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Abstract

We present a new algorithm to design lightweight cellular materi-
als with required properties in a multi-physics context. In particular,
we focus on a thermo-mechanical setting, by promoting the design of
unit cells characterized both by an isotropic and an anisotropic be-
haviour with respect to mechanical and thermal requirements. The
proposed procedure generalizes microSIMPATY algorithm to a multi-
physics framework, by preserving all the good properties of the refer-
ence design methodology. The resulting layouts exhibit non-standard
topologies and are characterized by very sharp contours, thus limiting
the post-processing before manufacturing. The new cellular materials
are compared with the state-of-art in engineering practice in terms of
thermo-mechanical properties, thus highlighting the good performance
of the new layouts which, in some cases, outperform the consolidated
choices.

1 Introduction

Cellular materials represent an effective solution for structural applications
where conventional monolithic materials fail to satisfy the design constraints
[1]. The fast advancements in additive manufacturing technologies, experi-
enced in the last years, have further amplified the interest towards metama-
terials. In addition, the possibility to employ a large variety of bulk mate-
rials in manufacturing processes (e.g., metals, polymers, ceramics [2, 3, 4])
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has enabled the design of new metamaterials, featuring innovative combi-
nations of physical effective properties. The possibility to blend different
materials in order to reach diverse objectives proved to have a great im-
pact in all the contexts where multi-functionality is required. For example,
in [5, 6, 7, 8], biocompatible 3D-printed metal bone implants promoting bone
ingrowth are proposed by properly tailoring the material microstructure in
order to reproduce the elastic modulus and the permeability of the human
bone. Other applications range from thermal-cloaking systems fitly com-
bining microstructure geometry and orientation [9, 10] to lattice-based heat
exchangers, where good thermal conductivity and convection properties are
exploited to enhance the devices’ performance [11, 12].

From a modeling viewpoint, the proposal of innovative multi-functional
cellular materials can benefit from the most recent advancements in topology
optimization [13], properly combined with direct and inverse homogenization
processes [14, 15, 16]. Several optimization approaches can be exploited in
the context of metamaterial design. The layout of the employed microstruc-
tures can be selected a priori, starting from consolidated dictionaries of unit
cells [16, 17, 18, 19, 20, 21], or designed from scratch to match the expected
effective properties [22, 23, 24, 25, 26, 27, 28]. In this context, a single-
or a multi-objective topology optimization at the microscale can drive the
design of new unit cells matching target properties at the macroscale, po-
tentially in a multi-physics framework. For instance, the optimization of
homogenized elastic properties is tackled in [29, 30, 31] with the aim of
maximizing the bulk (or shear) modulus. To this aim, the authors control
specific components of the homogenized elastic tensor or resort to the min-
imization of the compliance of a given structural part. Other works focus
on a multi-physics optimization (for instance, by considering elastic, ther-
mal and electrical properties) by providing microstructures optimized with
respect to diverse objectives and physics [32, 33, 34, 35].

Nevertheless, it is well-known that standard topology optimization tech-
niques suffer from typical issues that may compromise the effective perfor-
mance and manufacturability of the new layouts. Among the most recurrent,
we mention the possible presence of intermediate densities, the non-smooth
contours of the final design and the generation of unit cells which turn out
to be unprintable since presenting too thin struts. All these drawbacks are
strictly related to the selected computational grid: a coarse mesh promotes
jagged boundaries and a diffused void/material interface; vice versa, an ex-
tremely fine mesh leads to an non affordable computational effort and fosters
the generation of too complex structures. Filtering offers a possible remedy
to address all these concerns, by alternating smoothing with sharpening
phases to be properly tuned. Such a tuning is not a trivial task and may
often lead to non-optimal design solutions [33, 13, 36].
The selection of a computational mesh customized to the design problem
has been proved to be instrumental in order to limit the main issues of
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topology optimization. For instance, in [37], the combination of a stan-
dard density-based method for topology optimization with an anisotropic
mesh adaptation procedure has been used to get rid of intermediate densi-
ties, irregular boundaries and thin struts in the design of structures at the
macroscale. The proposed algorithm, named SIMPATY (SIMP with mesh
AdaptiviTY), is based on a robust mathematical tool, namely an a posteriori
estimator for the discretization error, and leads to final designs character-
ized by reliable mechanical properties as well as by free-form features. The
same procedure has been successfully exploited at the microscale, with the
proposal of the microSIMPATY algorithm [26]. So far, this procedure has
been used for the design of unit cells with optimized mechanical properties
in a linear elasticity setting [27, 38].

In this work, we propose a new pipeline for the design of new cellular ma-
terials, by extending the microSIMPATY algorithm to a multi-physics con-
text. The objective is to obtain lightweight metamaterials with prescribed
requirements on the elastic and thermal conductivity properties, character-
ized by a ready-to-print topology. The design strategy here developed is
confined to a 2D setting and has to be meant as a proof-of-concept, prelim-
inary to a 3D implementation. However, to corroborate the effectiveness of
the proposed methodology, we perform a cross-comparison between the new
cells and the standard ones in thermo-mechanical applications.

The paper is organized as follows. Section 2 represents the core of the
paper. It provides the physical problem constraining the optimization pro-
cess, the main theoretical tools to perform the optimization and formal-
izes the multi-physics design procedure in the MultiP-microSIMPATY algo-
rithm. Three design cases are considered in Section 3 to challenge MultiP-
microSIMPATY algorithm onto diverse multi-physics scenarios. Section 4
further analyzes the results in the previous section by comparing the new
designs with the state-of-the-art. Finally, Section 5 outlines the most re-
markable contributions of the work together with some future perspectives.

2 Methods

In this paper, we refer to a multi-physics setting, where the standard linear
elasticity equation

−∇ · σ(u) = f in Ω ⊂ R2 (1)

is combined with the thermal conduction problem

−∇ · q(θ) = h in Ω ⊂ R2. (2)
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The elasticity model is characterized by the stress tensor

σ(u) =

σ11(u)σ22(u)
σ12(u)

 =

E1111 E1122 E1112

E2211 E2222 E2212

E1211 E1222 E1212


 ε11(u)
ε22(u)
2ε12(u)


= E ε(u),

(3)

and by the force f exerted on the body, where u = [u1, u2]
T is the displace-

ment field, ε(u) = (∇u + ∇uT )/2 is the small displacement strain tensor,
and E is the stiffness tensor characterizing the considered solid material.
When dealing with homogeneous isotropic materials, tensor E depends on
the Lamé coefficients, λ and µ, functions of the Young modulus E and the
Poisson ratio ν [39].

The thermal model (2) is identified by the heat flux,

q(θ) =

[
q1(θ)
q2(θ)

]
=

[
k11 k12
k21 k22

]
∂θ

∂x1

∂θ

∂x2

 = k ∇θ, (4)

with θ the temperature scalar field and k the conductivity tensor of the
solid material, and by the energy generation term h. In particular, the
diagonal entries in k represent the material conductivities, while the off-
diagonal terms are null.
Equations (1) and (2) are completed by suitable conditions which model the
physical configuration along the boundary ∂Ω of the design domain Ω.
In standard structural optimization at the macroscale, equations (1)-(2)
work as constraints, after being properly modified to include a so-called
design variable (we refer to function ρ in the next section), possibly combined
with additional design requirements.

Vice versa, when the optimization is applied to the microscale, it is
crucial to properly transfer the physical characterization of the micro- to
the macroscale, in order to make this two-scale computation feasible. In
such a direction, direct and inverse homogenization represent widespread
solutions [40, 41, 42, 14]. The direct approach incorporates the microscopic
effects into a homogenized macroscopic model, for instance, by means of
an asymptotic expansion of the primal variable in terms of microscopic field
fluctuations. As a consequence, the microscopic behaviour is known, whereas
we have to identify the (homogenized) macroscopic characterization. In
practice, this leads to modify the definition of the stress tensor and of the
heat flux as

σH(u) = EH ε(u), qH(θ) = kH ∇θ,

respectively where the homogenized stiffness tensor, EH , and the homoge-
nized thermal conductivity tensor, kH , include the effects of the microscale.
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On the contrary, inverse homogenization starts from desired macroscopic
physical properties and designs the microscale in order to match such fea-
tures, thus swapping the role played by known and unknown scales with
respect to the direct homogenization, as detailed in the next section.

2.1 Inverse homogenization

Inverse homogenization is the procedure which allows us to design mi-
crostructures with prescribed properties at the macroscale. The required fea-
tures are mathematically commuted into a goal functional J and into suit-
able constraints driving a topology optimization process [26, 38, 27, 43, 44].
In particular, the optimization problem we are interested in reads

min
ρ∈L∞(Y,[0,1])

J (z(ρ), ρ) :

aρ
(
z(ρ), w

)
= Fρ(w) ∀w ∈ W

LB ≤ C(z(ρ), ρ) ≤ UB.
(5)

The material distribution in the unit cell Y at the micro-scale is modeled
by means of the auxiliary scalar field ρ that represents the relative material
density, where it is assumed that ρ = 1 labels the material, while ρ =
0 identifies the void. However, since density ρ ∈ L∞ (Y, [0, 1]) can take
all the values in [0, 1], it is standard to penalize the intermediate values
(i.e., intermediate material densities) that are not physically consistent. To
this aim, we resort to the SIMP method [13]. In particular, in a linear
elasticity setting, SIMP modifies the reference state equations by weighting
the constitutive laws with a suitable power ρp of the density.

The first constraint in (5) models the physics of the problem. It coincides
with the weak form of the state equation modified by the density function
(subscript ρ takes into account such a dependence), set in a suitable function
space W [45]. The box inequality in (5) drives the optimization process
according to specified design and physical requirements, where vector C
includes the quantities to be controlled through the corresponding lower
and upper bounds, LB a UB.

In the analysis below, we pick the objective functional J as

M(ρ) =

∫
Y
ρ dY (6)

since we are interested in minimizing the total mass, M, of the cellular
structure, i.e., to design lightweight materials.
In the context of the design of cellular materials with prescribed mechanical
response, it is customary to choose as weighed state equation the elastic
model at the microscale

aE,ij
ρ

(
u∗,ij(ρ),v

)
=

1

|Y |

∫
Y
ρp σ(u∗,ij) : ε(v)dY

=
1

|Y |

∫
Y
ρp σ(u0,ij) : ε(v)dY = FE,ij

ρ (v),
(7)
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where u∗,ij and v belong to the space U2
# = [H1

⟳(Y )]2 of theH1(Y )-functions
satisfying periodic boundary conditions, and ij ∈ I = {11, 22, 12}. Ac-
cording to a standard homogenization procedure, these equations model
the Y -periodic displacement field fluctuations, u∗,ij , induced by the ref-
erence displacement fields, u0,ij , with u0,11 = [x, 0]T, u0,22 = [0, y]T and
u0,12 = [y, 0]T.
Since we are interested in a multi-physics inverse homogenization, we fur-
ther constrain the topology optimization process with an additional weighed
state equation. In particular, we consider the thermal conductivity model
at the microscale

ak,mρ (θ∗,m(ρ), v) =
1

|Y |

∫
Y
ρs q(θ∗,m) : ∇v dY

=
1

|Y |

∫
Y
ρs q(θ0,m) : ∇v dY = F k,m

ρ (v),
(8)

where θ∗,m and v ∈ U1
# = H1

⟳(Y ), and m ∈ J = {1, 2}, and where index
s plays the same role as p in (7). Analogously to (7), θ∗,m denotes the
temperature fluctuations associated with the reference temperature fields
θ0,m (namely, θ0,1 = x and θ0,2 = y).

The two problems at the microscale, (7) and (8), are instrumental to
define the homogenized elastic tensor, EH , and the homogenized thermal
conductivity tensor, kH , to be involved in the setting of the box constraints
in (5). The component-wise definition of EH and kH is

EH
ijkl =

1

|Y |

∫
Y
ρp
[
σ(u0,ij)− σ(u∗,ij(ρ))

]
:
[
ε(u0,kl)− ε(u∗,kl(ρ))

]
dY, (9)

kHmn =
1

|Y |

∫
Y
ρs
[
q(θ0,m)− q(θ∗,m(ρ))

]
:
[
∇θ0,n −∇θ∗,n(ρ)

]
dY, (10)

respectively, with ij, kl ∈ I and m,n ∈ J .
In particular, the two-sided inequality in (5) will be exploited to promote
diverse mechanical and thermal behaviours along the different spatial di-
rections. To this aim, we constrain the two ratios EH

2222/E
H
1111 and kH22/k

H
11

so that they vary in suitable ranges. This choice allows us to penalize the
mechanical and the thermal contributions in a different way along the two
directions, as shown in the numerical assessment. An additional two-sided
control is enforced on the first and the last diagonal terms, EH

1111 and EH
1212,

of the homogenized elastic tensor, as well as on the first diagonal term, kH11,
of the homogenized thermal conductivity tensor.

To sum up, the optimization setting we are led to deal with coincides
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with the following problem:

min
ρ∈L∞(Y,[0,1])

M(ρ) :



aE,ij
ρ

(
u∗,ij(ρ),v

)
= FE,ij

ρ (v)

∀v ∈ U2
#, ij ∈ I

ak,mρ

(
θ∗,m(ρ), v

)
= F k,m

ρ (v)

∀v ∈ U1
#,m ∈ J

Elow
1111 ≤ EH

1111 ≤ Eup
1111

Elow
1212 ≤ EH

1212 ≤ Eup
1212(

E2222

E1111

)low

≤ EH
2222

EH
1111

≤
(
E2222

E1111

)up

klow11 ≤ kH11 ≤ kup11(
k22
k11

)low

≤ kH22
kH11

≤
(
k22
k11

)up

ρmin ≤ ρ ≤ 1

(11)

where all the bound values, (·)low and (·)up, will be set according to the
application at hand. The last inequality in (11) is meant to ensure the well-
posedness of both the elasticity and the thermal problems (7) and (8), ρmin

being a suitable value in (0, 1) (see Section 3 for more details).

2.2 Discretization on anisotropic adapted meshes

With a view to the solution of problem (11), all the quantities involved in
the state equations, as well as in the constraints, have to be discretized on
a suitable tessellation of the unit cell Y . For this purpose, we resort to a
computational mesh Th = {K} customized to the problem at hand and char-
acterized by stretched elements (i.e., a so-called anisotropic adapted mesh).
Mesh Th is employed to discretize both the test and the trial functions in
the state equations, as well as the density function ρ, by means of a finite
element scheme [45].
The anisotropic reference setting is the one proposed in [46]. In particular,
the anisotropic features of each element K coincide with the lengths, λ1,K ,
λ2,K , and the directions, r1,K , r2,K , of the semi-axes of the ellipse circum-

scribed to K, through the standard affine map, TK : K̂ → K, between the
reference element K̂ and the triangle K.
Concerning the adaptation procedure, we resort to a metric-based approach
driven by an a posteriori estimator for the discretization error associated
with the density function ρ. Among the error estimators available in the
literature [47, 48], we refer to an a posteriori recovery-based error analysis.
Following the seminal work by O.C. Zienkewicz and J.Z. Zhu [49], we con-
trol the H1-seminorm of the discretization error on the density, eρ = ρ−ρh.
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The selection of such an estimator is motivated by the fact that the density
ρ exhibits strong gradients (i.e., large values for the H1-seminorm) across
the material-void interface. This feature will yield meshes whose elements
are crowded along the boundaries of the structure, thus promoting the de-
sign of very smooth layouts. To this aim, we exactly integrate the so-called
recovered error, E∇ = P (∇ρh)−∇ρh, namely,

|eρ|2H1(Y ) = ∥∇eρ∥2L2(Y ) =

∫
Y
|∇ρ−∇ρh|2 dY

≃ ∥E∇∥2L2(Y ) =

∫
Y
|P (∇ρh)−∇ρh|2dY,

(12)

where ρh denotes the finite element discretization of ρ in the space V r
h of

the piecewise polynomials of degree r ∈ N associated with Th. The operator
P : [V r−1

h ]2 → [V s
h ]

2 in (12), with s ∈ N , denotes the recovered gradient,
which, in general, provides a more accurate estimate of the exact gradient
∇ρ with respect to the discrete gradient ∇ρh. Several recipes are available
in the literature to define P [50, 51, 52, 53]. In particular, we select operator
P : [V 0

h ]
2 → [V 0

h ]
2 as the area-weighted average of ∇ρh over the patch of the

elements, ∆K = {T ∈ Th : T ∩K ̸= ∅}, associated with K, i.e., we opt for

P (∇ρh) (x) =
1

|∆K |
∑

T∈∆K

|T | ∇ρh
∣∣
T

∀x ∈ K, (13)

with |ω| the area of the generic domain ω ⊂ R2, where we have set the
degree of the finite element space for ρh to r = 1. Space V 1

h is also adopted
to discretize the components of the displacement vectors u∗,ij as well as the
temperature fields θ∗,m in (11), with ij ∈ I and m ∈ J .

According to [54, 55, 56], we here adopt the anisotropic generalization
of (12). This estimator essentially exploits the anisotropic counterpart of
the definition of the H1-seminorm [46], based on the symmetric semidefinite
positive matrix G∆K

, with entries[
G∆K

(∇g)
]
i,j

=
∑

T∈∆K

∫
T

∂g

∂xi

∂g

∂xj
dT i, j = 1, 2, (14)

with g ∈ H1(Y ), and where it is understood x1 = x and x2 = y. Thus, the
squared H1-seminorm |eρ|2H1(Y ) is evaluated by the (global) error estimator

η2 =
∑

K∈Th η
2
K , where

η2K =
1

λ1,Kλ2,K

2∑
i=1

λ2
i,K

(
rTi,K G∆K

(E∇) ri,K

)
, (15)

defines the local error estimator. The contribution between brackets coin-
cides with the projection of the squared L2-norm of the recovered error along
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the anisotropic directions, while the scaling factor (λ1,Kλ2,K)−1 guarantees
the consistency with the isotropic case (for more details, see [54]).

The new adapted mesh is generated after commuting the error estima-
tor ηK into a new mesh spacing (the metric), M, consisting of the triplet

{λadapt
1,K , λadapt

2,K , radapt1,K }, where the direction radapt2,K is automatically defined

being radapt1,K · radapt2,K = 0, for each element K ∈ Th. This operation is per-
formed by taking into account three different criteria, namely, (i) the mini-
mization of the mesh cardinality #Th; (ii) an accuracy requirement on the
discretization error |eρ|H1(Y ) (i.e, on the error estimator η), controlled up to
a user-defined tolerance TOL; (iii) the equidistribution of the error through-
out the mesh elements (i.e., η2K = TOL2/#Th). These three criteria lead us
to solve a constrained minimization problem on each triangle K ∈ Th. The
solution to this local optimization problem can be analytically derived, as
proved in [57], being

λadapt
1,K = g

−1/2
2

(
TOL2

2 #Th |∆̂K |

)1/2

, radapt1,K = g2,

λadapt
2,K = g

−1/2
1

(
TOL2

2 #Th |∆̂K |

)1/2

, radapt2,K = g1

(16)

where g1, g2 and g1, g2 are the eigenvalues and the eigenvectors of the scaled
matrix Ĝ∆K

(E∇) = G∆K
(E∇)/|∆K |, with g1 ≥ g2 > 0.

Finally, the metric M = {λadapt
1,K , λadapt

2,K , radapt1,K }K∈Th has to be changed into
a quantity associated with the vertices of Th, received as an input by the
selected mesh generator. A standard choice consists in an arithmetic mean
formula applied to the patch of elements associated with each vertex in
Th [55, 56].

The anisotropic mesh adaptation based on the metric (16) is customized
to a topology optimization problem in the algorithm SIMPATY, proposed in
[37]. This procedure has been successfully employed for the design of struc-
tures at the macroscale [37, 58, 59], as well as for the design of new metama-
terials with the proposal of algorithm microSIMPATY [60, 27]. Moreover, a
combination of topology optimization at the macro- and at the micro-scale
is carried out in [38]. In particular, a multiscale topology optimization pro-
cess is used for the design of orthotic devices for 3D printing manufacturing,
with the proposal of patient-specific innovative solutions.
It has been verified that the adoption of an adapted anisotropic mesh leads
to free-form layouts characterized by very smooth boundaries both at the
macro- and at the micro-scale, mitigating some of the well-known draw-
backs of standard topology optimization, such as the massive employment
of filtering, the staircase effect and the generation of too complex struc-
tures [33, 13, 36]. However, in [59] it has been observed that the presence
of deformed elements inside the structures makes the finite element analysis
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less reliable. To overcome this issue, the authors suggest a hybrid approach.
Thus, the mesh is kept isotropic, with a uniform diameter hiso in the full-
material regions, {x ∈ Y : ρh(x) > ρth} with ρth a user-defined threshold,
whereas the stretched triangles are preserved along the material-void in-
terface. Actually, these hybrid meshes ensure an effective balance between
smoothness of the structure and robust engineering performances. For this
reason, we resort to hybrid meshes in the sequel.

2.3 Multi-physics optimization algorithm

In this section we propose the multi-physics adaptive inverse homogenization
procedure, which generalizes the algorithm proposed in [60]. The discretiza-
tion of the state equations (1) and (2) is performed with the open-source
finite element solver FreeFEM [61], which provides the ideal environment to
implement an anisotropic mesh adaptation procedure in Section 2.2 through
the built-in mesh generator BAMG (Bidimensional Anisotropic Mesh Gen-
erator).

The developed multi-physics optimization procedure is listed in the pseu-
docode below.

Algorithm 1 MultiP-microSIMPATY

1: Input: CTOL, kmax, cl, cu, ρ0h, TOPT, IT, kfmax, τ , β, T 0
h , TOL, HYB

2: Set: k = 0, errC = 1+CTOL;

3: while errC > CTOL & k < kmax do

4: ρk+1h = optimize(J , C, cl, cu, G, ρkh, TOPT, IT);
5: if k < kfmax then

6: ρk+1h = helmholtz(ρk+1h , τ);

7: ρk+1h = heaviside(ρk+1h , β);

8: end if

9: T k+1
h = adapt(T k

h , ρ
k+1
h ,TOL, HYB);

10: errC =
∣∣#T k+1

h −#T k
h

∣∣ /#T k
h ;

11: k = k+1;

12: end while

13: Th = T k
h ;

14: ρh = ρkh;

15:

[
EH ,kH

]
= homogenize(ρh);

16: return Th, ρh, EH , kH

The main loop (lines 3-12) includes an optimization step, a filtering
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phase and the mesh adaptation. At each global iteration k, the optimization
problem is solved (line 4, function optimize) by taking into account all the
constraints on the components of the elastic and of the thermal conductivity
tensors in (11). To this aim, we use the interior point algorithm IPOPT [62],
although any other optimization tool can be selected [63]. IPOPT requires
as input the functional J to be minimized; the vector C gathering the con-
strained quantities in the optimization procedure; the two vectors cl and cu

of the lower and upper bounds for the components in C; the array G collect-
ing the derivative of the functional J and of the constraints C with respect
to ρ, computed by the adjoint Lagrangian approach (for more details, we
refer to [27]); the initial guess ρkh to start the optimization process; the accu-
racy TOPT for the minimization problem; the maximum number of iterations
IT to stop the optimization. In particular, in the numerical assessment of
Section 3, we set TOPT = 10−5, and IT = 100 for k = 0 and IT = 10 for
all the successive iterations. The higher value for IT for k = 0 takes into
account that the initial guess ρ0h can be completely arbitrary with respect
to the minimum to be reached. On the contrary, a smaller value for IT is
sufficient for k > 0, since the initial guess, ρkh, coincides with the output of
a previous optimization step.
Function optimize returns the density ρk+1h which is successively processed
by means of a Helmholtz and a Heaviside filters (lines 6-7, functions helmholtz
and heaviside) [64, 65]. The two filtering operations work in a comple-
mentary way. The Helmholtz partial differential equation is instrumental to
remove too thin features, although promoting intermediate densities along
the layout contour. In more detail, it consists of a low-pass filter based on
a diffusion kernel with radius τ ∈ R+. On the contrary, the Heaviside fil-
ter, coinciding with a β-dependent regularization of the Heaviside function
with β ∈ R+, penalizes the intermediate material densities, also due to the
Helmholtz filter, thus increasing the sharpness of the material/void inter-
face. The combined filtering take place for the first kfmax global iterations
only. This choice leads to start the mesh adaptation procedure with a den-
sity field which is free from too complex features, while exhibiting a clear
alternation between void and material. The filtering phase becomes redun-
dant when the optimization loop approaches the minimum, so that mesh
adaptation alone suffices to ensure well-defined structures. In the next sec-
tion, filtering parameters τ and β are set equal to 0.02 and 5 respectively,
while kfmax = 25.
The next step coincides with the mesh adaptation procedure detailed in
Section 2.2 and here represented by function adapt (line 9). The input pa-
rameter TOL establishes the accuracy of the error estimator η through the
predicted metric in (16). Parameter HYB is a boolean flag that, in correspon-
dence with the full material, switches the employment of an isotropic mesh
on or off.

The main loop is controlled by a check on the stagnation of the relative
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difference between the cardinality of two consecutive meshes (line 10), up to
a maximum number of global iterations kmax (line 3). The choices TOL =
10−5 and kmax= 100 are preserved throughout all the numerical assessment
below.

Algorithm MultiP-microSIMPATY returns the final adapted mesh Th,
the optimized density ρh, the homogenized elastic and conductivity tensors,
EH and kH , computed by function homogenize (line 15), based on (9) and
(10).

We remark that the procedure itemized in Algorithm 1 is fully general
and it can be applied in a straightforward way to different multi-physics
contexts after properly modifying the formulation in (11).

3 Results

We analyze three different cases of microstructure design according to (11).
In order to highlight the interplay between the different (thermal and me-
chanical) physics involved, we consider configurations where the thermal
conductivity and the elastic stiffness requirements act along different direc-
tions. For instance, a high shear stiffness combined with a high thermal
conductivity along the x-direction orient the material along two opposite
directions, with the prescription of a conflict configuration.

The whole verification below shares common choices for some physical
quantities and discretization parameters. In particular, the unit cell Y ⊂ R2

is identified with the unitary square, Y = (0, 1)2. Moreover, we set the
Young modulus, E, and the Poisson ratio, ν, to 1 and 0.3, respectively, and
we consider an isotropic solid material with unitary thermal conductivity
by setting k11 = k22 = 1. These choices allow us to obtain normalized
homogenized mechanical and thermal properties for the cellular structures.
Following [60], both the SIMP-powers, p and s, in (9) and (10) are chosen
equal to 4 to penalize intermediate densities.
Concerning the discretization frame, we choose a random density field, ρ0h as
the initial guess for the optimization process, defined on an initial structured
mesh characterized by 30 subdivisions per side, and with values ranging from
ρmin = 10−4 to 1 (see Figure 1 for an example). Finally, to ensure a reliable
finite element analysis, we resort to the hybrid mesh adaptation procedure
(HYB = 1 in function adapt). In particular, we choose the threshold value
ρth = 0.9 to manage the alternation between isotropic and anisotropic ele-
ments, and the isotropic tessellation is characterized by the uniform diameter
hiso = 0.03 (approximately 1/30 of the design domain dimension).

After the optimization, we perform a verification step to check the ac-
tual mechanical and thermal properties of the material yielded by a periodic
repetition of the optimized unit cell. To this aim, we use the Abaqus soft-
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Figure 1 – Initial guess ρ0h (left) and corresponding mesh T 0
h (right).

ware1. The layouts provided by Algorithm 1 are imported in Abaqus after a
thresholding which neglects the density smaller than 0.75. The obtained ge-
ometry is remeshed on a uniform isotropic triangular mesh with an average
size equal to 0.01, while the displacement and temperature fields are dis-
cretized with quadratic finite elements, completed with periodic boundary
conditions. The verification here performed can be considered as a prelimi-
nary step towards the integration of MultiP-microSIMPATY algorithm into
a common workflow for structural analysis.

3.1 Design case 1

The main goal of this first optimization process is to design a lightweight
unit cell characterized by isotropic mechanical homogenized properties and,
vice versa, anisotropic thermal homogenized features. This problem can be
cast in setting (11), after making the following choices for the constraints:

0.05 ≤ EH
1111 ≤ 0.08

0.055 ≤ EH
1212 ≤ 0.080

1 ≤ EH
2222

EH
1111

≤ 2

0.01 ≤ kH11 ≤ 1.00

0.00 ≤ kH22
kH11

≤ 0.58.

(17)

The isotropic mechanical behaviour and the anisotropic thermal properties
are enforced by the constraints in (17)3 and (17)5. In particular, we expect
ratios EH

2222/E
H
1111 and kH22/k

H
11 to coincide with the corresponding lower and

upper bounds, respectively. Moreover, since a control on the ratios does not
ensure EH

1111, E
H
2222, k

H
11, and kH22 to be in a physically admissible range of val-

ues, we further constrain the optimization through the box inequalities (17)1

1Abaqus, Dassault Systèmes Simulia Corp, United States.
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and (17)4. Finally, a control on the component EH
1212 of the homogenized

stiffness tensor closes the minimization problem, thus further restricting the
solution space.

For the values set for the input parameters, MultiP-microSIMPATY al-
gorithm converges in 51 global iterations. Figure 2 shows the layout and the
associated anisotropic adapted mesh at three different iterations.

Figure 2 – Design case 1: density field (top) and associated anisotropic
adapted mesh (bottom) for three different global iterations.

We remark that the final topology of the layout is already detected at the
first iteration, although the quality of the solution is improved throughout
the optimization process. In particular, at the first iteration (k = 1), we
observe a significant staircase effect together with the presence of intermedi-
ate densities along the micro-structure interface. At the end of the filtering
phase (k = 24), the jagged boundaries are fully smoothed, despite the in-
termediate densities still blur the design. The spreading effect along the
material/void interface is gradually reduced when switching off the filtering,
i.e., for k > 24, as shown by the last column in Figure 2. Thus, the final
optimized solution (k = 51) shows an extremely sharp transition from ma-
terial to void and smooth boundaries, which make the structure ready for
printing or manufacturing, with a limited need for post-processing.
Concerning the adapted mesh, we recognize the effect of the hybrid ap-
proach, which combines stretched elements to discretize the strong gradi-
ents of the density field, coarse anisotropic triangles outside the structure,
isotropic elements in correspondence with the material.

Additional quantitative information on the MultiP-microSIMPATY al-
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gorithm is provided by Table 1 and by the diagrams in Figure 3, which
show the evolution of the objective function and of the constrained quan-
tities (top), together with the trend of the mesh cardinality (bottom), over
the global iterations.

Notice that the values of the constraints have been normalized between
0 and 1 (see the highlighted area in the top panel of Figure 3). It is ev-
ident that the mass exhibits a completely different trend when compared
with the constrained quantities. The value of the objective function oscil-
lates with values between 0.325 and 0.475 over the first 35 iterations, and
eventually converges towards a stable phase. On the contrary, all the con-
strained quantities are characterized by mild oscillations. In particular, kH11
remains essentially constant over the whole optimization process. The plot
of the ratios EH

2222/E
H
1111 and kH22/k

H
11 confirms that the two inequalities are

in conflict so that the active constraints are the lower and upper bound,
respectively. Moreover, from the values in Table 1, it can be observed that
the stiffness component along the x-direction, EH

1111, reaches a value which
is about 25% lower than the corresponding cl. This can be ascribed to the
presence of very thin struts generated by the severe thresholding (ρh < 0.75)
applied before performing the analyses in Abaqus.

The evolution of the topology in Figure 2 is consistent with the trend
in Figure 3 (top panel). The topology does not essentially vary during
the optimization process, according to the almost constant trend of the

Table 1 – Design cases 1, 2, 3: values of the constraints and of the objective
functional computed with Abaqus software, together with the lower and the
upper bounds, cl and cu, involved in the optimization.

EH
1111 EH

1212
EH

2222

EH
1111

kH11
kH22
kH11

M

Design case 1

cu 0.080 0.080 2.000 1.000 0.580

c 0.038 0.056 1.299 0.199 0.566

cl 0.050 0.055 1.000 0.010 0.000
0.292

Design case 2

cu 0.350 0.150 2.000 1.000 2.000

c 0.250 0.086 0.299 0.317 0.597

cl 0.230 0.080 0.300 0.300 0.000
0.412

Design case 3

cu 0.150 0.100 1.100 0.400 1.100

c 0.151 0.083 1.074 0.260 1.002

cl 0.100 0.080 1.000 0.250 1.000
0.415
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Figure 3 – Design case 1: evolution of the objective functional M and of the
constraints ci (top); trend of the mesh cardinality #Th (bottom) throughout
the global iterations k.

Figure 4 – Design cases 1, 2, 3 (left-right): 3× 3-cell meta-material.

constraints. On the other hand, the highly oscillatory trend of M in the
first optimization stage is related to the effect of the smoothing and of the
sharpening operations which are confined to the first 24 iterations. From
k = 25, only the minimization process and the mesh adaptation contribute
to a mass variation, with less striking changes.

Finally, in Figure 4 (left) we show the 3× 3-cell material generated by a
periodic repetition of the optimized unit cell.
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Figure 5 – Design case 2: density field (top) and associated anisotropic
adapted mesh (bottom) for three different global iterations.

3.2 Design case 2

The second MultiP-microSIMPATY run aims at designing a microstructure
that provides high stiffness and thermal conductivity along the x-direction
and a high shear stiffness. As for the Design case 1, these requirements might
originate a set of conflicting constraints. In fact, the two former demands
are expected to orient the material along the x-direction, while the latter
requirement prescribes also the presence of material along the diagonal of
the cell Y , which could react by tension to shear loading. This design
setting is formalized by problem (11) when completed by the following set
of constraints: 

0.23 ≤ EH
1111 ≤ 0.35

0.08 ≤ EH
1212 ≤ 0.15

0.3 ≤ EH
2222

EH
1111

≤ 2.0

0.3 ≤ kH11 ≤ 1.0

0 ≤ kH22
kH11

≤ 2.

(18)

We highlight that the bounds for the stiffness tensor components to be
promoted, EH

1111 and EH
1212, are set by taking into account the mass mini-

mization goal, i.e., by keeping them considerably lower than 1.
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Algorithm 1 stops in 56 iterations due to mesh stagnation. Figure 5 gath-
ers the density field distribution together with the associated anisotropically
adapted computational mesh at iterations k = 5, 20, 56. At the fifth iter-
ation the cell presents very thin struts that are progressively erased by the
combined action of the Helmholtz and the Heaviside filters. For k = 20,
the topology essentially coincides with the final optimized one, although
the layout still exhibits intermediate density values along the boundaries.
The structure contours become sharper and sharper throughout the next
iterations when filtering is switched off and thanks to the mesh adaptation
procedure.

Concerning the final topology, we observe that most of the material is
aligned along the two main diagonals of Y . This guarantees high shear stiff-
ness, while ensuring a low stiffness along the y-direction, so that the lower
bound for EH

2222/E
H
1111 is reached. On the other side, the requirements on

EH
1111 and kH11 are taken into account by the two thinner struts along the

x-direction, which improve the corresponding stiffness and the thermal con-
ductivity. Figure 4 (center) provides a sketch of the metamaterial associated
with the optimized cell in a 3× 3 cellular pattern.

For a more quantitative characterization of the optimized structure in
terms of mass and reached constraints, we refer to Table 1. We notice that,
to address the conflict among the several requirements, the optimization
process pushes all the constrained quantities towards the lower bound of the
corresponding range, while increasing the mass of the structure if compared,
for instance, with the previous design case.

3.3 Design case 3

As a third design, we carry out the optimization of a microcell characterized
by similar stiffness and thermal conductivity along the x- and y-directions
and by a high shear stiffness. This leads to solve problem (11) when the
following constraints are enforced:

0.10 ≤ EH
1111 ≤ 0.15

0.08 ≤ EH
1212 ≤ 0.10

1.0 ≤ EH
2222

EH
1111

≤ 1.1

0.25 ≤ kH11 ≤ 0.40

1.0 ≤ kH22
kH11

≤ 1.1.

(19)

The limited range for the two ratios EH
2222/E

H
1111 and kH22/k

H
11 is consistent

with the request for comparable stiffness and thermal conductivities along
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the two directions, whereas the mass minimization goal justifies the tight
variation for the other tensors components.

MultiP-microSIMPATY algorithm resorts to 35 loops before satisfying
the stopping criterion. Figure 6 shows the density field and the mesh for
three different global iterations of the algorithm. As for the previous design
cases, thin features are removed by filtering during the first 24 iterations,
while intermediate densities are erased in the second part of the process by
the mesh adaptation procedure. As a consequence, the final micro-structure
exhibits very sharp density gradients, so that little post-processing has to
be applied. In the final layout, most of the material is allocated along the
two main diagonals of the domain, which ensures the required high shear
stiffness as well as the balance between stiffness and thermal conductivity
with respect to the horizontal and vertical directions.

Figure 6 – Design case 3: density field (top) and associated anisotropic
adapted mesh (bottom) for three different global iterations.

Table 1 offers some additional quantitative information regarding the
optimized structure. All the box constraints are satisfied (with a slight
violation for the component EH

1111), in the presence of a structure mass
comparable with the one obtained for the Design case 2 (about 40% with
respect to the full material configuration). We refer to Figure 4 (right) for
an example of the microcellular material associated with the optimized cell.
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4 Discussion of results

This section is meant to highlight the benefits led by MultiP-microSIMPATY
algorithm. To this aim, we compare the layouts provided by the proposed
methodology with unit cells available in engineering practice and with cel-
lular materials designed by a standard inverse homogenization procedure,
which does not exploit mesh adaptation.

4.1 Comparison with off-the-shelf designs

This first investigation is carried out by comparing each of the three designs
in the previous section with state-of-the-art unit cells in terms of mechanical
and thermal performance, after setting a reference value for the overall mass.
The quantities involved in such a comparison are the homogenized elastic
modulus, EH

x and EH
y , associated with the direction x and y, which coincide

with the inverse of the diagonal entries, CH
11 and CH

22, of the compliance
matrix CH = (EH)−1; the homogenized shear modulus, GH , equal to the
inverse of the third diagonal entry of matrix CH ; the homogenized thermal
conductivities, kH11 and kH22, along the x- and y-direction. The results of this
analysis are summarized in Table 2.

Concerning the Design case 1, we perform two comparisons. Since the
geometry provided by MultiP-microSIMPATY is similar to a square cell ro-
tated by 45◦, we choose simple squares (A and B) characterized by the same
rotation as state-of-the-art unit cells. The basic squares in layout A fully
couple mechanical and thermal features, thus excluding this cell for the pur-
pose addressed in the first design case. This justifies the selection of cell B
where the reinforcing horizontal strut mimics the very thin diagonal member
connecting the adjacent sides in the proposed layout (D1). From a structural
perspective, the horizontal strut in B increases the nodal connectivity and
reacts with tension/compression to a load applied along the x-axis. This fact
is confirmed by the non-isotropic elastic behaviour of the material (compare
the values EH

x and EH
y ). Regarding thermal conduction, the strut promotes

heat transfer along the horizontal direction, as highlighted by the discrep-
ancy between kH11 and kH22. In the optimized layout D1, the thin member
is instead slightly inclined and does not connect two opposite nodes. Thus,
the elastic modulus along the two directions is similar since the strut reacts
by bending to a load applied along the x-axis. Moreover, the thin member
promotes the heat transfer along the x-direction, thus decoupling the ratios
EH

y /EH
x and kH22/k

H
11.

The unit cell D2 has been designed to ensure high stiffness and conduc-
tivity along the x-direction, as well as a high shear modulus. As reference
layout, we consider a square cell characterized by a rectangular cavity. This
choice offers us a trivial solution to optimize stiffness and conductivity along
direction x. The optimization performed by MultiP-microSIMPATY is cor-
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Table 2 – Comparison between the MultiP-microSIMPATY optimized struc-
tures and off-the-shelf designs in terms of homogenized elastic and thermal
properties, for comparable volume fraction values.

EH
x EH

y GH kH11 kH22

Design case 1

D1 0.012 0.015 0.056 0.200 0.113

A 0.009 0.009 0.075 0.163 0.163

B 0.095 0.042 0.059 0.198 0.131

Design case 2

D2 0.126 0.039 0.082 0.317 0.126

C 0.341 0.116 0.002 0.432 0.125

Design case 3

D3 0.070 0.070 0.082 0.260 0.261

L 0.188 0.188 0.072 0.255 0.255

roborated by the values of GH . In fact, cell D2 is characterized by a shear
modulus which is approximately 40 times higher when compared with the
reference layout, although the values of EH

x and kH11 for cell D2 are, on
average, 30% lower with respect to cell C.

Finally, the design case D3 aims at ensuring equal elastic modulus and
conductivity along the x- and y-directions, as well as a high shear modulus.
The paradigm for an isotropic stretch-based lattice, namely the standard
triangular cell (L), is assumed as the off-the-shelf layout. A comparison
between the corresponding values in Table 2 shows a 15% increment in
the shear modulus of cell D3. In addition, both cells D3 and L exhibit
the requested isotropic behaviour in terms of the selected mechanical and
thermal properties.
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4.2 Comparison with standard inverse homogenization

This section is meant to verify the benefits led by mesh adaptation in the
context of multi-physics inverse homogenization, in accordance with the pre-
liminary remarks in Section 3.
To this aim, we carry out a comparison between MultiP-microSIMPATY
algorithm and a standard inverse homogenization procedure. This compari-
son is performed in terms of mass. We expect that the employment of mesh
adaptation leads to efficiently allocate the available material, thus promoting
the mass minimization. As a reference standard approach, we implement a
non-adaptive version of Algorithm 1, where the adaptation loop (lines 3-12)
is replaced by the single call

ρh = optimize(J̃ , C̃, cl, cu, G̃, ρ0h, TOPT, IT);

We refer to this variant of Algorithm 1 as to MultiP-microSIMP. In this
case, the optimization is performed on the filtered density, so that the goal
functional, the constraints and the associated derivatives are modified ac-
cordingly (this justifies the new notation Q → Q̃, with Q = J , C,G, where
Q̃ refers to quantities dependent on the filtered density). This choice is
recurrent in topology optimization [64, 65]. As far as all the parameters
required by the optimization are concerned, we preserve the same values
as in Sections 2.3, while the computational mesh coincides with a 50 × 50
structured mesh.

Figure 7 – Comparison between the optimized cells delivered by Mul-
tiP.microSIMP (top) and by MultiP-microSIMPATY (bottom) for the De-
sign cases 1, 2, 3 (from left to right).

Figure 7 compares the optimized layouts delivered by MultiP-microSIMP
(top) and MultiP-microSIMPATY (bottom) for the three design cases in
Section 3. The topologies characterizing the three cells vary when resort-
ing to mesh adaptation. In general, MultiP-microSIMPATY provides more
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complex layouts, which however are still manufacturable. The presence of
intermediate densities in the cells yielded by MultiP-microSIMP is high-
ligthed by the blurred structure contours, promoted by the massive employ-
ment of filtering. Table 3 quantitatively assesses the optimization perfor-
mance of the two algorithms, by collecting the mass of the corresponding
unit cells, together with the percentage mass reduction ensured by MultiP-
microSIMPATY. On average, a mass saving of approximately 10% is guar-
anteed by the sharp detection of the material/void interface, i.e., by the
removal of intermediate densities.

The use of filtering deserves further discussion. In particular, we prove
the redundancy of the filtering phase after a sufficiently large number of
global optimization iterations. To this aim, we run Algorithm 1 for kfmax =
25 and kfmax = kmax (i.e., smoothing and sharpening filters in lines 6-7 are
applied at each global iteration). Figure 8 compares the output associated
with these two choices. The final topology provided by both the procedures
is the same. This confirms that filtering is instrumental only in the identi-
fication of the final layout, and this takes place during the first iterations.
From the top-left panel, the slightly diffusive action of the selected filtering
is also evident, giving rise to intermediate densities along the layout bound-
aries. On the other hand, the removal of filtering allows mesh adaptation to
sharply detect gradients from material to void, thus increasing the quality
of the final output (compare the two panels on the left panel). The improve-
ment in terms of boundary detection is confirmed also by the final adapted
mesh, which captures the steep gradients of the density with thinner refined
areas (compare the two panels on the right).

Finally, we highlight that the presence of blurred interfaces may raise
issues in the extraction of the final geometry, after the optimization pro-
cedure. In fact, the extracted geometry strongly depends on the cut-off
threshold, with possible significant alteration of the overall mass and the
expected thermo-mechanical properties.

Table 3 – Comparison between the optimized cells delivered by MultiP-
microSIMPATY and a standard inverse homogenization algorithm in terms
of mass.

D1 D2 D3

MultiP-microSIMP 0.330 0.443 0.486

MultiP-microSIMPATY 0.292 0.412 0.415

Mass reduction [%] 11.5% 7.0% 14.6%
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Figure 8 – Effect of filtering for the MultiP-microSIMPATY algorithm: den-
sity field (left) and associated anisotropic adapted mesh (right) when filter-
ing is applied during the whole optimization process (top) and in the first
25 iterations only (bottom).

5 Conclusions and perspectives

In this paper, we provide a new methodology for the design of cellular materi-
als optimized by means of multi-physics inverse homogenization, discretized
on customized computational meshes. The inverse homogenization problem
is modeled by a standard density-based topology optimization at the mi-
croscale; the grid is generated by exploiting an anisotropic a posteriori error
estimator which drives a mesh adaptation procedure. These two phases are
iteratively coupled in the MultiP-microSIMPATY algorithm, in order to de-
liver layouts characterized by clear-cut contours. In particular, goal of the
analyzed test cases is the design of lightweight structures with prescribed
elastic and thermal properties, according to a multi-physics framework.

The main results of this work can be outlined as follows:

i) MultiP-microSIMPATY algorithm provides original design solutions,
complying also with conflicting requirements;

ii) the good performance of microSIMPATY has been confirmed also in
a multi-physics context. Standard issues typical of topology optimiza-
tion, such as the presence of intermediate densities, of jagged bound-
aries, and of too complex structures is mitigated by the employment
of a mesh customized to the design process (see Figure 7 and Table 3);

iii) the new cellular materials have been successfully compared with con-
solidated solutions, in terms of mechanical and thermal properties (see
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Table 2);

iv) filtering can be considerably limited thanks to the use of mesh adap-
tation. This turns into an improvement in terms of accuracy of the
optimization process (see Figure 8);

v) the employment of an anisotropic mesh adaptation provides advan-
tages with a view to a manufacturing phase. Indeed, the unit cells
designed by MultiP-microSIMPATY exhibit very smooth geometries
which demand for a very limited post-processing;

vi) the procedure here settled turns out to be fully general with respect
to the selected multi-physics context.

Possible future developments include the extension of the MultiP-micro-
SIMPATY design procedure to a 3D setting. The proposed methodology
could also be exploited in a multiscale topology optimization framework [38],
inspired by the many possible applications in engineering practice (includ-
ing medicine, aerospace, automotive, architecture). In such a context, with
a view to the manufacturing step, another issue which deserves further in-
vestigation is represented by the handling of the transition area between
different cellular materials. Finally, innovative techniques, such as model
reduction or machine learning, still represent topics of high relevance in
topology optimization for a future examination [66, 67, 68]
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