full vaccination, necessitating the introduction of the third, or booster, dose.
Consequently, for these later periods, we compute σ as a weighted parameter, determined as follows:

σ(t) =
σ1 VD1

(t) + σ2 (VD2
(t) + VD4

(t)) + σ3 VD3
(t)

VD1(t) + VD2(t) + VD3(t) + VD4(t)
, (7)
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with

• σ1, rate of ineffectiveness in reducing virus transmissibility for those who received only the first dose
of the vaccine;

• σ2, rate of ineffectiveness in reducing virus transmissibility for those who have been fully vaccinated
(double dose of vaccine) for less than six months;

• σ3, rate of ineffectiveness in reducing virus transmissibility for those who have been fully vaccinated
(double dose of vaccine) for more than six months;

• VD1
(t) number of individuals who received only the first dose of vaccine on day t (DPC);

• VD2(t) number of individuals who are fully vaccinated (with two doses) for less than six months on
day t (DPC);

• VD3
(t) number of individuals who are fully vaccinated (with two doses) for more than six months on

day t (DPC);

• VD4(t) number of individuals who are vaccinated with the booster dose on day t (DPC).

We assume that individuals receiving the booster dose regain the vaccine efficacy that achieved in the first
few months after full vaccination. In our model we do not distinguish on the various vaccines used, hence the
ineffectiveness values are estimated from average values of different vaccines data collected in the literature.
In particular we estimate σ1 = 0.30, σ2 = 0.12 and σ3 = 0.50.

Finally, to determine the value of θ, introduced in the model in (2), we utilize data from the ISS as reported
in [45]. Specifically, we analyze the ratio of unvaccinated individuals who died relative to unvaccinated
COVID-19 diagnoses and the ratio of vaccinated individuals who died relative to vaccinated COVID-19
diagnoses. From this analysis, we set θ = 0.8, which implies that for vaccinated individuals diagnosed with
COVID-19, the vaccine reduces mortality by 20%.

2.4.3 Green Pass

On June 17, 2021, Italy introduced the Green Pass restriction for the first time. The Green Pass, a digital
COVID certificate proposed by the European Commission, aimed to facilitate the safe and unrestricted
movement of European Union citizens during the COVID-19 pandemic. In Italy, the Green Pass certified
one of the following conditions: receipt of a COVID-19 vaccination (issued after each vaccine dose), a negative
result from a rapid antigen test within the previous 48 hours or a molecular test within the previous 72 hours,
or recovery from COVID-19 within the last 6 months.

We modify the model to take into account the restrictions due to the Green Pass. For this purpose, we
introduce a second rate of transmissibility, βS , which expresses the probability that a susceptible individual
will contract the virus after a contact with an infectious, considering the limitations due to not having the
Green Pass. For simplicity we are considering as Green Pass holders the individuals who have received at
least one dose of vaccine. So the individuals in V , which are Green Pass holders, are not subject to the same
restrictions. For them, we consider the transmissibility rate β defined earlier. If the Green Pass restrictions
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Figure 8: SEIHRDV model adapted to take into account Green Pass restrictions.

were lifted, then βS = β. Therefore, the equations become:

dSi

dt
= −

(
K∑

k=1

(
M∑
j=1

c(t)βS
k
ijIj

))
Si

Ni
− di

Si

Si +Ri
+ µR Ri + µV Vi,

dEk
i

dt
=

(
M∑
j=1

c(t)βS
k
ij Ij

)
Si

Ni
+

(
M∑
j=1

c(t)βk
ij Ij

)
σ Vi

Ni
− αEk

i , k = 1, . . . ,K,

dIi
dt

= α

(
K∑

k=1

Ek
i

)
− γ Ii,

dHi

dt
= γ Ii − ωHi, t ∈ (0, T ],

dRi

dt
= (1− f(Si, Vi))ωHi − µR Ri,

dDi

dt
= f(Si, Vi)ωHi,

dVi

dt
= −

(
K∑

k=1

(
M∑
j=1

c(t)βk
ij Ij

))
σ Vi

Ni
+ di

Si

Si +Ri
− µV Vi,

Si(0) = Si0 , Ek
i (0) = Ek

i0 , Ii(0) = Ii0 , Hi(0) = Hi0 , Ri(0) = Ri0 , Di(0) = Di0 , Vi(0) = Vi0 ,

∀i = 1, ..., Na.
(8)

3 Results

We report numerical results obtained in different scenarios for both the global and regional Italian levels. Our
aim is to capture how the COVID-19 developed in the different contexts of exposition among the different
age-groups and to assess the validity of the proposed novel compartmental model. For each period selected,
an accurate research was carried out to set the scenario parameters, taking into account the containment
measures in force and their variations in the respective time-frame.

In particular, in Section 3.1 we present the results set at the Italian national level from September 2020
to July 2021, in Section 3.2 we analyze the same period in Lombardy and Lazio, whilst in Section 3.3 we
report the results for the whole Country up to December 2021, in order to evaluate the impact of the Green
Pass measure.
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Figure 9: Calibration results in Italy: the calibration on reported deceased (left), the sum of Infectious and
Healing estimated by the model compared with reported positives (right).

Figure 10: Deceased in Italy from September 2020 to July 2021 estimated by SEIHRDV multi-age and
multi-context model divided by age group, compared with data (in red).

3.1 September 2020 - July 2021: Italy

At the beginning of the period of interest very few NPI restrictions were in force, and in particular schools
were open. With the increase in infections, regional restrictions were introduced starting from November,
with the classification in 3 colors according to the risk: yellow, orange and red.

For the first calibration we set θ = 1 and µR = 0, so we consider that, once the positive diagnosis is
received, vaccines are totally ineffective in reducing deaths, and that recovered individuals become immune.
Note that if we consider θ = 1, the function f(S, V ; τ) defined in (2) is equal to the Infectious Fatality Rate.

As we can see in Figure 9, the amount of deceased matches with actual monitoring, showing a reasonable
behavior of the curve of positive individuals. Indeed, it is possible to see that I +H curve follows the trend
of the positives given by DPC. The gap between the two curves is due to monitoring uncertainty: SEIHRDV
model does not distinguish detected from undetected individuals.

In Figure 10 we compare deceased individual divided by age groups, since we are able to reconstruct
the IFR for each age class. Even in this case, the stratification of deceased matches with available data. In
Figure 11 the curves of positives individuals (i.e. Infectious and Healing individuals) estimated by SEIHRDV
multi-age and multi-context model follow the trend of the data. As in Figure 9, the gap between the curves
and the data is motivated by the limitations in monitoring. In particular, in the 70+ age group we observe
that estimated curve and data are similar: this is probably due to the fact that older individuals are more
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Figure 11: Positives (I +H) in Italy from September 2020 to July 2021 estimated by SEIHRDV multi-age
and multi-context model divided by age group, compared with data (in red).

Figure 12: Exposed in Italy from September 2020 to July 2021: at the top, evolution of the exposed
individuals divided by age group (a) and context of exposition (b); at the bottom, distribution of age groups
(c) and contexts of exposition (d) in the exposed compartment.

often symptomatic than other age groups, and thus they are more easily detected.
The peculiarity of the SEIHRDV multi-age and multi-context is that we can observe how exposed indi-

viduals are distributed in each age group and context of exposition. In Figure 12 we show the age-repartition
(a) and contexts of exposition (b) of exposed individuals, while at the bottom we have the distribution of
age groups (c) and context of exposition (d) in the exposed compartment. In this way, we can interpret the
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Figure 13: Curves of Recovered with θ = 1 and θ = 0.8 compared in the whole time period.

numerical results in light of the specific NPIs placed in act and evaluate the impact of specific interventions.
For instance, in the middle of September 2020 schools were totally open. This led to an increase of cases
in the younger age groups until the beginning of November, when some restrictions where applied with the
introduction of colored zones. Since then, the most exposed age groups were 40-49 and 50-59. For what
concerns the contexts of exposition we can see that, in the first part of the growth of the curve, “leisure”
was the context with the greatest exposures. Then, with the introduction of the containment measures of
November, the context in which most infections occur was the “work” sector. In the same way, the infections
in the “school” context, which was growing, began to decline and then remained more or less constant (with
an exception for Christmas holiday). School-related restrictions particularly affected part of middle school
students and high school students.

For the sake of completeness, we repeated the numerical tests by imposing θ = 0.8. We estimated this
value of θ, that is the rate of inefficacy of vaccination in the reduction of death, from ISS data reported in
[45]. We obtained similar results. In particular we can see a difference in the Recovered compartment: if
individuals die fewer, we will have more recovered (Figure 13).

3.2 September 2020 - July 2021: regions Lombardy and Lazio

The trend of the national epidemic curve is influenced by the trends of the individual regions. In fact, the
situation may be different in each region, depending on average age of individuals, daily habits, hospital
situation, climatic situation. For this reason, the NPI in the chosen time period are adopted on a regional
scale. Hence, we analyzed what happened in two of the most populous Italian region: Lombardy and Lazio.
As we did in Section 3.1, we set up the scenario, the initial conditions by imposing θ = 1 and µR = 0.

3.2.1 Lombardy

As we can see in Figure 14, the amount of deceased individuals matches with actual data, showing also in
Lombardy a reasonable behavior of positive individuals. The I +H curve follows the trend of the positives
given by DPC. Even in this case, the gap between the two curves is due to the accuracy of the detection. In
Figures 15 and 16 we report deceased individuals and positives individuals divided by age groups.
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Figure 14: Calibration results in Lombardy: the calibration on reported deceased at the left, the sum of
Infectious and Healing estimated by the model compared with reported positives at the right.

Figure 15: Deceased in Lombardy estimated by SEIHRDV multi-age/multi-context model divided by age
group.

Figure 16: Positives (I +H) in Lombardy estimated by SEIHRDV multi-age/multi-context model divided
by age group.
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Figure 17: Exposed in Lombardy: at the top, evolution of the exposed individuals divided by age group (a)
and context of exposition (b); at the bottom, distribution of age groups (c) and contexts of exposition (d)
in the exposed compartment.

With SEIHRDV multi-age and multi-context we are able to track the evolution of infections in each age
group and each context of exposition. In Figure 17 we report the amount of exposed divided by age groups
and context of exposition, while at the bottom we can see how the exposed (and therefore infections) are
divided into age groups and contexts of exposition. As we expected, the curves in Figure 17 follow different
trends with respect to the national curve of the exposed individuals (Figure 12).

3.2.2 Lazio

In Figure 18 we observe that even in this case, deceased individuals match the actual data. The curve of
positives in the same figure follows the trend of the positives given by DPC, with the usual gap ascribed to
monitoring uncertainty. In Figure 19 and 20 we report deceased individuals and positives individuals divided
by age groups.

In Figure 21 the amount of exposed is represented divided by age groups and context of exposition,
together with how age groups and contexts of exposition are distributed in the exposed compartment. The
curves in Figure 21 are different both from the national curves of exposed (Figure 12) and the Lombardy
curves (Figure 17).

3.3 September 2020 - December 2021: Italy

In this section, we take into account for the Green Pass restrictions as introduced in Section 2.4.3. To set the
scenarios, until the end of July we used the same setting imposed in Section 3.1, while from August onwards
we took into account the new rules relating to the Green Pass described below:

• From August 6 to September 12: Green Pass requirement for indoor restaurants, indoor pubs, discos,
indoor sports and various events (concerts, museums, cinemas, stadium, shows, theaters);

19



Figure 18: Calibration results in Lazio: the calibration on reported deceased at the left, the sum of Infectious
and Healing estimated by the model compared with reported positives at the right.

Figure 19: Deceased in Lazio estimated by SEIHRDV multi-age/multi-context model divided by age group.

Figure 20: Positives (I+H) in Lazio estimated by SEIHRDV multi-age/multi-context model divided by age
group.
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Figure 21: Exposed in Lazio: at the top, evolution of the exposed individuals divided by age group (a) and
context of exposition (b); at the bottom, distribution of age groups (c) and contexts of exposition (d) in the
exposed compartment.

Figure 22: Calibration results in Italy: the calibration on reported deceased at the left, the sum of Infec-
tious and Healing estimated by the model compared with reported positives at the right, introducing GP
containment measures.

• From September 13 to October 14: Green Pass requirement also extended to school staff and university
students;

• From October 15 onward: Green Pass requirement also extended to workers.

For the sake of simplicity we considered as Green Pass holders only vaccinated individuals, since our model
does not explicitly monitor swabs. We consider the same initial condition of the first calibration seen in (3.1),
using a non-zero rate of end of immunity for recovered individual since we are considering a time period of
over a year.

In Figure 22 we show the trend of positive individuals in the GP case, and observe that it matches
available data. Since the gap between the curve and the data is smaller from July, we can deduce that a
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Figure 23: Deceased in Italy estimated by SEIHRDV multi-age/multi-context model divided by age group,
introducing GP containment measures.

Figure 24: Positives (I +H) in Italy estimated by SEIHRDV multi-age/multi-context model divided by age
group, introducing GP containment measures.

better monitoring policy is induced by the introduction of Green Pass obligation (notice that the Green
Pass can also be granted if swabs are negative). The curve catches also the rise in cases that began in
mid-October.

In Figure 24 it is possible to observe differences between the age groups in this last time period. In
particular from SEIHRDV multi-age/multi-context model it is possible to see a significant growth in 0-9
and 10-19, maybe due to the school reopening. Indeed in July and August schools were closed, as shown
in the distribution of exposed in the different contexts of exposition (Figure 25): starting on September the
exposed in “school” context started growing again. In particular, the age groups most affected by school
reopening are indeed those aging 0-9 and 10-19 (as can be seen in Figure 25), which are also the ones less
vaccinated (the vaccination campaign concerns the over 12s).

Finally, we conclude that the Green Pass NPIs impact more in the context of exposition of work, and in
a lighter way in leisure, as we can see in Figure 25. On the other hand, an increase in the rate of exposure
to the virus is observed in contexts such as school and home.
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Figure 25: Exposed in Italy with GP containment measures: at the top, evolution of the exposed individuals
divided by age group (a) and context of exposition (b); at the bottom, distribution of age groups (c) and
contexts of exposition (d) in the exposed compartment.

4 Conclusions and perspectives

We introduced a new mathematical model to describe COVID-19 epidemic in Italy during the years 2020
and 2021. This is a multi-age and multi-context SEIHRDV model, constituted by seven compartments,
susceptible individuals S, Exposed individuals E, infectious individuals I, healing individuals H, recovered
individuals R, dead individuals D, vaccinated individuals V . This model is able to track the infections
patterns among age groups happening in different exposition contexts. In this work, we exploited this model
to reconstruct COVID-19 spread in different scenarios between September 2020 and July 2021 in Italy, in
Lombardy and in Lazio, and taking into account the vaccination campaign and Green Pass Interventions.
This model allows to assess the impact of different NPIs that can be implemented in various contexts
heterogeneously. Indeed, we obtained numerical results differentiated for age and context: this was useful to
better understand which age groups and contexts of exposition were the most risky.

The model has been validated using data from the Dipartimento di Protezione Civile, Italy, which were
also employed to calibrate the model parameters through a standard Least Squares optimization scheme. In
this calibration process, we relied on information on deceased individuals, for sure those most reliable and
least affected by monitoring uncertainties.

The SEIHRDVmultiage and multicontext model provides a valuable framework for analyzing the differing
behaviors observed between age groups and understanding how infections spread within various exposure
contexts. Nonetheless, further adjustments are needed, such as introducing an additional compartment to
account for fully vaccinated individuals or tracking undetected cases, as done in other studies. Despite
these limitations, we are confident that this model represents a fundamental tool for policymakers, enabling
reliable scenario analyses during epidemic outbreaks.
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