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Abstract

We introduce a multiphysics and geometric multiscale computational model, suitable to
describe the hemodynamics of the whole human heart, driven by a four-chamber electrome-
chanical model. We first present a study on the calibration of the biophysically detailed
RDQ20 activation model (Regazzoni et al., 2020) that is able to reproduce the physiological
range of hemodynamic biomarkers. Then, we demonstrate that the ability of the force gener-
ation model to reproduce certain microscale mechanisms, such as the dependence of force on
fiber shortening velocity, is crucial to capture the overall physiological mechanical and fluid
dynamics macroscale behavior. This motivates the need for using multiscale models with high
biophysical fidelity, even when the outputs of interest are relative to the macroscale. We show
that the use of a high-fidelity electromechanical model, combined with a detailed calibration
process, allows us to achieve a remarkable biophysical fidelity in terms of both mechani-
cal and hemodynamic quantities. Indeed, our electromechanical-driven CFD simulations –
carried out on an anatomically accurate geometry of the whole heart – provide results that
match the cardiac physiology both qualitatively (in terms of flow patterns) and quantitatively
(when comparing in silico results with biomarkers acquired in vivo). Moreover, we consider
the pathological case of left bundle branch block, and we investigate the consequences that
an electrical abnormality has on cardiac hemodynamics thanks to our multiphysics integrated
model. The computational model that we propose can faithfully predict a delay and an in-
creasing wall shear stress in the left ventricle in the pathological condition. The interaction
of different physical processes in an integrated framework allows us to faithfully describe and
model this pathology, by capturing and reproducing the intrinsic multiphysics nature of the
human heart.

1 Introduction

The study of cardiac blood flows aims at enhancing the knowledge of heart physiology, assessing
pathological conditions, and possibly improving clinical treatments and therapeutics. In the last
decades, the role of mathematical models in the study of cardiac hemodynamics has increasingly
gained relevance, for their non-invasiveness and flexibility with respect to geometries and flow

1



conditions [1–9]. Computational Fluid Dynamics (CFD) is largely employed to provide a detailed
description of cardiac flows and to estimate hemodynamic indicators, like e.g., the wall shear stress,
that standard image-based techniques might not capture [1]. A biophysically detailed mathematical
model of cardiac hemodynamics entails the complex interplay among different processes such as the
interaction with cardiac electromechanics (EM), valve dynamics, transition-to-turbulence effects,
and coupling with the surrounding circulation. Furthermore, while the literature about CFD
models of the left ventricle [3, 4, 10–13], left atrium [8, 14–22] and left heart [1, 9, 23–26] is relevant,
the fluid dynamics simulation of the right heart is the subject of few works, and they focus on the
sole right ventricle [27–29] , neglecting the right atrium description. Conversely, whole-heart fluid
dynamics modeling is a much more challenging topic and has been addressed only recently in few
works [30–35]. As a matter of fact, to the best of our knowledge, hemodynamics simulations of the
whole heart are presented only in the following papers. A four-chamber CFD model is proposed
by the Siemens group in [30]: the displacement of cardiac walls is obtained from patient-specific
images and, since the left and right sides are not connected to the surrounding circulation, they
performed simulations separately on the two parts. In [31], the authors introduce a Fluid Structure
Interaction (FSI) simulation of the whole heart based on the UT-Heart simulator developed at the
University of Tokyo. Moreover, FSI simulations of the whole heart have been performed in the
context of the Living Heart Project [32]. A sequentially-coupled FSI model of the whole heart
is devised in [33], showing that few iterations of the solver are needed to reach convergence in
terms of mechanical indicators. Recently, a patient-specific whole-heart CFD model is introduced
in [34], consisting of the Navier-Stokes-Brinkman equations [36] with prescribed boundary motion
and, similarly to [30], simulations of the left and right parts are carried out separately. Finally,
a GPU-accelerated fully-coupled electro-mechano-fluid computational model of the whole heart,
based on the immersed boundary method, is presented in [35].

In this paper, we propose a four-chamber electromechanical-driven fluid dynamics model, which
is characterized by a remarkable biophysical fidelity and able to faithfully describe potential
pathologies. Moreover, to improve the virtual representation of the heart physiology enabled
by our model, we present a meticulous calibration of the activation model (at the cellular level) to
reproduce mechanical and hemodynamic biomarkers in the physiological range.

The blood flow in heart chambers is commonly modeled by Navier-Stokes equations for Newto-
nian fluids [37]. A crucial aspect in heart flows modeling is the treatment of boundary displacement,
i.e. the way the deformation of cardiac walls is accounted for into the model. The boundary dis-
placement can be the solution of a suitable mathematical model for the dynamics of the walls,
fully coupled to the fluid dynamics model in an FSI framework, by imposing geometric, kinematic,
and dynamic coupling conditions at the fluid-solid interface. The motion of the myocardium is in
turn driven by muscular EM, resulting in a coupled electro-mechano-fluid problem (see e.g. [9, 23,
24, 38–42]). This approach, while being very comprehensive and physically motivated, entails a
significant computational effort, due to the number of subsystems involved and to the non-linearity
induced by the coupling. To mitigate this large computational cost, the boundary displacement
can be prescribed as a datum, without any feedback from the fluid flow, in a CFD modeling
framework. The displacement may be prescribed by suitable analytical laws [3, 4, 11, 13, 16, 17,
25, 43–45], from patient-specific image-based reconstructions [1, 5, 7, 8, 14, 15], or else obtained
from a previously performed EM simulation [2, 6, 26, 46–48]. The latter corresponds to a one-way
coupled approach between EM and CFD, since only the kinematic coupling is enforced, without
foreseeing any dynamic feedback from the fluid to the structure problem. This approach is also
referred to as “kinematic uncoupling” [2, 49].

A critical issue in 3D cardiovascular hemodynamics modeling is the prescription of boundary
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conditions at inlet and outlet sections, since boundary data are generally unavailable, but also
because the circulatory system is a closed-loop network and the mathematical model should account
for it. A possible approach is the so called geometric multiscale modeling [50]: the region of interest
(in our case, the whole-heart) is described by a 3D model, while the remaining part of the circulation
is addressed by means of lumped-parameter models, as 0D [50–54], or 1D [40, 50, 55–57]. The
geometric multiscale modeling allows to account for the mutual interaction between the heart and
the circulatory system, especially if the lumped parameter model provides a closed-loop description
of the vascular network, as done in [26, 51, 58–61].

An additional key aspect in cardiac CFD simulations is the modeling of the cardiac valves. In
principle, these can be treated by considering a structural model for the solid (leaflets of the valve
and possibly its chordae tendinae) and a fluid dynamics model for the surrounding blood flow.
This approach yields a coupled FSI model of the blood-valve system [24, 62–70], characterized by
contact phenomena and fast dynamics. Thus, FSI valve models are commonly associated to a huge
computational burden, to be added to the overall cost of the heart CFD simulation. To avoid this
large computational cost, the effects of the valves in the blood can be surrogated by relying on
reduced models for the valve dynamics [5, 34, 47, 71–74].

Our computational model of the whole human heart encompasses the main features of the
cardiac hemodynamics: EM, cardiac valves, transition-to-turbulence effects, and interplay with
the external circulation. Indeed, our fluid model is driven by the four-chamber EM model recently
proposed in [58]. The multiphysics model is fully coupled to the external circulation described by
a lumped-parameter model, extending the computational framework we introduced in [26] to the
case of four-chamber CFD simulations. We carry out numerical simulations on an anatomically
accurate geometry of the heart, obtaining results that are quantitatively in agreement with data
from the medical literature and qualitative faithfully in terms of blood flow patterns. In this re-
spect, we analyze the role played by the highly biophysically detailed RDQ20 activation model [75]
on relevant hemodynamic quantities. Indeed, since the electromechanical displacement drives the
deformation of cardiac chambers for the CFD simulation, its calibration is fundamental towards
faithfully reproducing heart physiology. As shown in [58], the parameters of the activation model
play a significant role in determining the flow rates across cardiac valves, which have a dramatic
impact on the CFD simulation, both in terms of macroscopic indicators and overall flow distribu-
tion. Therefore, we present a detailed calibration of the active force generation model, validating
our results on several macroscopic heartbeat indicators such as stroke volumes, ejection fractions,
peak flowrates and, consequently, also in terms of blood velocities computed in the CFD simula-
tion. Our sensitivity analysis highlights that microscopic features of the RDQ20 model have a large
impact on the macroscopic characteristics of the heartbeat. Then, we show that our detailed com-
putational model can improve the understanding of the impact of the Left Bundle Branch Block
(LBBB) pathology [76] on CFD biomarkers, by capturing the effects that an electrophysiological
abnormality has on different physical processes behind the heart activity, henceforth allowing to
capture the intrinsic multiphysics nature of the cardiac function. This paper represents one the
few examples in the literature on the modeling and simulation of the whole heart hemodynamics.
Moreover, to the best of our knowledge, this is the first work in which the 3D whole heart fluid
dynamics model is also coupled to a lumped-parameter closed-loop circulation model.

This paper is organized as follows: in Section 2, we introduce the mathematical models em-
ployed for the EM, fluid dynamics and circulation problems. Section 3 is devoted to the description
of the numerical methods for each subproblem and to the strategies used for their coupling. In
Section 4, we present numerical results on a realistic whole-heart geometry, in both physiological
and pathological conditions. Finally, limitations and conclusions follow in Section 5 and Section 6,
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Figure 1: The whole-heart EM model: a) cardiac muscular fibers, (b) boundaries and impulse sites
(yellow spheres with bold labels), (c) coupling with circulation and we highlight the three main
regions of the EM model (atria, ventricles and non-conductive regions).

respectively.

2 Mathematical model

In this section, we introduce the mathematical model. Specifically, the EM model is briefly de-
scribed in Section 2.1 and the whole-heart fluid domain is defined in Section 2.2. We present our
approach suitable to deal with the domain deformation in Section 2.3, the fluid dynamics model
in Section 2.4, and its coupling with the external circulation in Section 2.5.

2.1 The whole-heart electromechanical model

The whole-heart EM is based on a comprehensive and biophysically detailed computational model
that we recently presented in [58]. More precisely, we consider a 3D description of cardiac EM in
all the four-chambers and a 0D representation of the complete circulatory system, including the
cardiac blood hemodynamics [59, 77], as we display in Figure 1c.

The whole-heart EM model includes a detailed myocardial fiber architecture built upon a total-
heart Laplace-Dirichlet Rule-Based Method [78], which couples together different methods for the
atria [79] and the ventricles [80], to properly reproduce the characteristic features of the cardiac
fiber bundles in all the four-chambers [79], see Figure 1a.

Cardiac electrophysiology is described by means of the monodomain equation equipped with
no-flux Neumann boundary conditions [81] and endowed with the following human ionic models:
ten Tusscher-Panfilov for the ventricles [82] and Courtemanche-Ramirez-Nattel for the atria [83].
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Furthermore, the arterial vessels and the atrio-ventricular basal plane are assumed to be non-
conductive regions, whence electrically isolating the atria from the ventricles [58]. Finally, the
cardiac conduction system is substituted by a series of spherical electrical impulses, originating
from the sino-atrial node (SAN) and ending into the left and right ventricular endocardia which,
combined with a fast endocardial layer, surrogates the effect of the Purkinje network [58, 84], as
we show in Figure 1b.

The sarcomere mechanical activation is based on the biophysically detailed RDQ20 active
contraction model [75], properly calibrated for both atria [85] and ventricles [86]. The RDQ20 is
able to represent in detail the sophisticated microscopic active force generation mechanisms, taking
place at the scale of sarcomeres [86]. Moreover, to differentiate the active tension in left and right
ventricles, we consider a spatially heterogeneous active tension [77].

The myocardial tissue mechanics is described by the momentum balance equation under the
hyperelasticity assumption [87]. We employ, for the active part, an orthotropic active stress formu-
lation [77], which surrogates the contraction caused by dispersed myofibers [88], and, for the passive
behavior, specific mechanical constitutive laws and model parameters for the different cardiac re-
gion: the Usyk constitutive law for both the atria and the ventricles [89] and a Neo-Hookean strain
energy density function for the atrio-ventricular basal plane and the vessels [87]. Finally, a nearly
incompressible formulation is enforced with a penalty method [58]. Concerning the mechanical
boundary conditions, we consider: i) generalized Robin boundary conditions on the epicardium,
surrogating both the presence of the pericardium and also the epicardial adipose tissue, crucial for
reproducing the correct downward and upward movement of the atrio-ventricular basal plane [58];
ii) normal stress boundary conditions on the four-chamber endocardia and vessel endothelia to
account for the pressures exerted by the blood, where the endocardium and endothelium fluid
pressures are given by the coupling between the mechanical and the circulation problems [58, 59,
77]; iii) homogeneous Dirichlet boundary condition on all the artificial rings where we cut the
computational domain, since the arteries and atrial veins can be considered fixed here [58], as
displayed in Figure 1b.

The whole-heart 3D EM model is fully coupled with a 0D closed-loop lumped parameters model
for the blood hemodynamics through the entire cardiovascular network. Systemic and pulmonary
circulations are modeled using resistance-inductance-capacitance circuits (both for the arterial
and venous part) and non-ideal diodes stand for the heart valves [59]. In Figure 1c we give a
graphical representation of the 3D-0D model. The coupling between the 0D and 3D EM models
is achieved by introducing volume-consistency coupling conditions, where the pressures of all the
four-chambers act as Lagrange multipliers associated with the introduced volume constraints [59,
77].

The most relevant feedbacks, representing the interactions among electric signal propagation,
the cardiac tissue deformation and contraction, and the circulatory system, are modelled inside the
whole-heart EM model [58]. These include e.g. the mechano-electric feedback [90] (between elec-
trophysiology and mechanics) and the fibers-stretch and fibers-stretch-rate feedbacks [91] (between
mechanics and the activation model).

For the full set of equations of the whole-heart EM model, we refer to [58, 59, 77].
In this paper, the whole-heart EM model serves as unidirectional input for the fluid dynamics

problem as we better detail in Section 2.3 and Section 2.4.
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Figure 2: The whole-heart fluid domain: (a) subdomains composing the whole heart; (b) boundary
portions (the left and right part are separated for visualization purposes).

2.2 The whole-heart fluid domain

Let Ωt be the fluid domain at time t > 0 bounded with a sufficiently regular boundary Γt ≡ ∂Ωt

and let (0, T ) be the temporal domain, with T the final time. From a fluid dynamics view point,
the whole-heart fluid domain Ωt is topologically disjoint and split into left heart (LH, ΩLH

t ) and

right heart (RH, ΩRH
t ), as we show in Figure 2: Ωt = ΩRH

t ∪ΩLH
t , with Ω

RH

t ∩Ω
LH

t = ∅. Specifically,

Ω
RH

t = Ω
RA

t ∪ Ω
TV

t ∪ Ω
RV

t ∪ Ω
PV

t ∪ Ω
PT

t ,

Ω
LH

t = Ω
LA

t ∪ Ω
MV

t ∪ Ω
LV

t ∪ Ω
AV

t ∪ Ω
AO

t ,

where ΩRA
t , ΩRV

t , ΩPT
t are the right atrium (RA), right ventricle (RV) and pulmonary trunk (PT)

subdomains, and ΩLA
t , ΩLV

t , ΩAO
t the left atrium (LA), left ventricle (LV) and aorta (AO) subdo-

mains. Moreover, ΩTV
t , ΩPV

t , ΩMV
t , ΩAV

t are the subdomains representing the rings of the tricuspid
valve (TV), pulmonary valve (PV), mitral valve (MV) and aortic valve (AV). Analogously, we
partition the boundary of the whole-heart domain as Γt = ΓRH

t ∪ ΓLH
t , with ΓRH

t ∩ ΓLH
t = ∅. In

particular, as displayed in Figure 2b,

ΓRH
t = Γout,RH ∪ Γin,RH ∪ Γw,RH

t ,

with Γin,RH the inlet sections of the superior and inferior venae cavae, Γout,RH the outlet section of
the pulmonary trunk, and Γw,RH

t the endocardium of the RH. In an analogous fashion, on the left
part:

ΓLH
t = Γout,LH ∪ Γin,LH ∪ Γw,LH

t ,

with Γin,LH the five inlet sections of the four pulmonary veins, Γout,LH the outlet section of the
aorta, and Γw,LH

t the LH endocardium.
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2.3 The fluid domain displacement problem

To represent the deformation of the domain over time, we introduce a fixed reference configuration
Ω̂ ⊂ R3, such that the domain in current configuration Ωt is defined at any t ∈ (0, T ) as

Ωt = {x ∈ R3 : x = x̂+ d(x̂, t), x̂ ∈ Ω̂},

where d : Ω̂× (0, T ) is the displacement of the domain, and is obtained it by solving the following
harmonic extension problem: {

−∇ · (s∇d) = 0 in Ω̂× (0, T ), (1a)

d = d∂Ω(x, t) on ∂Ω̂× (0, T ). (1b)

In Equation (1), d∂Ω : ∂Ω̂ × (0, T ) is the boundary displacement, computed by restricting the

solution of the EM simulation to the endocardium and the endothelium. Furthermore, s : Ω̂ ×
(0, T ) → R is a space-dependent scalar field introduced to avoid distortion of mesh elements.
Specifically, we use the boundary-based stiffening approach proposed in [92]. We denote the fluid
domain displacement problem Equation (1) with the abridged notation

D(d,d∂Ω) = 0.

The EM simulation is solved with a significantly larger timestep than the CFD one. Therefore,
the boundary displacement d∂Ω is only available for some times tk, k = 0, 1, . . . , NEM, although
the domain displacement d is needed with a finer temporal resolution. Thus, problem (1) is solved

for all times tk, and then we construct a displacement field d̃(t) : Ω̂× (0, T )→ R3 using smoothing
splines approximation in time [93].

We compute the domain velocity by deriving the displacement in time as

uALE =
∂d̃

∂t
in Ωt × (0, T ). (2)

2.4 The Navier-Stokes equations in ALE framework with the RIIS
model of the valves

We model the blood in the cardiac cavities as an incompressible, viscous and Newtonian fluid
characterized by constant density ρ and constant dynamic viscosity µ. We therefore use the time-
dependent incompressible Navier-Stokes equations expressed in an Arbitrary Lagrangian Eulerian
(ALE) framework to account for the moving domain. We denote by u : Ωt × (0, T ) → R3 and
p : Ωt × (0, T ) → R the fluid velocity and pressure, respectively. Let σ be the Cauchy stress
tensor, defined for incompressible, Newtonian and viscous fluids as σ(u, p) = −pI + 2µϵ(u), with
ϵ(u) = 1

2

(
∇u+ (∇u)T

)
the strain-rate tensor.

We model the effects of cardiac valves in the fluid by means of the Resistive Immersed Im-
plicit Surface (RIIS) method [71]. We consider four immersed surfaces Σk, with k ∈ Iv =
{MV, AV, TV, PV} the set of valves. Each valve is characterized by a resistance coefficient Rk

and a parameter εk representing the half thickness of the valve leaflets. The immersed surface is
implicitly described by a signed distance function φk : Ωt × (0, T ) → R. With the RIIS method,
we introduce the following penalty term to the momentum balance of the Navier-Stokes equations
(expressed in ALE form):

R(u,uALE) =
∑
k∈Iv

Rk

εk
δΣk,εk(φk)

(
u− uALE − uΣk

)
.
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R penalizes the mismatch between the relative velocity u − uALE and the velocity of the valves’
leaflets uΣk

, weakly imposing a kinematic coupling condition only. The resistive term is only acting
on a tiny support around Σk, thanks to a smoothed Dirac delta function acting as multiplicative
factor. We refer to [71] for its definition.

By defining with ∂̂u
∂t

= ∂u
∂t

+ (uALE · ∇)u the ALE derivative, the 3D fluid dynamics model of
the whole heart reads:

ρ
∂̂u

∂t
+ ((u− uALE) ·∇)u+∇ · σ(u, p) +R(u,uALE) = 0 in Ωt × (0, T ), (3a)

∇ · u = 0 in Ωt × (0, T ), (3b)

σ(u, p)n = −pinRAn on Γin,RH × (0, T ), (3c)

σ(u, p)n = −pPUL
AR n on Γout,RH × (0, T ), (3d)

σ(u, p)n = −pinLAn on Γin,LH × (0, T ), (3e)

σ(u, p)n = −pSYS
AR n on Γout,LH × (0, T ), (3f)

u = uALE on Γw,RH
t ∪ Γw,LH

t × (0, T ). (3g)

u = u0 in Ω0 × {0}, (3h)

where pinRA, p
PUL
AR , pinLA, p

SYS
AR are the pressures arising from the coupling with the circulation model,

as we detail in Section 2.5, and u0 is the initial velocity. We denote the 3D fluid dynamics model
of the whole heart in Equation (3) by

F (u, p,uALE) = 0.

2.5 Coupling with circulation

To account for the interplay between the heart’s fluid dynamics and the hemodynamics of the
surrounding circulation, we couple the cardiac CFD model to a 0D closed-loop model of the whole
circulation proposed in [59]. Specifically, we extend to the whole heart the coupling strategy that
we devised in [26] for the case of the sole left heart. We consider a reduced (open) version of the
original circulation model in which we remove the equations for all the variables that are already
described by the 3D counterpart. The equations of the open system are reported in A. By denoting
with Q0D and p0D the vectors containing flowrates and pressures of the 0D model, respectively, we
refer to the open system with the notation

C (Q0D,p0D) = 0.

The coupling between the 3D CFD model and the open 0D model consists in the enforcement
of the continuity of pressures and flowrates on the artificially chopped boundaries ΓI of the fluid
domain, yielding the following conditions:{

pI3D = pI0D on ΓI × (0, T ), (4a)

QI
3D = QI

0D on ΓI × (0, T ), (4b)

which express dynamic and kinematic coupling, respectively, with1

pI3D =
1

|ΓI |

∫
ΓI

p, QI
3D =

∫
ΓI
(u− uALE) · n. (5)

1We define the sign of the flowrate in accordance with the outward unit normal n. Thus, an inlet flowrate
(entering velocity) will be, by definition, negative.
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Figure 3: The 3D-0D fluid dynamics model of the whole-heart coupled to the surrounding circu-
lation.

Considering the whole-heart fluid domain (see Figure 2b), the interface boundaries are ΓI =
Γin,RH ∪ Γout,RH ∪ Γin,LH ∪ Γout,LH. The 0D pressures (pI0D) and flowrates (pI0D) are [42, 94]:

pin,RH
0D = pinRA, Qin,RH

0D = −QSYS
VEN,

pout,RH
0D = pPUL

AR +RPUL
upstreamQPV, Qout,RH

0D = QPV,

pin,LH0D = pinLA, Qin,LH
0D = −QPUL

VEN,

pout,LH0D = pSYS
AR +RSYS

upstreamQAV, Qout,LH
0D = QAV.

From the point of view of the 3D CFD model, the conditions expressed by Equation (5) are
defective, since they prescribe the average pressure and the total flow rate over the entire section
ΓI , rather than pointwise stress and velocity distributions [50]. We choose to complete the pressure
condition as

σ(u, p)n = −pIn, on ΓI × (0, T ). (6)

The flowrate condition, conversely, is left in its defective form, since it is sufficient for the algorithm
we use for the 3D-0D coupling (see Section 3).

3 Numerical methods

In this section, we describe the numerical methods we use to solve our multiphysics and mul-
tiscale system. The overall algorithm is presented in Algorithm 1 and graphically represented in
Figure 4. We can subdivide the overall procedure in a preliminary phase, in which we solve the
EM simulation [58] and the fluid domain displacement problem to lift the boundary displacement
to the fluid bulk domain, followed by the coupled 3D-0D CFD simulation.
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Algorithm 1 Numerical scheme for the EM-driven CFD simulation of the whole heart

Solve whole-heart EM model
Pick solution in the last heartbeat: → dEM

i , for i = 0, . . . , N
Restrict dEM

i on ∂ΩS,endo
i : d∂Ω

i , for i = 0, . . . , N
Solve fluid domain displacement problem: D(di,d

∂Ω
i ) = 0, for i = 0, . . . , N

Build approximant: d̃(t)
Initialization: n = 0, u0 = 0
while n < Nt do
Update valves leaflet position

Compute ALE velocity: uALE
n+1 = d̃n+1−d̃n

∆t
.

Solve circulation: C (Q0D
n+1,p

0D
n+1) = 0 with data QI

0D,n

Compute interface data (0D → 3D): pI0D,n+1 → pI3D,n+1

Solve fluid dynamics: F (un+1, pn+1,u
ALE
n+1 ) = 0, with Neumann data pI3D,n+1

Compute interface data (3D → 0D): QI
3D,n+1 → QI

0D,n+1

n← n+ 1.
end while

Numerical methods for the EM model For the numerical approximation of the whole-heart
EM model we employ the efficient Segregated-Staggered scheme [58, 59, 77]. In this numerical
scheme, the different cardiac physical models, contributing to both the 3D EM and the 0D blood
circulation, are sequentially solved in a segregated manner, using different resolutions in space
and time to properly account for the heterogeneous space and time scales characterizing different
physical processes [95].

For the space discretization, we use the Finite Element (FE) method with continuous FE on a
tetrahedral mesh. We consider FE of order 2 (P2) for the electrophysiology to capture the traveling
wave dynamics and FE of order 1 (P1) for both the activation and the mechanics [58].

For the time discretization, we use finite difference schemes [96]. Specifically, cardiac electro-
physiology is solved with Backward Differentiation Formula (BDF) of order 2, using an Implicit-
Explicit (IMEX) scheme where the diffusion term is treated implicitly, the ionic and reaction terms
explicitly. The ionic variables are advanced in time through an IMEX scheme [58, 59, 77]. We solve
the active contraction problem with an IMEX BDF1 method, and the mechanical problem with a
fully-implicit BDF1 scheme [77]. Finally, an IMEX scheme of the first order is used for the circu-
lation [58]. Moreover, two different time steps are used: a finer one for the electrophysiology and
a larger one for both the activation, the mechanics and the circulation [59]. Finally, we employ
recently developed stabilization methods – related to the circulation and the fibers-stretch-rate
feedback – that are crucial to obtain a stable solution in a four-chamber simulation scenario [97,
98]. Concerning the linear systems arising from the discretization of the whole-heart EM problem
we use: the conjugate gradient for the electrophysiology and the GMRES method for both the
mechanics and the activation, both empowered by an algebraic multigrid (AMG) preconditioner.
Finally, we solve the non-linear saddle-point problem arising from the coupling between the me-
chanics and the circulation by means of a Newton algorithm using, at the algebraic level, the Schur
complement reduction [59, 77].

For further details about the numerical methods we use in the whole-heart EM model, we refer
to [58, 59, 77].
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Numerical methods for the fluid domain displacement problem After simulating the
whole-heart EM and reaching a limit cycle in terms of pressure and volumes, we extract the
solution from the last simulated heartbeat. We restrict this solution to the heart endocardium
and the endothelium of outflow tracts, obtaining N + 1 solutions defined on the boundary of the
fluid domain (d∂Ω

i , with i = 0, . . . , N). We project d∂Ω
i onto the CFD mesh with piecewise linear

interpolation, then solve the fluid domain displacement problem in Equation (1) to obtain the ALE
displacement d. We discretize the lifting problem in Equation (1) using FEs of order 1 (P1) and
the linear system arising from its discretization is preconditioned with an AMG preconditioner.
We solve the resulting linear system with the conjugate gradient method. The smoothing spline
approximation is computed independently for each mesh node, and the approximant is constructed
following the optimization procedure described in [99]. To compute the ALE velocity, we use BDF1
to discretize in time Equation (2).

Numerical methods for the CFD cardiac model We discretize Equation (3) in space using
FEs of order 1 for both velocity and pressure (P1 − P1). We employ the Variational Multiscale
- Large Eddy Simulation (VMS-LES) method to obtain a stable formulation of the NS-ALE-
RIIS equations discretized via equal order FE spaces. This also allows us to control instabilities
arising from the advection-dominated regime, and to model transition-to-turbulence in the LES
framework [16, 100, 101]. The VMS-LES formulation accounts for the ALE framework and the
RIIS modeling used for valves. For the complete formulation, we refer to [26].

For the time discretization, we consider a uniform partition of the temporal domain in Nt

subintervals (tn, tn+1] of uniform size ∆t, with n = 0, . . . , Nt − 1. We denote from here quantities
approximated at time tn with the subscript n, e.g. un ≈ u(tn). We advance the problem in time
by means of BDF1. To reduce the computational burden of the numerical simulations, we use a
semi-implicit treatment of the nonlinearities, as done in [100]. The overall numerical scheme for
the fluid dynamics problem is detailed in [26].

Since Neumann boundary conditions may give rise to instability phenomena in case of inflow,
we set backflow stabilization on all the Neumann boundaries in the inertial form presented in [102].

The linear system arising from the discretization of Equation (3) is preconditioned with the
aSIMPLE preconditioner [103], and each of its blocks is preconditioned with an AMG precondi-
tioner. The linear system is then solved at each time step by the GMRES method.

Numerical method for the 0D circulation model We solve the system of ODEs of the
circulation problem with an IMEX method of the first order. The time-step size ∆t employed for
its numerical discretization is the same used for the BDF advancing scheme in the 3D problem.

Numerical scheme for the coupled CFD problem After initialization, for each temporal
step of the CFD problem, we update the position of valve leaflets and we compute the ALE velocity.
At every time step, we solve the 3D and 0D subproblems independently. First, we solve the 0D open
circulation problem using QI

n as input (i.e. the flowrates computed in the 3D model at previous
timestep, namely QSYS

VEN,n, QPV,n, Q
PUL
VEN,n, QAV,n). Then, from the solution of the circulation, we

compute the pressures pIn+1 at the interfaces and solve the fluid dynamics problem providing those
pressures as Neumann boundary conditions at inlet and outlet sections. Finally, we compute the
interface data from the 3D to the 0D model, i.e. QI

n+1. This approach treats the coupling between
the 3D and 0D subproblems in a segregated and explicit way.
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Figure 4: Graphical representation of the overall algorithm to simulate the whole-heart hemody-
namics driven by the EM model.

4 Numerical results

In this section, we present the numerical results using the whole-heart fluid dynamics model. In
Section 4.1, we introduce the computational setting of the whole-heart EM and CFD simulations.
Section 4.2 is devoted to the calibration of the RDQ20 activation model to produce physiological
flowrates in the EM simulation. The physiological results of the overall computational model
are presented in Section 4.3. Finally, we apply the multiphysics computational model to the
pathological case of LBBB in Section 4.4.

4.1 Computational setup

We consider a realistic whole-heart geometry provided by the Zygote solid 3D heart model [104],
an anatomically CAD model representing an average healthy human heart reconstructed from
high-resolution computer tomography scan data. We generate whole-heart tetrahedral meshes for
the EM and CFD problems that we report in Figure 5. Meshes are generated with vmtk [105]
using the methods and tools discussed in [26, 58, 106]. Details on the meshes for the EM and CFD
simulations are provided in Table 1. The valve leaflets are thin structures that we characterize,
in the context of the RIIS method, by small values of εk. To correctly capture the immersed
surfaces, we refine the CFD mesh close to the valve regions, as shown in Figure 5c. Specifically,
following [71], we choose hk such that εk ≥ 1.5hk, where hk is the minimum mesh size of the fluid
mesh in the valve region.

We carry out EM and CFD simulations in lifex [107, 108]2, a high-performance C++ FE library
developed within the iHEART project3, mainly focused on cardiac simulations and based on the
deal.II finite element core [109–111].

Numerical simulations are run in parallel on the GALILEO100 supercomputer4 at the CINECA

2https://lifex.gitlab.io/
3iHEART - An Integrated Heart model for the simulation of the cardiac function, European Research Council

(ERC) grant agreement No 740132, P.I. A. Quarteroni, 2017-2023
4528 computing nodes each 2 x CPU Intel CascadeLake 8260, with 24 cores each, 2.4 GHz, 384GB RAM. See

https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide for technical specifi-
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Figure 5: Tetrahedral meshes used in the computational model: a) mesh for the EM simulation,
b) mesh for the CFD simulation, c) mesh refinement on the valves region of the CFD mesh.

Simulation Mesh size [mm] Cells Points Physics DOFs ∆t [s]
min avg max

EM 0.860 2.97 5.34 180 472 46 915
Electrophysiology 310 505 5 · 10−5

Mechanics 140 745 10−3

Circulation - 10−3

CFD 0.210 1.04 3.82 3 892 584 652 204
Fluid dynamics 2 608 816 10−4

Circulation - 10−4

Table 1: Setup of whole-heart EM and CFD simulations (mesh details and time step sizes).

supercomputing center, using 240 and 480 cores for the EM and CFD simulations, respectively.
The computational time to carry out a single heartbeat is about 1 hour and 20 minutes for the
EM simulation and 56 hours for the CFD simulation.

For the parameters of the EM model, we use the same values as in [58] with some minor
differences reported in B. As we better discuss in Section 4.2, a huge difference in terms of setup of
the EM simulation between [58] and the present work consists in the calibration of the activation
model to compute physiological blood flowrates. We simulate 20 heartbeats of the whole-heart
EM, and we report numerical results related to the last heartbeat, after verifying that the solution
is sufficiently close to a periodic limit cycle (in terms of pressure and volume transients). We
consider an heartbeat period of THB = 0.8 s. We pick the last simulated EM heartbeat as input
displacement for the CFD simulation. We set as initial condition for the velocity u0 = 0. The

cations.
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Figure 6: Cardiac valves in their open and closed configurations coloured according to displacement
magnitude. Valves geometry are provided by Zygote [104], and we define displacement field aimed
at closing and opening the leaflets.

initial state of the circulation model (for the coupling with the fluid dynamics) is taken equal
to the values reached at the beginning of the last heartbeat in the EM simulation. Moreover,
as detailed in B, all the values of the parameters involved in the circulation model are the same
for the EM and the fluid dynamics simulations. The physical parameters for blood are density
ρ = 1.06 · 103 kg/m3 and dynamic viscosity µ = 3.5 · 10−3 kg/(m s). We simulate two heart cycles,
and we report the solution on the second cycle to remove the consequences of an unphysical null
initial condition. For the numerical results visualization (for both EM and CFD), we shift the time
domain in (0, THB).

The Zygote cardiac valves [104] are provided in their open configuration (TV, MV) and closed
configuration (PV, AV). Thus, we define displacement fields aimed at closing and opening their
leaflets, based on signed-distance functions and the solution of Laplace-Beltrami problems [26,
106]. In Figure 6, we report the valves in their open and closed configurations, colored according
to the leaflets’ displacement magnitude. We open and close the valves instantaneously (i.e. in one
time step) at the times reported in Table 2. These times are chosen by selecting the initial and
final times of the isovolumetric phases. The values we choose for εk, reported in Table 2, allow
to have a physiological representation of the valve leaflet. Indeed, we choose εk by averaging the
values of the leaflet thicknesses reported in [112]. Furthermore, the valve resistances values Rk are
reported in Table 2. We found that the condition number of the linear system associated to the
FE discretization of the fluid dynamics problem becomes larger as the ratio Rk/εk increases. Thus,
to keep contained the computational cost of the CFD simulation, we choose as Rk the minimum
value that guarantees impervious valves.
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MV AV TV PV

opening time [s] 0.710 0.262 0.700 0.279
closing time [s] 0.208 0.666 0.194 0.677

Rk [kg/m/s] 104 104 104 104

εk [mm] 0.68 0.67 0.77 0.52

Table 2: Setup of the RIIS method to model cardiac valves.

4.2 Calibration of the RDQ20 activation model to achieve physiologi-
cal flows

Among the different components at the basis of cardiac EM simulations, the model describing the
active force generation at the microscale plays a pivotal role on the solution. Indeed, not only
the amount of force the muscle develops depends on it, but also its temporal distribution over the
heartbeat, i.e., the kinetics of contraction and relaxation. Muscle contraction, in turn, determines
the blood flow through the valves. Moreover, since the electromechanical displacement drives
the fluid dynamics model, the same flows are then obtained in the CFD simulation. Therefore,
special care must be devoted here to the choice and calibration of the activation model, in order
to faithfully capture blood flowrates and, consequently, blood velocities.

For the above reasons, we chose to use the RDQ20 model [75], that is an active force model
with high biophysical fidelity and that is able to reproduce the main features of the experimentally
observed behaviors. The RDQ20 model is based on a detailed description of the calcium-driven
regulation of the thin filament, with explicit representation of end-to-end cooperative interactions,
and a description of the attachment-detachment process of crossbridges, at the basis of the force-
velocity relationship. Thereby, the model is able to reproduce the main mechanisms of contractility
regulation, mediated by calcium, fiber strain and fiber strain-rate. In particular, the fiber strain-
rate feedback, which is responsible for the well-known force-velocity relationship, plays a central
role in the regulation of hemodynamic flows, as demonstrated in [58] and confirmed in the present
study.

On this basis, we refine the calibration of the RDQ20 model, with a particular care on fluxes
through semilunar valves obtained by means of the 0D model in the EM simulation. We employ as a
starting point the calibration used in [58], suitable for the coupling with the TTP06 ionic model [82]
(see Table 3, setting A). In Table 4, column A, we report a list of biomarkers obtained by using the
calibration A in the EM simulation. Although the biomarkers characterizing the overall cardiac
function (i.e. end-systolic and end-diastolic volume, stroke volume and ejection fraction) are within
reference ranges, the maximum blood flux across valves is significantly above the physiological
range. In other terms, even if the total ejected blood is physiological, the instantaneous flow peak
is too large. This would clearly have a strong negative impact on the results of fluid dynamics
simulations. For instance, an excessively high velocity through the valve may result in high pressure
gradients, and an overall incorrect stress distribution over valve leaflets and cardiac walls [113, 114].

To address this issue, we slow down the process of force generation, so that the tissue contrac-
tility is developed at a lower rate. More precisely, we reduce the association-dissociation rates of
troponin and tropomyosin of the RDQ20 model (i.e. Koff and Kbasic) by a factor 2. Moreover,
to compensate for the lower peak force caused by a slower kinetics, we increase the crossbridge
level contractility (i.e. aXB). We consider three different levels of contractility, as reported in
Table 3, respectively in columns B, C and D. However, as we show in Table 4 and Figure 7, on
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Parameter A B C D E

Regulatory units dynamics
Q [−] 2 2 2 2 2

kd [µM] 0.36 0.36 0.36 0.36 0.36
αkd [µM/µm] -0.2083 -0.2083 -0.2083 -0.2083 -0.2083
µ [−] 10 10 10 10 10
γ [−] 30 30 30 30 30

Koff [1/s] 8 (*)4 (*)4 (*)4 (*)4
Kbasic [1/s] 4 (*)2 (*)2 (*)2 (*)2

Crossbridge dynamics (prescribed)
v0 [1/s] 2 2 2 2 (*)0.5
vmax [1/s] 8 8 8 8 (*)2

k̃2 [−] 66 66 66 66 66
µiso
0 [−] 0.22 0.22 0.22 0.22 0.22

Crossbridge dynamics (automatically calibrated)
r0 [1/s] 134.31 134.31 134.31 134.31 33.24
α [−] 25.184 25.184 25.184 25.184 24.93
µ0
fP

[1/s] 32.225 32.225 32.225 32.225 7.98
µ1
fP

[1/s] 0.768 0.768 0.768 0.768 0.192

Micro-macro upscaling
aXB [MPa] 1500.0 (*)1550.0 (*)2925.0 (*)5214.5 (*)1550.0

Table 3: Different calibrations of the RDQ20 activation model: A) calibration from [58]; B) C)
D) Reduced Koff , Kbasic and different levels of aXB; E) Reduced v0, vmax. Parameters that are
modified with respect to A are highlighted by the symbol (*). We remark that the parameters
r0, α, µ

0
fP

and µ1
fP

are automatically calibrated from the four quantities v0, vmax, k̃2 and µiso
0 (for

furhter details, see [75]); therefore, the symbol (*) is not reported for these four parameters. For
the description of each parameter, we refer to the original paper of the RDQ20 model [75].
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Biomarker Physiological values A B C D E

ESVLV [mL] 35 to 80 [115] 53.8 66.7 53.5 45.9 66.4
ESVRV [mL] 69 ± 22 [116] 58.0 79.8 65.3 56.0 72.3
EDVLV [mL] 126 to 208 [115] 150 128 (↓)108 (↓)87.9 151
EDVRV [mL] 144 ± 23 [117] 153 152 134 119 159
SVLV [mL] 81 to 137 [115] 96.3 (↓)61.5 (↓)54.9 (↓)42.0 84.9
SVRV [mL] 94 ± 15 [117] 95.4 (↓)72.3 (↓)69.1 (↓)63.2 87.1
EFLV [%] 49 to 73 [118] 64.2 (↓)48.0 50.2 (↓)47.8 56.1
EFRV [%] 53 ± 6 [119] (↑)62.2 47.5 51.4 53.0 54.6
Qmax

AV [mL/s] 427 ± 129 [120] (↑)697 327 347 304 399
Qmax

PV [mL/s] 427 ± 129 [120]† (↑)756 397 427 443 478
pmax
LV [mmHg] 119 ± 13 [121] (↑)154 (↓)99.5 (↓)93.2 (↓)80.7 120

pmax
RV [mmHg] 35 ± 11 [122] 37.2 34.9 38.2 41.6 32.2

Table 4: Effects of different calibrations of the RDQ20 activation model on mechanics and hemo-
dynamics biomarkers. Biomarkers highlighted by the symbols (↑) and (↓) lie outside the reference
ranges, denoting values too large or too small, respectively, compared with reference ranges. †:
for the maximum PV flowrate, in absence of clinical ranges from literature, we consider the same
normal values of the AV flowrate. Each column corresponds to a different calibration as detailed
in Table 3.

Figure 7: pV loops of RV and LV obtained with different calibrations of the RDQ20 activation
model. Each line corresponds to a different calibration as detailed in Table 3.
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(a) Force-velocity relation (b) reduced v0 (c) reduced vmax

Figure 8: Representation of the well-known force-velocity relationship of muscle cells. The nor-
malized active tension Ta/T

iso
a , where T iso

a denotes the force in isometric conditions, is a decreasing
function of the shortening velocity v. As shown in the figure, vmax is the shortening velocity for
which the active tension reaches zero, while v0 is the slope of the curve in correspondence of the
isometric conditions (i.e. v = 0). (a) generic force-velocity relationship, (b) effect of reducing v0
(in grey, the curve from (a)), (c) effect of reducing vmax (in grey, the curve from (a)).

the one hand, we achieve the desired effect of reducing semilunar peak flows, thus bringing them
within the expected ranges. On the other hand, we compute significantly reduced stroke volume
and ejection fraction for both chambers, thus moving out of physiological ranges. Notice also that
this issue is also not resolved by adjusting the contractility. In fact, by raising aXB, not only the
state of contractility in systole is changed, but also in diastole, leading to a reduced end-diastolic
volume and, therefore, nullifying the effect of increased contractility, due to the Frank-Starling
mechanism. The three cases shown in Table 4 (B, C and D) are three illustrative cases out of the
many that we tested, but without being able to reduce peak flows within the expected ranges while
maintaining a physiological ejection fraction. The tests evidenced a paradigmatic short-blanket
problem, whereby just acting on kinetics and contractility it is not possible to lower the flows while
maintaining a regular ejection fraction. Evidently, another element must be taken into account.

Based on the results of [58], which showed that, by neglecting the fibers-stretch-rate feedback,
blood flows through the semilunar valves are significantly overestimated, we modified the calibra-
tion so as to, on the contrary, strengthen the effect of this feedback, but without changing either
the isometric force or the kinetics. Specifically, we acted in such a way as to steepen the force-
velocity relationship, the microscopic mechanism underlying the fibers-stretch-rate feedback, by
modifying the parameters governing cross-bridge dynamics. For this purpose, we took advantage
of the calibration technique illustrated in [75], by which the RDQ20 model can be tuned to achieve
a desired force-velocity relationship. Two features of the force-velocity relationship can be selected,
namely the maximum shortening velocity (vmax), that is the velocity corresponding to vanishing
active force, and the tangent to the curve under isometric conditions (v0). The geometric meaning
of the two quantities is illustrated in Figure 8.

Hence, starting from the B calibration, we modified the parameters to obtain a vmax and a v0
equal to one-fourth of the original ones (see Table 3, column E). As evidenced in Table 4, with the
setting E all biomarkers fall within physiological ranges (see also Figure 7). We believe that this
result can be explained precisely by the mechanism of fibers-stretch-rate feedback, whereby regions
of the tissue undergoing rapid shortening experience a decrease in developed force, thus promoting
a more homogeneous shortening in space and without significant spikes in time, with a resulting
viscous-like effect. In conclusion, blood flow is redistributed more evenly over the duration of the
ejection phase.

Based on the very good match with the reference values of the different biomarkers, in this
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work we use the calibration E as the baseline for EM simulations.

4.3 Heart physiology and validation against clinical biomarkers

Figure 9 shows the whole-heart EM displacement for a single, representative heartbeat, where
we highlight six different phases: isovolumetric contraction, ejection (peak and mid-deceleration),
isovolumetric relaxation, ventricular passive filling, and atrial contraction. As pointed out in [58],
the whole-heart EM model can correctly reproduce the cardiac physiological motion. Moreover,
as shown in Section 4.2, we found that, after a thorough calibration of the activation model,
our numerical results are consistent with normal values found in literature in terms of several
volumetric biomarkers.

In Figure 10, we report the volumes of the heart chambers and large arteries versus time, and
we highlight time instants in which valves open and close. In Figure 13, we report the volume
rendering of the velocity magnitude obtained with our EM-driven CFD simulation. We start our
fluid dynamics simulation at the end of ventricular diastole.

During the active atrial contraction (Figure 13a), we observe the blood flowing from atria
to ventricles, producing two high-speed jets in the MV and TV. This moment corresponds to
the A-wave, as shown in Figure 12. In order to assess whether our numerical simulation is cor-
rectly reproducing the physiological heart function, we compare the peak velocities through valves
with physiological ranges available in literature and acquired in healthy subjects. We report this
comparison in Table 5. During diastole, we obtain lower velocities in the TV compared to MV,
consistently with clinical measurements available in literature [38, 123].

During the isovolumetric contraction (Figure 13b), all valves are closed and the ventricular
volumes remain constant. We measure lower velocity values compared to filling and ejection
phases. Moreover, we found that the intraventricular pressure is not well defined and is prone to
oscillations. As a matter of fact, since we are using EM as unidirectional input of the CFD model,
the dynamic balance between hemodynamics and tissue mechanics is neglected. Furthermore, since
we are modeling the cardiac valves with the RIIS method, weakly imposing a kinematic condition
only, the dynamic balance is not fulfilled even between blood and valves. Thus, our computational
model cannot correctly capture the physiological pressure transient during this phase, instead
producing nonphysical and large oscillations. In Figure 11, we report the pressure transients in
time and, for visualization purposes, we ignore the isovolumetric phases from the plot (grey boxes).

The ejection phase (Figure 13c and Figure 13d) is characterized by the opening of semilunar
valves, the contraction of ventricles, and the blood flowing from the LV to the AO and from the
RV to the PT. We measured peak flow rates equal to 398.74 mL/s and 478.16 mL/s, in the AV
and PV, respectively, consistently with physiological values [120]. Moreover, as shown in Table 5,
we found that also maximum velocities between AV and PV and peak ventricular pressures during
ejection are always in physiological ranges.

During the isovolumetric relaxation, both the atrioventricular and semilunar valves are closed.
The velocities measured are low compared to those of the other phases of the heartbeat. Further-
more, as for the isovolumetric contraction, the computational model cannot reproduce the typical
pressure decrease occurring in this phase. On the contrary, large pressure oscillations arise.

During the ventricular passive filling, the blood flows from the pulmonary veins and the venae
cavae into the LA and RA, respectively. Moreover, the atrioventricular valves are open and high-
speed jets form between their leaflets. This moment corresponds to the E-wave of diastole (see
Figure 12). Consistently with clinical measurements, the computational model is able to correctly
reproduce the formation of the clockwise jet in the LV, redirecting the blood towards the outflow
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(a) t = 0.11 s (b) t = 0.25 s (c) t = 0.36 s

(d) t = 0.50 s (e) t = 0.70 s (f) t = 0.79 s

|dEM| [mm]

Figure 9: Whole heart deformed with EM displacement (with respect to the reference stress-
free configuration) and colored according to its magnitude for a single, representative heartbeat:
(a) active atrial contraction, (b) isovolumetric contraction, (c) ejection (peak), (d) ejection (mid-
deceleration), (e) isovolumetric relaxation, (f) passive ventricular filling.
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Figure 10: Volumes of RA, RV, PT (left) and LA, LV, AO (right) during a representative heartbeat.
Valves open and close, instantaneously, at the initial and final times of isovolumetric phases. We
report these times also in Table 2.

tract [124, 125]. Furthermore, from Table 5, we can observe that maximum velocity between MV
and TV leaflets are in the physiological ranges. Furthermore, we also report average atrial pressure
values and we found a general good agreement with reference data, even if left atrial pressure is
slightly larger than our reference.
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Biomarker In silico Physiological values

Peak MV velocity [m/s] 1.03 0.89 ± 0.15 [123]
Peak AV velocity [m/s] 1.21 1.07 ± 0.18 [126]
Peak TV velocity [m/s] 0.45 0.48 ± 0.11 [127]
Peak PV velocity [m/s] 1.15 0.80 to 1.20 [128]
Mean LA pressure [mmHg] 13.3 2 to 12 [129]
Peak LV pressure [mmHg] 111 119 ± 13 [121]
Mean RA pressure [mmHg] 6.33 0 to 8 [129]
Peak RV pressure [mmHg] 37.0 35 ± 11 [122]

Table 5: Fluid dynamics biomarkers obtained with the whole-heart CFD simulation (normal ranges
or mean ± standard deviation). In silico values are computed by averaging fluid properties in
spherical control volumes located between the valve leaflets (velocities) and in the heart chambers
(pressures).

Figure 11: Pressure computed in control volumes located in RA, RV, PT (left) and LA, LV,
AA (right) during a representative heartbeat. Isovolumetric phases are not considered, since the
intraventricular pressure is not well defined when both valves are closed.
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Figure 12: Velocity magnitudes computed in control volumes located between the valve leaflets:
TV, PV (left) and MV, AV (right).
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(a) t = 0.10 s (b) t = 0.24 s (c) t = 0.35 s

(d) t = 0.55 s (e) t = 0.70 s (f) t = 0.80 s

|u| [m/s]

Figure 13: Volume rendering of velocity magnitude in different frames during the cardiac cycle: (a)
diastolic a-wave peak, (b) isovolumetric contraction, (c) systolic peak, (d) mid systolic deceleration,
(e) isovolumetric relaxation, (f) diastolic a-wave peak.
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To better investigate blood flow patterns in the whole heart, we report the streamlines colored
according to velocity magnitude in different chambers in Figure 14. We compare our in silico
results with the MRI phase-velocity mapping visualization provided in Figure 1 of reference [125],
and we found a good accordance. Specifically, Figure 14a shows the rotation of the blood in the RA
as the chamber expands and the blood flows from the inferior and superior vena cava. Similarly,
on the left side, the blood flows from the pulmonary veins to the expanding LA producing collision
of blood jets and redirecting the flow towards the closed MV (see Figure 14b). During E-wave, as
we show in Figure 14c, asymmetric recirculation is observed: shear layers roll through MV leaflets
producing an O-vortex, as also seen in [1]. The counter-clockwise vortex under the posterior leaflet
quickly disappears, and the clockwise vortex becomes larger and larger producing a clockwise jet,
as described in [124], and clearly observed in Figure 14d.
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(a) Right atrium t = 0.6 s (b) Left atrium t = 0.6 s

|u| [m/s]

(c) Left ventricle t = 0.775 s (d) Left heart t = 0.8 s

|u| [m/s]

Figure 14: Streamlines colored according to velocity magnitude at different locations in the heart
at different times: (a) right atrium during ventricular systole, (b) let atrium during ventricular
systole, (c) clockwise and counter-clockwise vortices in the left ventricle during early diastole, (d)
formation of clockwise jet in the left ventricle.
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4.4 Application to a pathological scenario: Left Bundle Branch Block
effects on hemodynamics

In this section, we apply our multiphysics computational model to investigate the hemodynamic
consequences of the LBBB. This heart condition is commonly associated to an electrophysiological
abnormality; however, it implies a cascade of adverse events due to the interaction among different
physical processes. LBBB consists in a slow or even absent conduction through the left bundle
branch, causing a dyssynchronous contraction and relaxation of the left ventricle. Moreover, the
LV dyssynchrony may have profound consequences on the heart hemodynamics, influencing flow
patterns and, in turn, triggering heart remodeling [130, 131].

To simulate LBBB with our EM model, we deactivate the impulse sites in the LV and in the
septum (see Figure 15), so that the signal is generated by the SAN and the RVm sites solely. Our
modeling choice is consistent with the work of [132], where a severe case of LBBB is accounted for
by activating only one site in the RV free wall.

Figure 16 displays volumes and their derivatives with respect to time for left and right ventricles,
in both physiological and LBBB conditions. The electrical dyssynchrony between left and right
parts produces a delay in the LV ejection and filling stages. Differently, no significant differences
are observed in the RV volumes. Furthermore, compared to the physiological case (see Table 4)
and consistently with [130], we measured reduced ejection fractions both in the right (53.87%) and
left (55.39%) ventricles.

By means of our whole-heart EM driven CFD simulation, we can quantify how the pathology
affects the endocardial wall stress. Let τ(u) = 2µϵ(u) be the viscous stress tensor, we compute
the wall shear stress vector as

WSS(u) = τ(u)n− (τ(u)n · n)n on ∂Ω0 × (0, T ).

The time averaged wall shear stress (TAWSS) is then defined as

TAWSS(u) =
1

T

∫ T

0

|WSS(u)| dt on ∂Ω0.

Figure 17 shows the TAWSS in the right and left heart in physiological conditions and under LBBB.
We notice that the TAWSS distribution is almost unchanged for the right heart. Conversely, we
find that LBBB alters the wall shear stress in correspondence of the LV septum, suggesting the
potential occurrence of remodeling phenomena. In Figure 18, we report the minimum, maximum
and average WSS in the LV septum against time, for the physiological and LBBB simulations.
During the ejection, the WSS values are similar, while significant differences are present during
the filling phase. As a matter of fact, under LBBB, the space-averaged WSS peak is 27.4% higher
than the physiological case (see Figure 18, right). This is consistent with the work of Eriksson
et al. (2017), where they observed, by means of 4Dflow MRI data, that LV dyssynchronous
motion influences blood flow patterns during diastole, contributing to the development of cardiac
remodeling [131].
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(a) physiological (b) LBBB

Activation time [ms]

Figure 15: Activation maps and impulse sites (yellow spheres) in EM simulations; (a) physiological;
(b) LBBB.

Figure 16: Ventricular volumes and ventricular volume derivatives for physiological and LBBB
simulations.
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(a) physiological, RH (b) LBBB, RH (c) physiological, LH (d) LBBB, LH

TAWSS [Pa]

Figure 17: TAWSS of the whole heart in physiological and pathological conditions for the LH and
RH. Results obtained with whole-heart EM-driven CFD simulations, the left and right parts are
separated for visualization purposes. The largest differences are observed in the LV septum, as
highlighted by the black arrow.

Figure 18: WSS in the LV septum over time. Maximum, average and minimum in physiological
conditions (left); maximum, average and minimum in LBBB conditions (center); comparison be-
tween physiological and pathological conditions in terms of average values (right). The WSS is
computed in the red portion shown on the right. In terms of maximum values, the pathological
peak is 12.7% larger than the physiological case (cf. left and center figures). The average WSS
peak increases of 27.4% (right figure).
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5 Limitations and further developments

We discuss some limitations of our study. The computational model introduced cannot fully
represent the isovolumetric phases in terms of pressure. Indeed, when both valves are closed
and the ventricles are contracting/relaxing at constant volumes, the pressure is not well-defined,
and thus prone to spurious oscillations. This is due to the fact that we are using kinematic
conditions only in all the ventricular boundaries. Indeed, we prescribe the EM displacement on
the endocardium and endothelium, and we model valves with the RIIS method using a penalty-
based kinematic condition. The oscillatory pressure during such phases does not influence the
velocity field. However, it prevents from using the simulated pressure values to choose when to
open and close the valves, forcing hence to prescribe a-priori opening and closing times. The use of
bidirectionally coupled FSI models for the blood-myocardium or blood-valve systems (or for both
of them) may allow to correctly capture the pressure transient during these phases, as seen for
instance in [42] where a fully-coupled electro-mechano-fluid of the heart is considered.

Moreover, we noticed that the ejection phase is too slow and the ventricular passive filling too
fast, if compared with medical literature values. Consequently, E-wave and A-wave are character-
ized by comparable amplitudes, whereas the EA ratio should be approximately equal to 1.30 ±
0.570 [123]. In this respect, we believe that the use of ionic models with a more realistic decrease
of calcium concentration is essential to better capture these phenomena.

Finally, we applied the computational model to a realistic, templated heart geometry. In order
to move towards the realization of whole-heart digital twins, further developments should involve
patient-specific cardiac simulations, accompanied with a stringent process of data assimilation,
model validation and uncertainty quantification.

6 Conclusions

In this paper, we introduced a computational model for the hemodynamics simulation of the whole
human heart accounting for the main features affecting the intracardiac flows. We considered a
realistic whole-heart geometry, and we employed a four-chamber 3D-0D electromechanical model
to provide the displacement as input to the cardiac CFD model. We modelled the effect of cardiac
valves in the fluid via a resistive immersed method and we accounted for transition-to-turbulence
regime through the VMS-LES method. Moreover, for the first time, we coupled the 3D CFD
model of the whole heart to the surrounding closed-loop circulation, to get a geometric multiscale
3D-0D hemodynamic model of the entire cardiovascular system. We solved our multiphysics and
multiscale computational model using our in-house finite element library lifex.

We introduced a calibration of the activation model, driving the electromechanical simulation,
aimed at obtaining physiological realistic flowrates, and consequently blood velocities, in the CFD
simulation. Our calibration highlights the effect of the parameters of the active force generation
model, associated to the microscopic features of its kinematics and of the force-velocity relationship,
on the macroscopic heartbeat indicators.

We carried out EM-driven CFD simulation on a realistic whole-heart geometry and we showed
that the computational model can correctly reproduce blood velocities and pressure traces when
we compare the results with clinical ranges from medical literature. Furthermore, we found that
the computational model captures typical blood flow patterns observed in MRI phase-velocity
mapping visualizations.

Finally, we applied the whole-heart model to simulate the pathological scenario of Left Bundle
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Branch Block: we correctly predicted the electrical delay, the consequent mechanical dyssynchrony,
a reduced ejection fraction, and an increasing wall shear stress in the left ventricular septum during
the filling stage. Overall, this study confirms that the interaction of different physics in a high-
fidelity integrated whole-heart model is essential for simulating the cardiac function, allowing to
faithfully capture pathological events occurring at different physical levels.

A The open 0D circulation model

The closed-loop lumped-parameter (0D) circulation model that we employ was proposed in [59]
and inspired by [51, 133]. To couple the 0D model to the 3D model of the heart, we follow the
same steps presented in [26]. Specifically, the open 0D system we get reads as follows: for any
t ∈ (0, T ),

dpSYS
AR (t)

dt
=

1

CSYS
AR

(
QAV(t)−QSYS

AR (t)
)
, (7a)

dpSYS
VEN(t)

dt
=

1

CSYS
VEN

(
QSYS

AR (t)−QSYS
VEN(t)

)
, (7b)

dpPUL
AR (t)

dt
=

1

CPUL
AR

(
QPV(t)−QPUL

AR (t)
)
, (7c)

dpPUL
VEN(t)

dt
=

1

CPUL
VEN

(
QPUL

AR (t)−QVEN, 3D
PUL (t)

)
, (7d)

dQSYS
AR (t)

dt
=

RSYS
AR

LSYS
AR

(
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AR (t)− pSYS
VEN(t)− pSYS

AR (t)
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)
, (7e)

dQPUL
AR (t)

dt
=

RPUL
AR

LPUL
AR

(
−QPUL
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VEN(t)− pPUL

AR (t)

RPUL
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)
, (7f)

solved with suitable initial conditions, and

pinLA(t) = pPUL
VEN(t)−RPUL

VENQ
PUL
VEN(t)− LPUL

VEN

dQPUL, 3D
VEN (t)

dt
, (8a)

pinRA(t) = pSYS
VEN(t)−RSYS

VENQ
SYS
VEN(t)− LSYS

VEN

dQSYS, 3D
VEN (t)

dt
. (8b)

B Setup of EM and CFD simulations

We report in this section the values of the parameters used in the EM and CFD simulations.
Table 6 reports the parameters for the circulation model used in the EM simulation. With

respect to the model presented in [58], we introduce two additional resistance elements (RSYS
upstream

and RPUL
upstream) and two inductance elements (LAV, LPV, see Figure 1c). They have the purpose

of making the 0D circulation model, which surrogates the fluid dynamics, as similar as possible
to the 3D CFD problem. For the same reason, the minimum resistances of the non-ideal diodes
representing the AV and PV are increased with respect to [58].
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The calibration of the RDQ20 activation model is extensively discussed in Section 4.2, and the
corresponding parameter values are reported in Table 3. As reference sarcomere length, we set
SL0 = 2.2 µm. For all other parameters in the EM model, we use the same values as those of the
baseline simulation of [58].

Table 7 reports the values of the initial circulation states for the CFD simulation. They are
taken equal to the values reached at the beginning of the last heartbeat in the EM simulation. All
resistance, capacitance and inductance parameters are the same as in the EM model (see Table 6).
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Parameter Value

Systemic arteries

RSYS
AR 0.48 mmHg s/mL

CSYS
AR 1.50 mL/mmHg

LSYS
AR 0.005 mmHg s2/mL

RSYS
upstream 0.048 mmHg s/mL
pSYS
AR, 0 83.9 mmHg

QSYS
AR, 0 0.0 mL/s

Systemic veins

RSYS
VEN 0.26 mmHg s/mL

CSYS
VEN 60 mL/mmHg

LSYS
VEN 5 · 10−4 mmHg s2/mL

pSYS
VEN, 0 35.5 mmHg

QSYS
VEN, 0 0.0 mL/s

Pulmonary arteries

RPUL
AR 0.032116 mmHg s/mL

CPUL
AR 10 mL/mmHg

LPUL
AR 0.0005 mmHg s2/mL

RPUL
upstream 0.0032116 mmHg s/mL
pPUL
AR, 0 14.90 mmHg

QPUL
AR, 0 0.0 mL/s

Pulmonary veins

RPUL
VEN 0.035684 mmHg s/mL

CPUL
VEN 16 mL/mmHg

LPUL
VEN 0.0005 mmHg s2/mL

pPUL
VEN, 0 13.58 mmHg

QPUL
VEN, 0 0.0 mL/s

Valves

RMV
min 0.0075 mmHg s/mL

RAV
min 0.0355 mmHg s/mL

RTV
min 0.0075 mmHg s/mL

RPV
min 0.0184 mmHg s/mL

RMV
max, R

AV
max, R

TV
max, R

PV
max 75006.2 mmHg s/mL

LAV, LPV 5 · 10−4 mmHg s2/mL

Table 6: Parameters and initial conditions of the circulation model used for the EM simulation.
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Parameter Value

Systemic arteries
pSYS
AR, 0 86.3480 mmHg

QSYS
AR, 0 109.6429 mL/s

Systemic veins
pSYS
VEN, 0 34.4923 mmHg

QSYS
VEN, 0 112.9209 mL/s

Pulmonary arteries
pPUL
AR, 0 22.2310 mmHg

QPUL
AR, 0 83.2132 mL/s

Pulmonary veins
pPUL
VEN, 0 19.5813 mmHg

QPUL
VEN, 0 262.6397 mL/s

Table 7: Initial states of the circulation model for the CFD simulation. The values are equal to
those of the circulation state variables at the beginning of the last heartbeat in the EM simulation.
All remaining circulation parameters (resistances, capacitances, inductances) are the same as in
the EM model (see Table 6).
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