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Abstract

We introduce a new method, named HICA (Hierarchical Independent Com-
ponent Analysis), suited to the dimensional reduction and the multi-resolution
analysis of high dimensional and complex data. HICA solves a Blind Source
Separation problem by integrating Treelets with Independent Component
Analysis and provides a multi-scale non-orthogonal data-driven basis apt
to meaningful data representations in reduced spaces. We describe some
theoretical properties of HICA and we test the method on synthetic data.
Finally, we apply HICA to the analysis of EEG traces.

Keywords: Data driven dimensional reduction, Multi-resolution analysis,
Blind Source Separation, Treelets, Independent Component Analysis.
AMS Subject Classification:

1 Introduction

The statistical analysis of high-dimensional and complex data often requires
the solution of two related issues: a data-driven dimensional reduction and
a meaningful multiscale approximation. We look for a basis generating a
space of small dimension where to represent data. We long for basis ele-
ments which are representative of the significant features of the phenomenon
under study; some of these may involve a great number of the primitive
variables describing the data set while others may be restricted only to a
few. Hence a multi-resolution analysis is desirable. In this paper we pro-
pose a new method for the construction of a multi-scale non-orthogonal
data-driven basis.
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We frame the subject as a Blind Source Separation problem (BSS) [2].
Let X ∈ R

p be a random vector and assume the existence of a vector
S ∈ R

K representing K ≤ p latent random sources and such that

X = CS, (1)

where C is an unknown p × K matrix of real numbers whose columns
constitute a basis of a K-dimensional subspace of Rp. If the rows of the
n×p matrix X collect n observed realizations x1, ...,xn ∈ R

p of the random
vector X while the rows of the n×K matrix S represent the corresponding
unobserved realizations of the latent random vector S, model (1) implies
that

X = SCT . (2)

A BSS problem consists in estimating C and S, given X.
Many approaches are commonly used to solve a BSS problem. The

most common is Principal Component Analysis (PCA). PCA is a powerful
method to find optimal subspaces where to represent data, but it presents
some drawbacks. First, PCA yields an orthonormal basis; in many circum-
stances orthogonality is a desirable property but in some it introduces an
artificial constraint not related to the phenomenological characteristics of
the analyzed problem. Indeed basis elements provided by PCA might not
represent physical features of the phenomenon under study. Moreover PCA
is a global method not suitable for multi-resolution analysis since each basis
element most often results in a linear combination of all the primitive vari-
ables. Independent Component Analysis (ICA) [4] solves a BSS problem
and provides a non-orthogonal basis for data representation. It is widely
used with audio signals. The ICA model assumes independence between
the random sources which are components of the vector S and produces a
non orthogonal basis - an estimate of the columns of the matrix C in (2) -
such that the data scores on the basis elements - estimates of the columns
of S - are as much independent as possible. Like PCA, ICA is a global
method not suitable for multi-scale analysis. Wavelets are commonly used
(see, for instance, [7] and [6]) to generate a localized and multi-scale basis
for data representation. Their main limitation is that the wavelet basis
is not data-driven, since basis elements are fixed, regardless of the data.
The Treelets algorithm is an efficient and recent approach that avoids this
problem [5]. The Treelets algorithm generates a multi-scale orthonormal
data-driven basis yielding a hierarchical tree that, at each level, represents
data through an orthonormal basis. Thus the problem of interpretability of
basis elements due to the exogenously imposed constraint of orthogonality
still holds. We here propose a new approach able to provide a multi-scale
non orthogonal data-driven basis through the integration between ICA and
Treelets: we call it Hierarchical Independent Component Analysis (HICA).

The paper is organized as follows. In section 2 we briefly describe In-
dependent Component Analysis and the Treelets algorithm in order to in-
troduce HICA in the second part of the section. In section 3 we consider
a procedure for data dimensional reduction with a non-orthogonal basis
that will be used in HICA. Then, in section 4, we present some theoretical
properties of the HICA method. In section 5 we show some simulations

2



which validate the algorithm proposed. Finally, in section 6 we present a
case study of EEG traces.

2 Hierarchical Independent Component Ana-

lysis

In the first part of this section we describe the main ideas concerning ICA
and Treelets, since HICA is obtained by integrating these two approaches.

2.1 Independent Component Analysis

Independent Component Analysis is a method commonly used to solve
Blind Source Separation problems. Consider model (1) and assume K = p.
Given the data matrix X, ICA looks for estimates of the basis matrix C

and of the source matrix S in model (2), such that the columns of S could
be taken as samples of the independent components of S.

The ICA model presents two ambiguities. The first is label switching.
The second is due to the fact that the independent components S1, ..., SK

of the vector S (i.e., the sources) are identifiable only up to multiplicative
constants. Hence, for identifiability, the variances of the independent com-
ponents are usually constrained to be 1; without loss of generality, we also
assume that both the vector X and the vector S have zero mean. Moreover
it is common to preprocess data by whitening X through a transforma-
tion matrix D. The covariance matrix of the transformed vector Z = DX

is required to be the identity, i.e., E[ZZ′] = I; for instance, Z is found by
standardizing the principal components of X. Therefore model (1) becomes
Z = (DC)S. Since E[SS′] = I, one then derives

I = E[ZZ′] = E[DCSS′C ′D′] = DCE[SS′]C ′D′ = (DC)(DC)′.

Hence C∗ = DC is orthogonal. Once the optimal rotation C∗ has been
found, C is obtained as D−1C∗.

Existence of a basis for data representation through independent com-
ponents is not guaranteed (differently from a representation through un-
correlated components which always exists, and it is found by PCA). In
practical problems, the estimate of the matrix C∗ is obtained through the
minimization of the empirical dependence between the columns of S. In
[3] it is shown that C∗ can be found by maximizing the non-gaussianity of
the sources S1, ..., SK . This simplifies the ICA optimization problem and
suggests some suitable numerical algorithm for its solution. In this paper
all analyses will be carried out with the fastICA algorithm, which maxi-
mizes a non-gaussianity measure (e.g., the absolute value of the kurtosis)
through a fast fixed-point procedure. Details about the fastICA algorithm
are presented in [3].

By comparing the ICA solution with that provided by PCA, we note
that while PCA yields a basis whose elements are conveniently arranged
for dimensional reduction, this is not so for ICA which is useless for this
purpose. A common approach to circumvent this difficulty, and to allow
for the number K of independent components to be much smaller than
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the number p of primitive variables, is to first project data into the K-
dimensional space generated by the first K principal directions. Then, ICA
is carried out in this reduced K-dimensional space.

2.2 Treelets

The Treelets algorithm [5] generates a multi-resolution orthonormal basis
for data representation, like wavelets, but the basis is data-driven. The
Treelets algorithm yields a hierarchical tree that, at each level, replaces the
two more correlated variables through a pair-wise Principal Component
decomposition. The procedure consists of an iterative algorithm with p− 1
steps. At each step three operations are performed:

1. compute the correlations between couples of variables and search for
the two variables with the highest correlation;

2. compute a Principal Component Analysis in the space of the two
selected variables;

3. store the second principal direction - that will not be processed in the
following step and will become one of the treelet components - while
the first principal direction replaces the two original variables in the
active variables set.

At each level of aggregation l = 0, ..., p− 1, the algorithm provides a multi-
resolution data-driven orthogonal basis B(l), able to catch internal struc-
tural features of the data.

2.3 The HICA algorithm

The two methods presented above are useful to reduce the complexity of
high-dimensional problems and to detect relevant features of the data. How-
ever some problems still hold. ICA, as PCA, is a global method that pro-
duces a non-sparse basis. Hence it is not suitable for a multi-resolution
analysis. Treelets provide a multi-resolution but orthonormal basis, whose
elements can be unrelated to the phenomenological characteristics of the
problem under study. Hierarchical Independent Component Analysis, in-
stead, aims at the construction of a multi-resolution non orthogonal data-
driven basis through the integration between ICA and Treelets with the idea
of inheriting the returns of both ICA and Treelets over PCA. Basically it
consists in replacing in the Treelet algorithm the pair-wise Principal Com-
ponent Analysis step with a pair-wise Independent Component Analysis
step. With respect to this manuscript wording, we should indeed refer to
Treelet analysis as Hierarchical Principal Component Analysis (HPCA).
Anyhow we preferred to keep the authors’ original wording (i.e., Treelets).

A more detailed description of the HICA algorithm is now in order.
First we need to define a suitable similarity measure between two random
variables. According to the ICA procedure, we search for a measure that is
greater when the dependence between two variables is larger. In particular
we consider the distance correlation, a measure of dependence introduced
in [10] and based on the distance covariance. Let X1 and X2 be two random
variables and let φX1

(t) and φX2
(s) be their characteristic functions, while
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φ(X1,X2)(t, s) is the characteristic function of the random vector (X1, X2)
′.

Then, the distance covariance between X1 and X2 is the non-negative num-
ber V(X1, X2) defined as

V(X1, X2) =

(
1

c2

∫

R2

|φ(X1,X2)(t, s)− φX1
(t)φX2

(s)|
t2s2

dtds

) 1
2

,

where c = π
Γ(1) and Γ(·) is the complete gamma function. If we indicate

with V(X1) = V(X1, X1), the distance correlation between two random
variables X1 and X2 is defined as

R(X1, X2) =
V(X1, X2)√
V(X1)V(X2)

.

Note 0 ≤ R(X1, X2) ≤ 1 and R(X1, X2) can be considered to be a measure
of dependence between X1 and X2 in the sense that R(X1, X2) is equal to
0 if and only if X1 and X2 are independent random variables. Moreover
distance variance and distance covariance have some properties that will be
used in the following. In particular:

1. if X1 and X2 are independent random variables, then V(X1 +X2) ≤
V(X1) + V(X2);

2. if (X11, X21)
′ and (X12, X22)

′ are independent random vectors, then
V(X11 +X12, X21 +X22) ≤ V(X11, X21) + V(X12, X22).

We now describe the HICA algorithm. At level l = 0 of the hierarchical
tree each component X1, ..., Xp of the random vector X is represented by
itself, the basis matrix B(0) is indeed the canonical basis of dimension p and

the coordinates vector Y(0) = (Y
(0)
1 , ..., Y

(0)
p )′ corresponds to the primitive

variables (i.e., Y
(0)
i = Xi). Define A to be a set of indices of the active

variables, initializing A
(0) = {1, ..., p}, and compute the sample similarity

matrix R̂(0), where R̂
(0)
ij = R(Y

(0)
i , Y

(0)
j ). Then, for l = 1, ..., p − 1, repeat

the following three steps:

1. find the two most similar variables. In particular set:

(α, β) = arg max
i<j∈A(l−1)

R̂
(l−1)
ij ;

2. compute an Independent Component Analysis of the variables Y
(l−1)
α

and Y
(l−1)
β :

Y (l−1)
α = c

(l)
11S1 + c

(l)
12S2 (3)

Y
(l−1)
β = c

(l)
21S1 + c

(l)
22S2

The idea is to replace Y
(l−1)
α with S1 and Y

(l−1)
β with S2. Hence define
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the matrix

C̃(l) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c̃
(l)
11 · · · c̃

(l)
12 · · · 0

...
...

. . .
...

...

0 · · · c̃
(l)
21 · · · c̃

(l)
22 · · · 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 1




where c̃
(l)
11 and c̃

(l)
22 are, respectively, in position (α, α) and (β, β). The

elements c̃
(l)
ij correspond to the c

(l)
ij in (3), normalized such that C̃(l)

has columns with unitary norm. C̃(l) represents the non orthogonal
transformation identified by ICA. The new basis matrix and coordi-
nates vector become B(l) = B(l−1)C̃(l) and Y(l) = (C̃(l))−1Y(l−1),

respectively. The similarity matrix R̂(l) is then updated accordingly;

3. order the two new variables according to their variances. If the vari-

ance of Y
(l)
α is greater than the variance of Y

(l)
β , store the variable Y

(l)
β

and, at the next step, consider only Y
(l)
α as a possible candidate for

a new aggregation. This corresponds to remove the index β from the
set A of the active variables, defining A

(l) = A
(l−1) \ {β}. Otherwise

store Y
(l)
α and set A(l) = A

(l−1) \ {α}.
The algorithm provides, at each level of aggregation l, a non orthogonal
basis matrix B(l) = B(0)C̃(1) · · · C̃(l) - an estimate of the basis matrix C -
and a coordinates vector Y(l) = C̃(l)−1 · · · C̃(1)−1

Y(0), which is an estimate
of the scores matrix S.

3 Selection of the level of the tree and dimen-

sional reduction with a non-orthogonal basis

The HICA algorithm generates p different matrices B(0), ..., B(p−1) as es-
timates of the basis matrix C. Obviously one cannot take into account
all these different estimates, but it is reasonable to choose only one (or
some) of them for the analysis. The more natural choice is to consider the
estimate related to the maximum height of the tree, l = p − 1, but alter-
natively one can choose any of the basis given at the different levels l. At
a generic level l, B(l) is composed by the l elements stored in the previous
steps and the p − l elements corresponding to variables of the active set
A

(l) that would be ready for aggregation in the following steps. Let Al be
a partition of {1, ..., p} in p − l sets named Al

i, with i = 1, ..., p − l. By
construction each basis element of B(l) is defined on a different set Al

i of
the partition (i.e., the positions of the non-zero values of each basis element
correspond to the indexes of one of the set Al

i). Since at each level a new
variable is generated as a linear combination of two variables of the active
set, the number of sets that form the partition is reduced by aggregating
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two of them. Hence at a specific level l the basis elements stored in the
previous steps of the algorithm are defined on subsets of the Al

i. Therefore
we can divide basis elements of B(l) into p − l different groups, according
to the p − l different sets of the partition. For this reason we can relate
the different basis B(l) to different degrees of sparsity, where the different
degrees refer to the different cardinalities of partitions. In particular, the
lower is the level l considered, the greater is the degree of sparsity of the
basis taken into account (i.e., greater is the cardinality of the partition).

Once a specific basis B(l) is chosen, another important aspect to consider
is dimensional reduction. In particular we need to select the dimension K

(with K ≤ p) of a suitable subspace to represent data, choosing only K

basis elements.
To jointly face these two problems (i.e., the choice of the degree of spar-

sity and the K “best” basis elements) we consider the energy, an index
related to the fraction of variance explained by a basis. We now first de-
scribe the energy index, focusing on the non trivial case of its evaluation for
a non-orthogonal basis. Then we propose a strategy to choose a suitable
dimension K to represent data in a reduced space and, given K, we show
how to select a specific basis B(l) and its K basis elements.

3.1 The energy index

Consider a basis C = [c1; ...; cp], not necessarily orthogonal. Let IK =
{i1, i2, ..., iK} be one of the

(
p
K

)
subsets of the index set {1, ..., p} with cardi-

nality K, and let CIK
= [ci1 ; ...; ciK ]. Let XCIK = CIK

(CT
IK

CIK
)−1CT

IK
X

be the orthogonal projection of X on the space spanned by CIK
, where

X ∈ R
p is a random vector with zero mean. Then we define

γ(CIK
) =

E[‖XCIK ‖2]
E[‖X‖2] =

tr(ΣCIK
(CT

IK
CIK

)−1CT
IK

)

tr(Σ)

being Σ = E[XXT ] = Cov(X), and we call γ(CIK
) the energy associated

to the basis CIK
. At this point we define ΓK(C) as the maximum en-

ergy among all the
(
p
K

)
energies associated to the K-dimensional subspaces

spanned by all possible subsets of cardinality K of the basis matrix C:

ΓK(C) = max
IK⊆{1,...,p}

γ(CIK
). (4)

If C is non orthogonal the evaluation of ΓK(C) may become cumbersome.
The non orthogonality, in fact, implies that the elements of the best K−1-
dimensional space are not necessary a subset of the elements of the best
K-dimensional space. Therefore we propose a forward selection strategy
that can be easily computed and, in practical problems, produces reason-
able approximations of the K-dimensional subspace with maximal energy
ΓK(C). The strategy is suitable not only for HICA, but whenever dealing
with non orthogonal basis. We start by calculating the energy γ([ck]) for
each basis element and we set the maximum energy element as the first
element of the basis. Let it be c(1). Then we look for the second basis
element, named c(2), such that

c(2) = arg max
cj 6=c(1)

γ([c(1); cj ]).

7



Once c(1), ..., c(k) have been identified, c(k+1) is found accordingly:

c(k+1) = arg max
cj 6=c(1),...,c(k)

γ([c(1); ...; c(k); cj ])

and the procedure continues until c(K) is found.

Remark. If C is an orthonormal matrix, the exact solution of the op-
timization problem (4) can be found efficiently since we do not need to
evaluate all the

(
p
K

)
energies γ(CIK

). In fact, let W = [w1; ...;wp] be an
orthonormal basis, ΓK(W ) is found by computing, for j = 1, ..., p,

γ([wj ]) =
E[(wT

j X)2]

E[‖X‖2] =
wT

j Σwj

tr(Σ)
=

∑p
i=1 λi(w

T
j ei)

2

∑p
i=1 λi

where λi and ei are the eigenvalues and the eigenvectors of Σ. After sort-
ing the basis elements according to their energy, such that γ([w(1)]) ≥
γ([w(2)]) ≥ · · · ≥ γ([w(p)]), ΓK(W ) is obtained by summing the first K
energy terms. In particular:

ΓK(W ) =
tr(ΣWKWT

K)

tr(Σ)
=

K∑

k=1

γ([w(k)]),

where WK = [w(1); ...;w(K)]. This is the same procedure adopted in [5]
for finding the elements of the K-dimensional basis and also coincides with
the criterium used in PCA to order the principal directions. Indeed, if E =
[e1; ...; ep] is the matrix whose columns are the eigenvectors of Σ, γ([ej ]) =∑p

i=1 λi(e
T
j ei)

2

∑p

i=1 λi
=

λj∑p

i=1 λi
and ΓK(E) =

∑K
i=1 γ([e(k)]) =

∑K
k=1 λ(k)∑p

i=1 λi
.

3.2 Dimensional reduction and choice of a specific level

l of the tree

We now focus on the energy index as a tool to perform dimensional reduc-
tion and to find the best basis between the p estimates provided by HICA.
We first decide on the best value for K considering only the maximum
height tree basis (i.e., considering only ΓK(B(p−1))). Once K has been
determined, we compute ΓK(B(l)), for l = 0, ..., p − 1, and we choose the
best basis Bbest according the same criterium adopted in [5] for Treelets:

Bbest = arg max
Bl:0≤l≤p−1

ΓK(Bl).

This argmax is not necessarily unique. Indeed, at a specific level, say
l = p− k, we have k elements (corresponding to the variables in the active
set A(p−k)) that in the following steps are merged together. It is straight-
forward to show that, if the best k-dimensional space was generated by
these k elements, the quantity Γk(B

(p−k)) would not increase in the next
levels, since, even if two of these elements are merged together, the space
spanned by the new elements is the same. In general at level p−k the best
k-dimensional space need not be generated by the k active variables. How-
ever from the level when all variables of the active set A

(l) constitute the
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best k-dimensional basis, the quantity Γk(B
(l)) does not increase. Hence

we could have more than one basis with the same energy. The choice sug-
gested in [5] is to take into account the basis with the smallest l. Such
proceeding could however discard solutions which are able to better catch
the underlying structure of the problem. For this reason we suggest to con-
sider all basis with the same highest energy ΓK . They might have different
degrees of sparsity and this can make some of them more preferable. In the
examples of Section 5 we will deepen the analysis of this issue.

4 Theoretical results

In this section we analyze the consistence of HICA when data are generated
by K independent sources with disjoint supports plus some noise. Specif-
ically we consider a situation where the p primitive variables are divided
into K groups, with dependent variables within groups and independent
variables between groups. We want to show that HICA is well suited for
representing and catching the underlying structure of this kind of data,
providing at level p−K loading vectors whose supports are defined on the
different groups. We show this result in Lemma 4.2 and Theorem 4.1, after
the discussion of a preliminary property in Lemma 4.1.

We start by dealing with an issue directly connected to the fact that
the fastICA algorithm is grounded on non-gaussianity measures. In some
special situations the directions maximizing kurtosis, a well-known non-
gaussianity measure, can be found analytically, as it is proved in the fol-
lowing Lemma.

Lemma 4.1 Let T be a random variable such that kurt(T ) 6= 0 and let E
be a gaussian random variable. Set Z = (T,E)′ and assume that T and
E are independent. Let w = (w1, w2)

′ be a vector of unitary norm. The
absolute value of the kurtosis of the random variable w

′
Z is maximized by

wmax = (1, 0)′.

Proof. For simplicity we consider T and E to be zero mean and unit
variance random variables. The kurtosis of a zero mean and unit variance
random variable Y is kurt(Y ) = E[Y 4]− 3. If Y is gaussian, kurt(Y ) = 0.
Moreover if Y1 and Y2 are independent random variables and α e β real
parameters, kurt(αY1 + βY2) = α4kurt(Y1) + β4kurt(Y2). Hence:

|kurt(w′Z)| = |kurt(w1T + w2E)| =
= |w4

1kurt(T ) + w4
2kurt(E)| = |w4

1kurt(T )|.
(5)

Since kurt(T ) 6= 0, (5) is maximized by w1 = ±1 (and w2 = 0 because w

is a vector of unitary norm). �

We now deal with p non-gaussian random variables identical but for an
additive gaussian noise, in order to show that, in this particular case, HICA
provides a constant loading vector at the final level l = p−1, thus gathering
the common component.
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Lemma 4.2 Let T be a random variable with 0 mean, kurt(T ) 6= 0 and
such that V(T ) = 1. Let X = (X1, ..., Xp)

′ ∈ R
p be a random vector such

that, for σ2, σ2
e > 0,

Xi = σ2T + σ2
eEi, i = 1, ..., p,

with Ei a random gaussian noise such that, for i, j = 1, ...p, i 6= j, V(Ei) =
1, V(Ei, Ej) = 0 and V(Ei, T ) = 0. At each level 1 ≤ l ≤ p − 1 the HICA
decomposition reads:

B(l) = [c
(l)
1 ; ...; c

(l)
p−l; c̃

(l)
1 ; ...; c̃

(l)
l ]

Y
(l) = (Y

(l)
1 , ..., Y

(l)
p−l, Ỹ

(l)
1 , ..., Ỹ

(l)
l )′

where c
(l)
i = 1√

|Al
i
|
IAl

i
and Y

(l)
i =

|Al
i|√

|Al
i
|
σ2T +

σ2
e√
|Al

i
|
E

(l)
i , with V(E(l)

i ) ≤

|Al
i| and V(Y (l)

i ) ≤
√
|Al

i|(σ2+σ2
e) ∀i = 1, ..., p−l (the sets Al

i have been de-

fined in section 3). In particular, at the level l = p−1, c
(p−1)
1 = ( 1√

p , ...,
1√
p )

′

and Y
(p−1)
1 = p√

pσ
2T +

σ2
e√
pE

(p−1)
1 , with V(E(p−1)

1 ) ≤ p and V(Y (p−1)
1 ) ≤

√
p(σ2 + σ2

e).

Proof. Suppose that the aggregation between variables follows the
scheme: {· · · {{X1, X2}, X3} · · · , Xp}. Hence, at level l = 1 we aggregate:

X1 = σ2T + σ2
eE1

X2 = σ2T + σ2
eE2.

The whitening procedure of ICA, transforms the vector X = (X1 X2)
′ in a

new vector Z = (Z1 Z2)
′ such that

Z1 = X1+X2

a =
2σ2T+σ2

e(E1+E2)
a

Z2 = X1−X2

b =
σ2
e(E1−E2)

b

where a and b are, respectively, the standard deviations of X1 + X2 and
X1−X2. We observe that Z1 is a non gaussian variable, while Z2 is gaussian.
Because of Lemma 4.1 the rotation found by fastICA in the whitened space
coincides with the identity matrix. According to the selection criterium
and taking into account the normalization of the matrix C̃(1) in step 2 of

the HICA algorithm, we obtain c
(1)
1 = ( 1√

2
1√
2
0 · · · 0)′ and Y

(1)
1 = 1√

2
X1 +

1√
2
X2 = 2√

2
σ2T +

σ2
e√
2
E(1), where E(1) = E1 + E2 and V(E(1)) ≤ V(E1) +

V(E2) ≤ 2. Furthermore V(Y (1)
1 ) ≤ V( 2√

2
σ2T )+V( σ2

e√
2
E

(1)
1 ) ≤

√
2(σ2+σ2

e).

At level l = 2 we aggregate:

Y
(1)
1 = 2√

2
σ2T +

σ2
e√
2
E

(l)
1

X3 = σ2T + σ2
eE3.

The whitening procedure provides a vector Z = (Z1 Z2)
′ such that

Z1 =
√
2Y

(1)
1 +X3

a′ =
3σ2T+σ2

e(E
(1)
1 +E3)

a′

Z2 =
Y

(1)
1 −

√
2X3

b′ =
√
2σ2

e(E
(1)
1 /2−E3)
b′
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where a′ and b′ are, respectively, the standard deviations of
√
2Y

(1)
1 +X3 and

Y
(1)
1 −

√
2X3. Once again, Lemma 4.1 implies that the rotation provided

by fastICA is the identity and according to the selection criterium and to
the normalization of C̃(2) we have

c
(2)
1 =




1√
2

0
1√
2

0

0 1
0 0
...

...
0 0




[ √
2
3

1√
3

]
=




1√
3
1√
3
1√
3

0
...
0




and Y
(2)
1 =

√
2
3Y

(1)
1 + 1√

3
X3 = 3√

3
σ2T +

σ2
e√
3
E

(2)
1 , where E

(2)
1 = E

(1)
1 + E3

and V(E(2)
1 ) ≤ V(E(1)

1 ) + V(E3) ≤ 3. Moreover V(Y (2)
1 ) ≤ V( 3√

3
σ2T ) +

V( σ2
e√
3
E

(2)
1 ) ≤

√
3(σ2 + σ2

e). Iterating, we obtain the lemma when the ag-

gregation scheme is {· · · {{X1, X2}, X3} · · · , Xp}.
For a general aggregation scheme, at the level l + 1 = 2, ..., p − 1 we

aggregate:

Y
(l)
i = m√

m
σ2T +

σ2
e√
m
E

(l)
i

Y
(l)
j = n√

n
σ2T +

σ2
e√
n
E

(l)
j

with Al
i ∩ Al

j = ∅ and m+ n = l + 2. The whitening procedure provides a
vector Z = (Z1 Z2)

′ such that

Z1 =
√
mY

(l)
i

+
√
nY

(l)
j

a′′ =
(m+n)σ2T+σ2

e(E
(l)
i

+E
(l)
j

)

a′′

Z2 =
√
nY

(l)
i

−√
mY

(l)
j

b′′ =
√
mn(E

(l)
i

/m−E
(l)
j

/n)

b′′

where a′′ and b′′ are, respectively, the standard deviations of
√
mY

(l)
i +
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√
nY

(l)
j and

√
nY

(l)
i −√

mY
(l)
j . Then

c
(l+1)
i =




0 0
...

...
0 0
1√
m

0
...

...
1√
m

0

0 0
...

...
0 0
0 1√

n
...

...
0 1√

n

0 0
...

...
0 0







√
m

m+n√
n

m+n


 =




0
...
0
1√

m+n
...
1√

m+n

0
...
0
1√

m+n
...
1√

m+n

0
...
0




and Y
(l+1)
i =

√
mY

(l)
i

+
√
nY

(l)
j√

m+n
= m+n√

m+n
σ2T +

σ2
e√

m+n
E

(l+1)
i , where E

(l+1)
i =

E
(l)
i +E

(l)
j and V(E(l+1)

i ) ≤ V(E(l)
i )+V(E(l)

j ) ≤ m+n. Moreover V(Y (l+1)
i ) ≤

V( m+n√
m+n

σ2T ) + V( σ2
e√

m+n
E

(l+1)
i ) ≤ √

m+ n(σ2 + σ2
e). The result now fol-

lows by induction. �

Lemma 4.2 is instrumental for proving the main theoretical result of
the paper. If variables are dependent according to an approximate block
structure where variables in the same block are exchangeable and strongly
dependent while variables in different blocks are weakly dependent, then
HICA is able to uncover this feature providing loading vectors constants on
each block and null elsewhere.

Theorem 4.1 Let T1, ..., TK be random variables with 0 mean, non zero
kurtosis and such that V(Tk) = 1, k = 1, ...,K. Let X = (X11, ..., X1p1 , ..., XK1, ..., XKpK

)′ ∈
R

p be a random vector such that, for σ2
1 , ..., σ

2
K , σ2

e > 0,

Xji = σ2
jTj + σ2

eEji

with Eji random gaussian noise such that V(Eji) = 1, V(Eji, Ehl) = 0 and
V(Eji, Th) = 0 for j, h = 1, ...,K, i = 1, ..., pj and l = 1, ..., ph. Further-
more set V(σ2

jTj , σ
2
hTh) = σjh and assume that

max
1≤j,h≤K

(
σjh

σjσh

)
<

c(σe)

1 + δ2
(6)

with δ = σe

min1≤j≤K σj
and c(σe) a constant such that 0 < c(σe) ≤ 1 and

c(σe)
σe→0−→ 1. Then, at level l = p−K, the HICA decomposition reads:

B(p−K) = [c
(p−K)
1 ; ...; c

(p−K)
K ; c̃

(p−K)
1 ; ...; c̃

(p−K)
p−K ]

Y
(p−K) = (Y

(p−K)
1 , ..., Y

(p−K)
K , Ỹ

(p−K)
1 , ..., Ỹ

(p−K)
p−K )′
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where c
(p−K)
i = 1√

|Fi|
IFi

and Y
(p−K)
i = |Fi|√

|Fi|
σ2
i Ti +

σ2
e√
|Fi|

E
(p−K)
i , with

V(E(p−K)
i ) ≤ |Fi|, V(Y (p−K)

i ) ≤
√

|Fi|(σ2
i + σ2

e) and Fi = {i1, ..., ipi}, for
i = 1, ...,K.

Proof. Assume that, at a generic level l < p − K of the tree, random
variables from different blocks have not been merged. Hence, from Lemma
4.2, any two variables in the active set A have the form:

Y
(l)
u = m√

m
σ2
uTu +

σ2
e√
m
E

(l)
u

Y
(l)
v = n√

n
σ2
vTv +

σ2
e√
n
E

(l)
v

with c
(l)
u =

(
0 · · · 0 1√

m
· · · 1√

m
0 · · · 0

)′
, c

(l)
v =

(
0 · · · 0 1√

n
· · · 1√

n
0 · · · 0

)′

and c
(l)
u , c

(l)
v have non-zero elements relative to two disjoint subsets of

indexes Al
u, A

l
v with |Al

u| = m, |Al
v| = n. Let δk = σe

σk
. We now consider

two different cases. In the first case Al
u ⊆ Fi e Al

v ⊆ Fj (i 6= j). Hence:

Y
(l)
u = m√

m
σ2
i Ti +

σ2
e√
m
E

(l)
i

Y
(l)
v = n√

n
σ2
jTj +

σ2
e√
n
E

(l)
j .

Let
√
mσ2

i + σ̃2
m = V(Y (l)

u ) (σ̃2
m ≤ √

mσ2
e) and

√
nσ2

i + σ̃2
n = V(Y (l)

v )
(σ̃2

n ≤ √
nσ2

e). In this case, the distance covariance and distance correlation

between Y
(l)
u and Y

(l)
v are, respectively:

V(Y (l)
u , Y

(l)
v ) ≤ V( m√

m
σ2
i Ti,

n√
n
σ2
jTj) + V( σ2

e√
m
E

(l)
i ,

σ2
e√
n
E

(l)
j ) ≤ 4

√
mnσij

R(Y
(l)
u , Y

(l)
v ) =

V(Y (l)
u ,Y (l)

v )√
V(Y

(l)
u )V(Y

(l)
v )

≤ 4
√
mnσij√√

mσ2
i
+σ̃2

m

√√
nσ2

j
+σ̃2

n

=

=
4
√
mnσij

4
√
mnσiσj

√
1+

σ̃2
m√

mσ2
i

√
1+

σ̃2
n√

nσ2
j

≤ σij

σiσj
.

In the second case Al
u, A

l
v are subsets of the same Fk. Hence

Y
(l)
u = m√

m
σ2
kTk +

σ2
e√
m
E

(l)
k1

Y
(l)
v = n√

n
σ2
kTk +

σ2
e√
n
E

(l)
k2 .

Let 4
√
mnσ2

kc(σe) = V(Y (l)
u , Y

(l)
v ) ≤ 4

√
mnσ2

k, with c(σe) a constant such

that 0 < c(σe) ≤ 1 and c(σe)
σe→0−→ 1. Furthermore V(Y (l)

u ) ≤ √
m(σ2

k + σ2
e)

and V(Y (l)
v ) ≤ √

n(σ2
k + σ2

e). Therefore the distance correlation between

Y
(l)
u and Y

(l)
v are, respectively:

R(Y
(l)
u , Y

(l)
v ) =

V(Y (l)
u ,Y (l)

v )√
V(Y

(l)
u )V(Y

(l)
v )

≥ 4
√
mnσ2

kc(σe)√√
m(σ2

k
+σ2

e)
√√

n(σ2
k
+σ2

e)
≥

≥ 4
√
mnσ2

kc(σe)

4
√
mnσ2

k

√
(1+δ2

k)
2
= c(σe)

1+δ2
k

.
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Since, from (6), the maximum distance correlation between variables be-
longing to different blocks is lower than the minimum distance correlation
between variables belonging to the same block, aggregation involves vari-
ables relative to the same block and this proves the theorem.

Furthermore, if the noise variance is not too large, the K dimensional
space that explains the most part of the variability is that spanned by theK
basis elements related to the K blocks. Then the energy criterium identifies
those elements. �

5 Comparison among PCA, ICA, Treelets,

and HICA on synthetic data

In this section we will present some simulated examples to compare PCA,
ICA, Treelets, and HICA performances in different scenarios. For all sce-
narios we consider the following latent variable model:

X =

3∑

k=1

ckSk + σE , (7)

where X is the observed p-variate random vector, ck represent the columns
of the basis matrix C (i.e., the unknown basis elements), Sk are unobserved
non-gaussian random variables, and E is a p-variate gaussian vector (with 0

mean and identity covariance matrix) acting as a noise term. Our purpose
is to use PCA, ICA, Treelets, and HICA to obtain an estimate for the basis
matrix C from a sample of size n drawn from model (7).

In detail, we investigate four different scenarios exploring different struc-
tures of dependence and orthogonality of the components (i.e., depen-
dent/indepedent sources Sk and orthogonal/non-orthogonal basis elements
ck):

Scenario A: Orthogonal and independent latent components.

Scenario B: Orthogonal and dependent latent components.

Scenario C: Non-orthogonal and independent latent components.

Scenario D: Non-orthogonal and dependent latent components.

Below, we focus on scenarios B, C, and D, respectively. Scenario A is not
discussed since, as expected, all four methods are effective in estimating
the model in this trivial case.

Scenario B: Orthogonal and dependent latent components.
We first consider an example similar to the one presented in [5] where p = 10
random variables are obtained by linear combinations of three dependent
- and thus correlated - random sources such that the basis elements c1, c2,
and c3 are non-overlapping - and thus orthogonal -. In particular we set:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]), S3 = a1S1 + a2S2,
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with b1 = 20, b2 = 15, a1 = 2, a2 = 1, and σ = 1. The basis elements ck
are defined on disjoint subsets, specifically:

c1 = (1 1 1 1 0 0 0 0 0 0)′,

c2 = (0 0 0 0 1 1 1 1 0 0)′,

c3 = (0 0 0 0 0 0 0 0 1 1)′.

Finally, we sample n = 1000 independent realizations from the model.
This is an example in which neither PCA nor ICA is expected to target

the correct model being the three sources neither uncorrelated nor inde-
pendent. On the contrary, both Treelets and HICA can detect the correct
model if the chosen level of aggregation is l = 7 (i.e., 3 disjoint supports)
and the chosen number of latent sources is K = 3. As shown in the bottom
panels of Figure (1), this choice of l and K is the one suggested by the
criterion presented in [5] and is among the ones suggested by the criterion
suggested in section 3. This latter criterion supports indeed K = 3 and
l = 7, 8, 9 as candidate values.

Scenario C: Non-orthogonal and independent latent compo-
nents. The previous example presents a situation in which hierarchical
methods (i.e., Treelets and ICA) can outperform non-hierarchical methods
(i.e., PCA and ICA). We now consider a complementary scenario in which
ICA-inspired methods (i.e., ICA and HICA) can outperform PCA-inspired
methods (i.e., PCA and Treelets). In this scenario p = 6, the basis elements
c1 and c2 are overlapping and non-orthogonal and sources S1, S2, and S3

are independent. In particular:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]) ⊥⊥ S3 ∼ U([0, b3],

with b1 = b2 = b3 = 20 and σ = 1. The basis elements ck are defined as
follows:

c1 = (1 1 0 0 0 0)′,

c2 = (1 1 1 1 0 0)′,

c3 = (0 0 0 0 1 1)′.

Finally, we sample n = 1000 independent realizations from the model.
Of course in this scenario, PCA and Treelets cannot target the right

solution being the basis elements non-orthogonal. ICA instead targets the
right solution being the sources independent. Figure (2) shows that also
HICA can detect the right solution if K = 3 and l = 4 (i.e., 2 disjoint
supports).

Note that criterion proposed in [5] would have suggested K = 3 and
l = 3 (i.e., 3 disjoint supports) which would have taken to a misidentifi-
cation of the model for HICA as well (see top panels of Figure (2)). This
example confirms what suggested in our criterion: once K is chosen, all
values of l providing the maximal energy are candidate values and not just
the minimum one. Good representations are indeed obtained using HICA
with K = 3 and l = 4, 5.
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Scenario D: Non-orthogonal and dependent latent compo-
nents We finally present a situation in which HICA outperforms PCA,
ICA, and Treelets. This last scenario is simply obtained by setting latent
components both non-orthogonal and dependent. In this case indeed, PCA
cannot target the correct model being the sources non-orthogonal and de-
pendent, ICA cannot target the correct model being the sources dependent,
Treelets cannot target the correct model being the sources non-orthogonal.
HICA remains the only method having the chance to target the correct
model.

We here set p = 6, the basis elements c1 and c2 are overlapping (and
thus non-orthogonal) and the three sources S1, S2, and S3 dependent. In
particular:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]) S3 = S1 + S2 + U,

and U ∼ U([0, b3], with b1 = b2 = 20, b3 = 1, and σ = 1, while basis
elements ck are the same defined as in Scenario C.

As shown in the bottom panels of Figure (3), we can draw the same
conclusions of Scenario C with respect to the choice of K and l: K = 3
and l = 3, 4, 5 are good candidate values. Once again (top panels of Figure
(3)) l = 3 (the value suggested by the criterion proposed in [5]) is not the
best choice. Although in this case, neither HICA is able to exactly catch
the right configuration, HICA with K = 3 and l = 4 of course provides the
closest representation: second and third components are very well detected
with some bias in the estimation of the first component.

These simulated examples suggest that when dealing non-Gaussian la-
tent components (even non-orthogonal and/or dependent) HICA always
performs better than or equally to PCA, ICA, and Treelets. Moreover, as
expected by theory, they discourage the use of PCA and ICA when compo-
nents are dependent and the use of PCA and Treelets when components are
non-orthogonal. A summary of the “win situations” for the four methods
that can be drawn from the simulations is reported in Table 1.

Simulations also show that the criterion proposed in [5] for the choice
of K and l might take to a misdetection of the model. For a given value of
K the more proper approach seems indeed to consider as candidate values
for the level of aggregation l all values providing the maximal energy and
not necessarily the minimum one.
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PCA ICA Treelets HICA

A: Orthogonal and independent win win win win

B: Orthogonal and dependent win win

C: Non-orthogonal and independent win win

D: Non-orthogonal and dependent win

Table 1: Summary of the “win situations” for PCA, ICA, Treelets, and HICA
with respect to orthogonality/non-orthogonality and dependence/independence
of the latent components.

Figure 1: Scenario B: Orthogonal and dependent latent components. Top panels
report the basis elements provided by Treelets (left) and HICA (right) when
K = 3 and l = 7. The bottom panels report the energy as a function of l and
K for Treelets decompositions (left) and HICA decompositions (right).

17



Figure 2: Scenario C: Non-orthogonal and independent latent components. Top
panels report the basis elements provided by Treelets (left) and HICA (right)
when K = 3 and l = 3. Middle panels report the basis elements provided by
Treelets (left) and HICA (right) when K = 3 and l = 4. The bottom panels
report the energy as a function of l and K for Treelets decompositions (left) and
HICA decompositions (right).
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Figure 3: Scenario D: Non-orthogonal and dependent latent components. Top
panels report the basis elements provided by Treelets (left) and HICA (right)
when K = 3 and l = 3. Middle panels report the basis elements provided by
Treelets (left) and HICA (right) when K = 3 and l = 4. The bottom panels
report the energy as a function of l and K for Treelets decompositions (left) and
HICA decompositions (right).
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6 Case study: Analysis of EEG signals

We now apply HICA to a BSS real data problem by analyzing EEG traces
of patients affected by alcoholism. The multi-resolution and non-orthogonal
properties characterizing the HICA solution, allow to obtain interpretable
and meaningful results that provide noticeable improvements in terms of
phenomenological interpretation.

Data are courtesy of the online UCI Machine Learning Repository [1].
For each patient in the study, measurements from 61 electrodes out of 64
placed on the scalp are available. The electrodes are located at standard
sites [8, 11]. For each electrode, the recorded signal measures the electrode
electric potential with respect to some reference electrode and describes
the electrical activity of the brain in the neighborhood of the electrode
across time. We observe these signal at n = 256 equally spaced instants
along a time span of 1 second. This sample represents the n realizations
of a random vector X in R

p with p = 61, that is the number of electrodes
considered in the study. The analysis consist in the decomposition of the
original variables through model (2). We implement the HICA algorithm
to solve this BSS problem and we compare the results obtained by HICA
with those provided by Treelets, ICA and PCA. As an example, in Figure
4 we show some relevant basis elements identified by these methods for one
patient. The subject was exposed to two stimuli. Specifically, the patient
was shown two pictures chosen from the 1980 Snodgrass and Vanderwart
set [9]. The two stimuli were presented in a matched condition (i.e., the
subject has been asked to look at the same picture twice).

We consider K = 5 components. For PCA we show the first 5 principal
components, for ICA the results obtained with the fastICA algorithm se-
lecting 5 sources, while for Treelets and HICA we select the level l = 58 and
show the 5 components found by the energy criterium. Since l = p− 3, we
expect to find basis elements whose supports are defined on three different
sets of variables. Multi-resolution methods yield localized basis elements.
This is a very interesting property, since it highlights components defined
on localized brain regions and allows to identify more precisely the areas
involved in the task. PCA and ICA, instead, yield more general and un-
specific components, possibly difficult to read. Even when they seem to
catch localized information, basis elements are not so clearly defined since
they involve the entire set of variables. This is apparent in the fourth row
of Figure 4, where HICA and Treelets select a single electrode (i.e., a sin-
gle variable). This electrode clearly represents some noise either related
to facial muscles activity or due to an unexpected saturation of the elec-
trode. The related components identified by ICA and PCA, even though
highlighting the same electrode, present more complex loadings diffused on
other electrodes. The first row of Figure 4 reveals very similar components
for HICA and and Treelets. Both analysis identify the associative activity
in the frontal brain area, that is the area which processes the information
related to similarities and differences between the two pictures. This crucial
component is not caught by PCA and ICA. The main difference between
HICA and Treelets regards instead the second and the fifth row in Figure
4. While Treelets yield an unfocused result, with components involving all
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the occipital cerebral hemisphere (i.e., one component averaging over the
entire occipital part and the other contrasting the right and the left activity
in the occipital part), HICA splits this information in two separate parts.
The HICA component shown in the second row is related to the primary
visual cortex, the first area reached by visual information, which analyzes
it in terms of shape and pattern recognition. Then the information flow
goes to the internal area of the occipital hemisphere, which associates to
the stimulus specific features like color, direction or origin. This area is
identified only by HICA, specifically by the component in the fifth row of
Figure 4.

Figure 4: First five loadings found out by HICA (first column on the left),
Treelets (second column), ICA (third column) and PCA (fourth column).
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7 Conclusion

We presented a new method for the construction of a multi-resolution non-
orthogonal data-driven basis, appropriate to deal with high-dimensional
and complex data. Non-orthogonality allows for basis elements with a phys-
ical interpretation, while multi-resolution provides basis elements able to
catch very localized data features. The new HICA algorithm is obtained
by merging the Treelet and the ICA algorithms. We illustrated the details
of the HICA algorithm and propose a forward selection strategy to per-
form data-driven dimensional reduction with a non-orthogonal basis. Both
the HICA algorithm and the dimensional reduction procedure have been
implemented in the R package fastHICA [12].

Furthermore, we proved the consistency of the HICA algorithm. Indeed
we proved that when the primitive variables are dependent according to
a block structure such that between-block dependencies are weaker than
within-block dependencies, HICA identifies the underlying block structure.
The analysis of synthetic data suggests that when dealing non-Gaussian
latent components (even non-orthogonal and/or dependent) HICA always
performs better than or equally to PCA, ICA, and Treelets supporting the
claim that HICA inherits the returns of both ICA and Treelets over PCA.
Moreover, as expected by theory, simulations discourage the use of PCA
and ICA when the latent components are dependent and the use of PCA
and Treelets when the latent components are non-orthogonal. Simulations
also show that the criterion proposed in [5] for the choice of K and l might
take to a misdetection of the model. For a given value of K the more
proper approach seems indeed to consider as candidate values for the level
of aggregation l all values providing the maximal energy and not necessarily
the minimum one. Finally, the analysis of EEG traces shows the possible
returns of using in real applications methods providing multi-resolution and
non-orthogonal representations of the phenomenon under investigation.
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