
MOX–Report No. 01/2013

Tensor product finite element differential forms and
their approximation properties

Arnold, D.N.; Boffi, D.; Bonizzoni,F.

MOX, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox@mate.polimi.it http://mox.polimi.it





Tensor product finite element differential forms

and their approximation properties ∗

Douglas N. Arnold♯ Daniele Boffi† Francesca Bonizzoni‡

January 4, 2013

♯ School of Mathematics,
University of Minnesota,

Minneapolis, MN 55455, USA
† Dipartimento di Matematica “F. Casorati”,
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Abstract

We discuss the tensor product construction for complexes of differential
forms and show how it can be applied to define shape functions and degrees
of freedom for finite element differential forms on cubes in n dimensions.
These may be extended to curvilinear cubic elements, obtained as images
of a reference cube under diffeomorphisms, by using the pullback trans-
formation for differential forms to map the shape functions and degrees of
freedom from the reference cube to the image finite element. This con-
struction recovers and unifies several known finite element approximations
in two and three dimensions. In this context, we study the approximation
properties of the resulting finite element spaces in two particular cases:
when the maps from the reference cube are affine, and when they are mul-
tilinear. In the former case the rate of convergence depends only on the
degree of polynomials contained in the reference space of shape functions.
In the latter case, the rate of approximation is degraded, with the loss more
severe for differential forms of higher form degree.
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1 Introduction

Finite element simulations are often performed using meshes of quadrilaterals
in two dimensions or of hexahedra in three. In simple geometries the meshes
may consist entirely of squares, rectangles, or parallelograms, or their three-
dimensional analogues, leading to simple data structures. However, for more gen-
eral geometries, a larger class of quadrilateral or hexahedral elements is needed,
a common choice being elements which are the images of a square or cube under
an invertible multilinear map. In such cases, the shape functions for the finite
element space are defined on the square or cubic reference element and then
transformed to the deformed physical element. In [5] it was shown in the case of
scalar (H1) finite elements in two dimensions that, depending on the choice of
reference shape function space, this procedure may result in a loss of accuracy
in comparison with the accuracy achieved on meshes of squares. Thus, for ex-
ample, the serendipity finite element space achieves only about one half the rate
of approximation when applied on general quadrilateral meshes, as compared to
what it achieves on meshes of squares. The results of [5] were extended to three
dimensions in [15]. The case of vector (H(div)) finite elements in two dimensions
was studied in [6]. In that case the transformation of the shape functions must
be done through the Piola transform and it turns out the same issue arises, but
even more strongly, the requirement on the reference shape functions needed to
ensure optimal order approximation being more stringent. Some results were
obtained for H(curl) and H(div) finite elements in 3-D in [14].

The setting of finite element exterior calculus (see [1, 7, 8]) provides a unified
framework for the study of this problem. In this paper we discuss the construc-
tion of finite element subspaces of the domain HΛk of the exterior derivative
acting on differential k-forms, 0 ≤ k ≤ n, in any number n of dimensions.
This includes the case of scalar H1 finite elements (k = 0), L2 finite elements
(in which the Jacobian determinant enters the transformation, k = n), and, in
three-dimensions, finite elements in H(curl) (k = 1) and H(div) (k = 2).

The paper begins with a brief review of the relevant concepts from differen-
tial forms on domains in Euclidean space. It then describes the tensor product
construction for differential forms, and complexes of differential forms. These
will be used to construct reference shape functions and degrees of freedom. First,
in Section 4, we discuss the construction of finite element spaces of differential
forms and the use of reference domains and mappings. Combining these con-
structions, in Section 5, we define the Q−

r Λ
k finite element spaces, which may be

seen to be the most natural finite element subspace of HΛk using mapped cubi-
cal meshes. In Section 6 we obtain conditions for O(hr+1) approximation in L2

for spaces of differential k-forms on mapped cubic meshes. More precisely, in the
case of multilinear mappings Theorem 6.1 shows that a sufficient condition for
O(hr+1) approximation in L2 is that the reference finite element space contains
Q−

r+kΛ
k. Again we see loss of accuracy when the mappings are multilinear, in

comparison to affine (for which PrΛ
k guarantees approximation of order r+ 1),
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with the effect becoming more severe for larger k. In the final section we deter-
mine the extent of the loss of accuracy for the Q−

r Λ
k spaces. We discuss several

examples of finite element spaces, including standard Qr spaces (k = 0), PrΛ
n

spaces, and serendipity spaces SrΛ
k which have been recently described in [3].

2 Preliminaries on differential forms

We begin with a brief review of some basic notations, definitions, and properties
of differential forms defined on a domain S in R

n. A differential k-form on S
is a function S → Altk Rn, where Altk Rn denotes the space of alternating k-
linear forms mapping (Rn)k = R

n × · · · × R
n → R. By convention Alt0Rn = R,

so differential 0-forms are simply real-valued functions. The space Altk Rn has
dimension

(
n
k

)
for 0 ≤ k ≤ n and vanishes for other values of k. A basis is formed

by the basic alternators dxσ := dxσ1 ∧ · · · ∧ dxσk , for σ = (σ1, . . . , σk) belonging
to the set Σ(k, n) of increasing maps from {1, . . . , k} to {1, . . . , n}. Here dxi ∈
Alt1Rn = (Rn)∗ denotes the functional dxi(v) = vi for v = (v1, . . . , vn) ∈ R

n and
the wedge product of alternating forms is the skew part of the tensor product:

f ∧ g =

(
k + l

k

)
skw(f ⊗ g), f ∈ Altk Rn, g ∈ Altl Rn.

Thus a general differential k-form on S can be expressed uniquely as

f =
∑

σ∈Σ(k,n)

fσ dx
σ =

∑

1≤σ1≤···≤σk≤n

fσ1···σn dx
σ1 ∧ · · · ∧ dxσk , (1)

for some coefficient functions fσ on S. In particular, a differential n-form can
be expressed as f = g dx where the volume form dx = dx1 ∧ · · · ∧ dxn and
the coefficient g is a function on S. As long as the coefficient is integrable, the
integral ∫

S
f =

∫

S
g dx

of the differential form is defined and has the value the notation suggests.
If F(S) is some space of real-valued functions on S, then we denote by

FΛk(S) the space of differential k-forms with coefficients in F(S). This space is
naturally isomorphic to F(S) ⊗ Altk Rn. Examples are the spaces C∞Λk(S) of
smooth k-forms, L2Λk(S) of L2 k-forms, HrΛk(S) of k-forms with coefficients
in a Sobolev space, and PrΛ

k(S) of forms with polynomial coefficients of degree
at most r. The space L2Λk(S) is a Hilbert space with inner product

〈f, g〉L2Λk(S) =
∑

σ∈Σ(k,n)

〈fσ, gσ〉L2(S),

and similarly for the space HrΛk(S), using the usual Sobolev inner-product

〈u, v〉Hr(S) =
∑

|α|≤r

〈Dαu,Dαv〉L2(S), u, v ∈ Hr(S),
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where the sum is over multi-indices α of order at most r.
The exterior derivative of the k-form (1) is the (k + 1)-form

df =
∑

σ∈Σ(k,n)

n∑

j=1

∂fσ
∂xj

dxj ∧ dxσ,

assuming that the indicated partial derivatives exist. We may view the exterior
derivative as an unbounded operator L2Λk(S) → L2Λk+1(S) with domain

HΛk(S) := { f ∈ L2Λk(S) | df ∈ L2Λk+1(S) },

which is a Hilbert space when equipped with the graph norm

〈f, g〉HΛk(S) = 〈f, g〉L2Λk(S) + 〈df, dg〉L2Λk+1(S).

The complex

0 → HΛ0(S)
d
−→ HΛ1(S)

d
−→ · · ·

d
−→ HΛm(S) → 0 (2)

is the L2 de Rham complex on S.
A very important construction is the pullback of a differential form under a

mapping. Let Ŝ be a domain in R
n and F = (F 1, . . . , Fn) a C1 mapping of Ŝ

into a domain S in some R
m. Given a differential k-form v on S, its pullback

F ∗v is a differential k-form on Ŝ. If

v =
∑

1≤i1<···<ik≤m

vi1···ik dx
i1 ∧ · · · ∧ dxik ,

then

F ∗v =
∑

1≤i1<···<ik≤m

n∑

j1,...,jk=1

(vi1···ik ◦ F )
∂F i1

∂x̂j1
· · ·

∂F ik

∂x̂jk
dx̂j1 ∧ · · · ∧ dx̂jk . (3)

The pullback operation satisfies (G◦F )∗ = F ∗◦G∗, and, if F is a diffeomorphism,
(F ∗)−1 = (F−1)∗. The pullback preserves the wedge product and the exterior
derivative in the sense that

F ∗(v ∧ w) = F ∗v ∧ F ∗w, dF ∗v = F ∗dv.

If F is a diffeomorphism of Ŝ onto S which is orientation preserving (i.e., its
Jacobian determinant is positive), then the pullback preserves the integral as
well: ∫

Ŝ
F ∗v =

∫

S
v, v ∈ L1Λn(S).

An important application of the pullback is to define the trace of a differential
form on a lower dimensional subset. If S is a domain in R

n and f is a subset
of the closure S̄ and also an open subset of a hyperplane of dimension ≤ n in
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R
n, then the pullback of the inclusion map f →֒ S defines the trace operator trf

taking k-forms on S̄ to k-forms on f .
Before continuing, we recall that vector proxies exist for differential 1-forms

and (n − 1)-forms on a domain in R
n. That is, we may identify the 1-form∑

i vi dx
i with the vector field (v1, . . . , vn) : S → R

n, and similarly we may
identify the (n− 1)-form

∑

i

(−1)ivi dx
1 ∧ · · · d̂xi · · · ∧ dxn

with the same vector field. A 0-form is a scalar function, and an n-form can be
identified with its coefficient which is a scalar function. Under these identifica-
tions, the de Rham complex (2) on a three-dimensional domain becomes

0 → H1(S)
grad
−−−→ H(curl, S)

curl
−−→ H(div, S)

div
−−→ L2(S) → 0.

The pullback of a scalar function f , viewed as a 0-form, is just the composition:
v̂(x̂) = v

(
F (x̂)

)
, x̂ ∈ Ŝ. If we identify scalar functions with n-forms, then the

pullback is v̂(x̂) = det[DF (x̂)]v
(
F (x̂)

)
where DF (x̂) is the Jacobian matrix of

F at x̂. For a vector field v, viewed as a 1-form or an (n− 1)-form, the pullback
operation corresponds to

v̂(x̂) = [DF (x̂)]T v
(
F (x̂)

)
, v̂(x̂) = adj[DF (x̂)]v

(
F (x̂)

)
,

respectively. The adjugate matrix, adjA, is the transposed cofactor matrix,
which is equal to (detA)A−1 in case A is invertible. The latter formula, repre-
senting the pullback of an (n− 1)-form, is called the Piola transform.

Next we consider how Sobolev norms transform under pullback. If F is a
diffeomorphism of Ŝ onto S smooth up to the boundary, then each Sobolev norm
of the pullback F ∗v can be bounded in terms of the corresponding Sobolev norm
of v and bounds on the partial derivatives of F and F−1. Specifically, we have
the following theorem.

Theorem 2.1 Let r be a non-negative integer and M > 0. There exists a

constant C depending only on r, M , and the dimension n, such that

‖F ∗v‖HrΛk(Ŝ) ≤ C‖v‖HrΛk(S), v ∈ HrΛk(S),

whenever Ŝ, S are domains in R
n and F : Ŝ → S is a Cr+1 diffeomorphism

satisfying

max
1≤s≤r+1

|F |W s
∞
(Ŝ) ≤ M, |F−1|W 1

∞
(S) ≤ M.

Proof. From (3),

‖F ∗v‖HrΛk(Ŝ) =
∑

1≤i1<···<ik≤m

∑

|α|≤r

∫

Ŝ

|Dα[(vi1···ik ◦ F )
∂F i1

∂x̂j1
· · ·

∂F ik

∂x̂jk
](x̂)|2 dx̂.
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Using the Leibniz rule and the chain rule, we can bound the integrand by

C
∑

|β|≤r

|(Dβvi1···ik)
(
F (x̂)

)
|

where C depends only on max1≤s≤r+1 |F |W s
∞

(Ŝ) and so can be bounded in terms of

M . Changing variables to x = Fx̂ in the integral brings in a factor of the Jacobian

determinant of F−1, which is also bounded in terms of M , and so gives the result. �

A simple case is when F is a dilation: F (x̂) = hx̂ for some h > 0. Then (3)
becomes

(F ∗v)(x̂) =
∑

σ∈Σ(k,n)

vσ(hx̂)h
k dx̂σ,

and therefore,

Dα(F ∗v)(x̂) =
∑

σ∈Σ(k,n)

(Dαvσ)(hx̂)h
r+k dx̂σ,

where r = |α|. We thus get the following theorem.

Theorem 2.2 Let F be the dilation Fx̂ = hx for some h > 0, Ŝ a domain in

R
n, S = F (Ŝ), and α a multi-index of order r. Then

‖Dα(F ∗v)‖L2Λk(Ŝ) = hr+k−n/2‖Dαv‖L2Λk(S), v ∈ HrΛk(S).

3 Tensor products of complexes of differential forms

In this section we discuss the tensor product operation on differential forms
and complexes of differential forms. The tensor product of a differential k-
form on some domain and a differential l-form on a second domain may be
naturally realized as a differential (k+l)-form on the Cartesian product of the two
domains. When this construction is combined with the standard construction of
the tensor product of complexes, we are led to a realization of the tensor product
of subcomplexes of the de Rham subcomplex on two domains as a subcomplex of
the de Rham complex on the Cartesian product of the domains (see also [9, 10]).

We begin by identifying the tensor product of algebraic forms on Euclidean
spaces. For m,n ≥ 1, consider the Euclidean space R

m+n with coordinates
denoted (x1, . . . , xm, y1, . . . , yn). The projection π1 : R

m+n → R
m on the first m

coordinates defines, by pullback, an injection π∗
1 : Altk Rm → Altk Rm+n, with

the embedding of π∗
2 : Altl Rn → Altl Rm+n defined similarly. Therefore we may

define a bilinear map

Altk Rm ×Altl Rn → Altk+l
R
m+n, (µ, ν) 7→ π∗

1µ ∧ π∗
2ν,

or, equivalently, a linear map

Altk Rm ⊗Altl Rn → Altk+l
R
m+n, µ⊗ ν 7→ π∗

1µ ∧ π∗
2ν.
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This map is an injection. Indeed, a basis for Altk Rm ⊗ Altl Rn consists of the
tensors dxσ ⊗ dyτ with σ ∈ Σ(k,m) and τ ∈ Σ(l, n), which simply maps to
dxσ ∧ dyτ , an element of the standard basis of Altk+l

R
m+n. In view of this

injection, we may view the tensor product of µ⊗ ν of a k-form µ on R
m and an

l-form on R
n as a (k+ l)-form on R

m+n (namely, we identify it with π∗
1µ∧π∗

2ν).
Next we turn to differential forms defined on domains in Euclidean space.

Let u be a differential k-form on a domain S ⊂ R
m and v a differential l-form

on T ⊂ R
n. We may identify the tensor product u ⊗ v with the differential

(k+ l)-form π∗
Su∧ π∗

T v on S × T where πS : S × T → S and πT : S × T → T are
the canonical projections. In coordinates, this identification is

(
∑

σ

fσ dx
σ)⊗ (

∑

τ

gτ dy
τ ) =

∑

σ,τ

fσ ⊗ gτ dx
σ ∧ dyτ .

Note that the exterior derivative of the tensor product is

dS×T (π
∗
Su ∧ π∗

T v) = dS×T (π
∗
Su) ∧ π∗

T v + (−1)kπ∗
Su ∧ dS×T (π

∗
T v)

= π∗
S(dSu) ∧ π∗

T v + (−1)kπ∗
Su ∧ π∗

T (dT v).
(4)

Having defined the tensor product of differential forms, we next turn to
the tensor product of complexes of differential forms. A subcomplex of the L2

de Rham complex (2),

0 → V 0 d
−→ V 1 d

−→ · · ·
d
−→ V m → 0, (5)

is called a de Rham subcomplex on S. This means that, for each k, V k ⊂ HΛk(S)
and d maps V k into V k+1. Suppose we are given such a de Rham subcomplex
of S and also a de Rham subcomplex,

0 → W 0 d
−→ W 1 d

−→ · · ·
d
−→ Wn → 0, (6)

on T . The tensor product of the complexes (5) and (6) is the complex

0 → (V ⊗W )0
d
−→ (V ⊗W )1

d
−→ · · ·

d
−→ (V ⊗W )m+n → 0, (7)

where
(V ⊗W )k :=

⊕

i+j=k

(V i ⊗W j), k = 0, . . . ,m+ n. (8)

and the differential (V ⊗W )k → (V ⊗W )k+1 is defined by

d(u⊗ v) = diSu⊗ v + (−1)iu⊗ djT v, u ∈ V i, v ∈ W j .

In view of the identification of the tensor product of differential forms with
differential forms on the Cartesian product, the space (V ⊗W )k in (8) consists
of differential k-forms on S × T , and, in view of (4), the differential is the
restriction of the exterior derivative on HΛk(S × T ). Thus the tensor product
complex (7) is a subcomplex of the de Rham complex on S × T .
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4 Finite elements

Let Ω be a bounded domain in R
n, 0 ≤ k ≤ n. As in [11], a finite element space

of k-forms on Ω is assembled from several ingredients: a triangulation T of Ω,
whose elements we call finite elements, and, for each finite element K, a space
V (K) of shape functions on K, and a set Ξ(K) of degrees of freedom. We now
describe these ingredients more precisely.

For the triangulation, we allow the finite elements to be curvilinear polytopes.
This means that each K is the image FK(K̂) of an n-dimension polytope K̂ (so a
closed polygon in two dimensions and a closed polyhedron in three dimensions)
under a smooth invertible map FK of K̂ into R

n. The faces of K are defined as
the images of the faces of K̂, and the requirement that T be a triangulation of
Ω means that Ω̄ =

⋃
K∈T K and that the intersection of any two elements of T

is either empty or is a common face of both of some dimension.
The space V (K) of shape functions is a finite-dimensional space of k-forms

on K. The degrees of freedom are a unisolvent set of functionals on V (K), or,
otherwise put, Ξ(K) is a basis for the dual space V (K)∗. Further, each degree
of freedom is associated to a specific face of K, and when two distinct elements
K1 and K2 intersect in a common face f , the degrees of freedom of K1 and K2

associated to the face f are in 1-to-1 correspondence.
The finite element functions are then defined as the differential forms on

Ω which belong to the shape functions spaces piecewise, and for which corre-
sponding degrees of freedom are single-valued. That is, to define a finite element
function u we specify, for all elements K, shape functions uK ∈ V (K) satisfying
ξ1(uK1

) = ξ2(uK2
) whenever K1 and K2 share a common face and ξ1 ∈ Ξ1(K)

and ξ2 ∈ Ξ2(K) are corresponding degrees of freedom associated to the face.
Then u is defined almost everywhere by setting its restriction to the interior of
each element K to be uK . The finite element space V (T ) is defined to be the
space of all such finite element functions.

The degrees of freedom associated to faces of dimension < n determine the
inter-element continuity imposed on the finite element functions. Specifying the
continuity in this way leads to finite element spaces which can be efficiently
implemented. We note that the finite element space is unchanged if we use a
different set of degrees of freedom, as long as the span of the degrees of freedom
associated to each face is unchanged. Thus we shall usually specify these spans,
rather than a particular choice of basis for them.

When a finite element K is presented as FK(K̂) using a reference element

K̂ ⊂ R
n and a diffeomorphic mapping FK : K̂ → K (as for curvilinear poly-

topes), it is often convenient to specify the shape functions and degrees of free-
dom in terms of the reference element and the mapping. That is, we specify a
finite dimensional space V (K̂) of differential k-forms on K̂, the reference shape

functions, and define V (K) = (F−1
K )∗V (K̂), the pullback under the diffeomor-

phism F−1
K : K → K̂. Similarly, given a space Ξ(K̂) of degrees of freedom for

V (K̂) on K̂ and a reference degree of freedom ξ̂ ∈ Ξ(K̂) associated to a face f̂
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of K̂, we define ξ by ξ(v) = ξ̂(F ∗
Kv) for v ∈ V (K) and associate ξ to the face

f = FK(f̂) of K. In this way we determine the degrees of freedom Ξ(K). In
the present paper we shall be concerned with the case where each element of the
mesh is presented as the image of the unit cube K̂ = [0, 1]n under a multilin-
ear map (i.e., each component of FK is a polynomial of degree at most one in
each of the n variables). A special case is when FK is affine, in which case the
elements K are arbitrary parallelotopes (the generalization of parallelograms in
two dimensions and parallelepipeds in three dimensions). In the general case,
the elements are arbitrary convex quadrilaterals in two dimensions, but in more
dimensions they may be truly curvilinear: the edges are straight, but the faces
of dimension two need not be planar.

We need some measure of the shape regularity of an element K. Since the
shape regularity should depend on the shape, but not the size, of the element,
we require it to be invariant under dilation. Therefore, let hK = diam(K) and
set K̄ = h−1

K K, which is of unit diameter. Assuming only that the element is
a Lipschitz domain, the Bramble–Hilbert lemma ensures that for r ≥ 0 integer
there exists a constant C such that

inf
p∈Pr(K̄)

‖u− p‖L2(K̄) ≤ C|u|Hr+1(K̄), u ∈ Hr+1(K̄). (9)

We define C(K, r) to be the least such constant, and take this as our shape
regularity measure. If the domain K is convex then C(K, r) can be bounded in
terms only of r and the dimension n; see [18]. If the domain is star-shaped with
respect to a ball of diameter at least δhK for some δ > 0, then C(K, r) can be
bounded in terms of r, n, and δ; see [13].

The next theorem will play a fundamental role in proving approximation
properties of finite element differential forms.

Theorem 4.1 Let K be a bounded Lipschitz domain in R
n with diameter hK

and let r be a non-negative integer. Then there exists a constant C depending

only on r, n, and the shape constant C(K, r), such that

inf
p∈PrΛk(K)

‖u− p‖L2Λk(K) ≤ Chr+1
K |u|Hr+1Λk(K), u ∈ Hr+1Λk(K),

for 0 ≤ k ≤ n.

Proof. Let K̄ = h−1
K K, let F : K̄ → K be the dilation, and set ū = F ∗u. Applying

(9) to each component of F ∗u, we obtain p ∈ PrΛ
k(K̄) with

‖F ∗u− p‖L2Λk(K̄) ≤ C|F ∗u|Hr+1Λk(K̄). (10)

Set q = (F−1)∗p. Since F−1 is a dilation, q ∈ PrΛ
k(K), and clearly F ∗(u−q) = F ∗u−p.

Combining (10) and Theorem 2.2 gives the desired estimate. �
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5 Tensor product finite element differential forms on

cubes

In this section, we describe the construction of specific finite element spaces
of differential forms. We suppose that the triangulation consists of curvilinear
cubes, so that each element K of the triangulation T is specified by a smooth
diffeomorphism FK taking the unit cube K̂ = [0, 1]n onto K ⊂ R

n. As described
above, the shape functions and degrees of freedom on K can then be determined
by specifying a space V (K̂) of reference shape functions and a set Ξ(K̂) of
reference degrees of freedom. Now we apply the tensor product construction of
Section 3 to construct the reference shape functions and degrees of freedom.

Fix an integer r ≥ 1. With I = [0, 1] the unit interval, let PrΛ
0(I) = Pr(I)

denote the space of polynomial functions (0-forms) on I of degree at most r, and
let Pr−1Λ

1(I) = Pr−1(I) dx denote the space of polynomial 1-forms of degree at
most r− 1. Connecting these two spaces with the exterior derivative, we obtain
a subcomplex of the de Rham complex on the unit interval:

Pr(I)
d
−→ Pr−1(I) dx. (11)

Taking the tensor product of this complex with itself, we obtain a subcomplex
of the de Rham complex on I2, whose spaces we denote by Q−

r Λ
k = Q−

r Λ
k(I2):

Q−
r Λ

0 d
−→ Q−

r Λ
1 d
−→ Q−

r Λ
2. (12)

Specifically, writing Pr,s = Pr,s(I
2) for Pr(I)⊗ Ps(I), we have on I2,

Q−
r Λ

0 = Pr,r, Q−
r Λ

1 = Pr−1,r dx ⊕ Pr,r−1 dy, Q−
r Λ

2 = Pr−1,r−1 dx ∧ dy.

The first space Q−
r Λ

0 is the tensor product polynomial space traditionally de-
noted Qr, and the last space is Qr−1 dx ∧ dy.

To get spaces on the 3-D cube, we may further take the tensor product of the
2-D complex (12) with the 1-D complex (11), or, equivalently, take the tensor
product of three copies of the 1-D complex, to obtain a de Rham subcomplex
on the unit cube I3:

Q−
r Λ

0 d
−→ Q−

r Λ
1 d
−→ Q−

r Λ
2 d
−→ Q−

r Λ
3.

Here Q−
r Λ

0 = Qr, Q
−
r Λ

3 = Qr−1 dx ∧ dy ∧ dz, and

Q−
r Λ

1 = Pr−1,r,r dx ⊕ Pr,r−1,r dy ⊕ Pr,r,r−1 dz,

Q−
r Λ

2 = Pr,r−1,r−1 dy ∧ dz ⊕ Pr−1,r,r−1 dx ∧ dz ⊕ Pr−1,r−1,r dx ∧ dy.

The extension of this construction to higher dimensions is clear, yielding spaces
Q−

r Λ
k(In) for 0 ≤ k ≤ n, n ≥ 1, spanned by quantities p dxσ, where σ ∈ Σ(k, n)

10



and p is a polynomial of degree at most r in all variables and of degree at most
r − 1 in the variables xσi . More precisely,

Q−
r Λ

k(In) =
⊕

σ∈Σ(k,n)

[
n⊗

i=1

Pr−δi,σ(I)

]
dxσ1 ∧ · · · ∧ dxσk ,

where

δi,σ =

{
1, i ∈ {σ1, . . . , σk},

0, otherwise.

In the case k = 0, this space is understood to be

Q−
r Λ

0(In) =
n⊗

i=1

Pr(I),

i.e., the space conventionally referred to as Qr(I
n). This definition makes sense

also if r = 0, so Q−
0 Λ

0(In) = Q0(I
n) = R is the space of constant functions. For

k > 0, Q−
0 Λ

k(In) = 0. We also interpret this in the case n = 0, so In is a single
point. Then Q−

r Λ
0(I0) is understood to be the space R of constants. It is easy

to check that

dimQ−
r Λ

k(In) =

(
n

k

)
(r + 1)n−krk,

in all cases 0 ≤ k ≤ n, r ≥ 0.
Let us now characterize the degrees of freedom of Q−

r Λ
k(In). The space

PrΛ
0(I) = Pr(I) has dimension r + 1. It has one degree of freedom associated

to each of the two vertices p = 0 and p = 1, namely the evaluation functional
v 7→ v(p). The remaining r− 1 degrees of freedom are associated to I itself, and
are given by

v 7→

∫

I
v(x)q(x) dx, q ∈ Pr−2(I).

The space Pr−1Λ
1(I) = Pr−1(I) has dimension r and its degrees of freedom are

given by

v 7→

∫

I
v(x)q(x) dx, q ∈ Pr−1(I).

The tensor product construction then yields degrees of freedom for Q−
r Λ

k(In).
Namely, each degree of freedom for Q−

r Λ
k(In) is of the form ξ1 ⊗ . . . ⊗ ξn, and

is associated to the Cartesian product face f1 × . . . × fn, where ξj ∈ Ξ(I) is
associated to the face fj of the interval I ∀ j. Hence, a set of unisolvent degrees
of freedom for Q−

r Λ
k(In) (r ≥ 1, 0 ≤ k ≤ n) is given by

v 7→

∫

f
trf v(x) ∧ q(x), q ∈ Q−

r−1Λ
d−k(f), (13)

for each face f of In of degree d ≥ k.

11



Let us count that we have supplied the correct number of degrees of freedom.
Since the number of faces of dimension d of In is 2n−d

(
n
d

)
, the total number of

degrees of freedom is

n∑

d=k

2n−d

(
n

d

)(
d

k

)
rk(r − 1)d−k.

Substituting
(
n
d

)(
d
k

)
=

(
n
k

)(
n−k
n−d

)
and then changing the summation index from d

to m = n− d we get:

n∑

d=k

2n−d

(
n

k

)(
n− k

n− d

)
rk(r − 1)d−k =

(
n

k

)
rk

n−k∑

m=0

(
n− k

m

)
2m(r − 1)n−k−m

=

(
n

k

)
rk(r − 1 + 2)n−k = dimQ−

r Λ
k(In),

as desired.
Figure 1, taken from [2], shows degree of freedom diagrams for the Q−

r Λ
k

spaces in two and three dimensions. In such diagrams, the number of symbols
drawn in the interior of a face is equal to the number of degrees of freedom
associated to the face.

Now suppose that a mesh T of curvilinear cubes K = FK(K̂) is given. We
assume that whenever two elements K1 and K2 meet in a common face, say f =
FK1

(f̂1) = FK2
(f̂2), then the map F−1

K2
◦FK1

|f̂1 mapping f̂1 onto f̂2 is linear. The

assembled finite element spaceQ−
r Λ

k(T ) consists of functions u whose restriction
uK to K belongs to (F−1

K )∗Q−
r Λ

k(In) and for which the corresponding degrees
of freedom are single-valued on faces. The choice of degrees of freedom implies
that if K1 and K2 share a face f of dimension ≥ k, then the traces trf uK1

and trf uK2
coincide. This is exactly the condition needed for u to belong to

the space HΛk(Ω), i.e., for the exterior derivative of u to belong to L2Λk+1(Ω)
(see [7, Lemma 5.1]). From the commutativity of the pullback with the exterior
derivative, we see that dQ−

r Λ
k(T ) ⊂ Q−

r Λ
k+1(T ), and so we obtain a subcomplex

of the L2 de Rham complex on Ω:

Q−
r Λ

0(T )
d
−→ Q−

r Λ
1(T )

d
−→ · · ·

d
−→ Q−

r Λ
n(T ).

The assembled finite element spaces Q−
r Λ

k(T ) are well-known, especially
when the maps FK are composed of dilations and translations, so the mesh
consists of cubes. The space Q−

r Λ
0(T ) is the usual Qr approximation of H1(Ω)

and the space Q−
r Λ

n(T ) is the discontinuous Qr−1 approximation of L2(Ω).
In three dimensions, if we identify HΛ1 and HΛ2 with H(curl) and H(div),
respectively, then Q−

r Λ
1(T ) and Q−

r Λ
2(T ) are the Nédélec edge element and

face element spaces of the first kind, respectively [17].

12



Q−
r Λ

k (2D): k = 0 k = 1 k = 2

r = 1

r = 2

r = 3

Q−
r Λ

k (3D): k = 0 k = 1 k = 2 k = 3

r = 1

r = 2

r = 3

Figure 1: Degree of freedom diagrams for Q−
r Λ

k spaces in two and three dimen-
sions.
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6 Approximation properties on curvilinear cubes

We now return to the situation of Section 4 and consider the approximation
properties afforded by finite element spaces of differential k-forms on meshes of
curvilinear cubes. Thus we suppose given:

1. A space of reference shape k-forms V (K̂) and a set of reference degrees of
freedom Ξ(K̂) on the unit cube K̂;

2. A mesh T of the domain Ω;

3. For each K ∈ T a diffeomorphism FK of K̂ onto K.

As described in Section 4, these determine a space of k-form shape functions
V (K) on each element K and an assembled finite element space V (T ) consisting
of k-forms on Ω which belong piecewise to the V (K). If it happens that V (K)
contains the full polynomial space PrΛ

k(K), then Theorem 4.1 gives us the
approximation result

inf
v∈V (K)

‖u− v‖L2Λk(K) ≤ Chr+1
K |u|Hr+1Λk(K), (14)

with a constant C depending only on r, n, and the shape constant C(K, r).
We now show how to extend estimate (14) to the global space V (T ). More

precisely, under the same condition that for all K ∈ T the space V (K) contains
the full polynomial space PrΛ

k(K), we want to show that

inf
v∈V (T )

‖u− v‖L2Λk ≤ Chr+1|u|Hr+1Λk , (15)

where h is as usual the maximum of the hK ’s and the constant C depends
only on r, n, and the shape constants C(K, r). This result can be obtained by
extending to this setting the classical construction of the Clément interpolant
presented in [12]. An analogous extension has been presented in [7, Sec. 5.4] in
the case of simplicial meshes. A Clément-like operator πh : L2Λk → V (T ) can
be defined as in (13), where trf v(x) is replaced by the trace of the L2 projection
of v onto PrΛ

k(S), S being the union of elements in T containing the face f .
Following [12], crucial conditions in order to get (15) are that global polynomial
forms are preserved by πh, that is πhw = w whenever w belongs to PrΛ

k(Ω), and
suitable scaling estimates which in our case are consequences of Theorems 2.1
and 2.2.

Thus we are led to ask what conditions on the reference shape functions V (K̂)
and the mappings FK ensure that V (K) = (F−1

K )∗V (K̂) contains PrΛ
k(K). The

following result, which is straightforward to prove at this point, answers this
question for affine and multilinear maps.

Theorem 6.1 Suppose that either

14



1. FK is an affine diffeomorphism and that PrΛ
k(K̂) ⊂ V (K̂); or

2. FK is a multilinear diffeomorphism and Q−
r+kΛ

k(K̂) ⊂ V (K̂)

Then V (K) contains PrΛ
k(K) and so (14) and (15) hold.

Proof. Let us write F for FK . The requirement that V (K) = (F−1)∗V (K̂) contains
PrΛ

k(K) is equivalent to requiring that F ∗
(
PrΛ

k(K)
)
⊂ V (K̂). If F is affine, then

F ∗
(
PrΛ

k(K)
)
⊂ PrΛ

k(K̂), as is clear from (3). The sufficiency of the first condition
follows.

For F multilinear, we wish to show that F ∗
(
PrΛ

k(K)
)
⊂ Q−

r Λ
k(K̂), for which it

suffices to show that F ∗(p dxσ) ∈ Q−
r+kΛ

k(K̂) if p ∈ Pr(K) and σ ∈ Σ(k, n). From (3)
it suffices to show that

(p ◦ F )
∂F i1

∂x̂j1
· · ·

∂F ik

∂x̂jk
dx̂j1 ∧ · · · ∧ dx̂jk ∈ Q−

r+kΛ
k(K̂). (16)

Now p ∈ Pr and F multilinear imply that p◦F ∈ Qr(K). Moreover, ∂F il/∂x̂jl is multi-

linear, but also independent of x̂jl . Therefore the product, (p◦F )∂F i1/∂x̂j1 · · · ∂F ik/∂x̂jk ,

is of degree at most r+k in all variables, but of degree at most r+k−1 in the variables

x̂jl . Referring to the description of the spaces Q−
r spaces derived in Section 5, we verify

(16). �

Note that the requirement on the reference space V (K̂) to obtain O(hr+1)
convergence is much more stringent when the maps FK are only assumed to be
multilinear, than in the case when they are restricted to be affine. Instead of just
requiring that V (K̂) contain the polynomial space PrΛ

k(K̂), it must contain the
much larger spaceQ−

r+kΛ
k(K̂). For 0-forms, the requirement reduces to inclusion

of the space Qr(K̂). This result was obtained previously in [5] in two dimensions,
and in [15], in three dimensions. The requirement becomes even more stringent
as the form degree, k, is increased.

7 Application to specific finite element spaces

Theorem 6.1 gives conditions on the space V (K̂) of reference shape functions
which ensure a desired rate of L2 approximation accuracy for the assembled
finite element space V (T ). In this section we consider several choices for V (K̂)
and determine the resulting implied rates of approximation. According to the
theorem, the result will be different for parallelotope meshes, in which each
element is an affine image of the cube K̂, and for the more general situation of
curvilinear cubic meshes in which element is a multilinear image of K̂ (which
we shall simply refer to as curvilinear meshes in the remainder the section).
Specifically, if s is the largest integer such that

Ps−1Λ
k(K̂) ⊂ V (K̂), (17)

then the theorem implies a rate of s (that is, L2 error bounded by O(hs)) on
parallelotope meshes, while if s is the largest integer for which the more stringent
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condition
Q−

s+k−1Λ
k(K̂) ⊂ V (K̂), (18)

holds, then the theorem implies a rate of s more generally on curvilinear meshes.

7.1 The space Qr

First we consider the case of 0-forms (H1 finite elements) with V (K̂) = Q−
r Λ

0(K̂),
which is the usual Qr(K̂) space, consisting of polynomials of degree at most r in
each variable. Then (17) holds for s = r + 1, but not larger. Therefore we find
the L2 approximation rate to be r+1 on parallelotope meshes, as is well-known.
Since k = 0, (18) also holds for s = r+1, and so on curvilinear meshes we obtain
the same rate r+1 of approximation. Thus, in this case, the generalization from
parallelotope to curvilinear meshes entails no loss of accuracy.

7.2 The space Q−
r Λ

n

The case of n-forms with V (K̂) = Q−
r Λ

n(K̂) is quite different. If we identify
n-forms with scalar-valued functions, this is the space Qr−1(K̂). Hence (17)
holds with s = r, and so we achieve approximation order O(hr) on parallelotope
meshes. However, for k = n, (18) holds only if s ≤ r−n+1, and so Theorem 6.1
only gives a rate of r−n+1 on curvilinear meshes in this case, and no convergence

at all if r ≤ n−1. Thus curvilinear meshes entail a loss of one order of accuracy
compared to parallelotope meshes in two dimensions, a loss of two orders in
three dimensions, etc. This may seem surprising, since if we identify an n-form
v dx1 ∧ · · · ∧ dxn with the function v, which is a 0-form, the space Q−

r Λ
n(K̂)

corresponds to the space Qr−1(K̂) = Q−
r−1Λ

0(K̂), which achieves the same rate
r on both classes of meshes. The reason is that the transformation of an n-form
on K̂ to an n-form on K is very different than the transform of a 0-form. The
latter is simply v̂ = v ◦ F while the former is

v̂ dx̂1 ∧ · · · ∧ x̂n = (v ◦ F )(detF ) dx1 ∧ · · · ∧ dxn.

7.3 The spaces Q−
r Λ

k

Next we consider the case V (K̂) = Q−
r Λ

k(K̂) for k strictly between 0 and n.
Then (17) holds with s = r and (18) holds with s = r − k + 1 (but no larger).
Thus, the rates of approximation achieved are r on parallelotope meshes and
r− k+ 1 for curvilinear meshes. In particular, if r < k, then the space provides
no approximation in the curvilinear case. For example, in three dimensions the
space Q−

1 Λ
2(K), which, in conventional finite element language is the trilinearly

mapped Raviart-Thomas-Nedelec space, affords no approximation in L2. This
fact was noted and discussed in [16].
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7.4 The space PrΛ
n

Since the space HΛn(Ω) does not require inter-element continuity, the shape
functions V (K̂) = PrΛ

n(K̂) may be chosen as reference shape functions (with
all degrees of freedom in the interior of the element). In this case, (17) clearly
holds for s = r + 1, giving the expected O(hr+1) convergence on parallelotope
meshes. But (18) holds if and only if Qs+n−2(K̂) ⊂ Pr(K̂), which holds if and
only if n(s+n− 2) ≤ r. In two dimensions this condition becomes s ≤ r/2, and
so we only obtain the rate of ⌊r/2⌋, and no approximation at all for r = 0 or 1. In
three dimensions, the corresponding rate is O⌊r/3⌋ − 1, requiring r ≥ 6 for first
order convergence on curvilinear meshes. For general n, the rate is ⌊r/n⌋−n+2.

7.5 The serendipity space Sr

The serendipity space Sr, r ≥ 1, is a finite element subspace of H1 (i.e., a space
of 0-forms). In two dimensions and, for small r, in three dimensions, the space
has been used for many decades. In 2011, a uniform definition was given for all
dimensions n and all degrees r ≥ 1 [3]. According to this definition, the shape
function space Sr(K̂) consists of all polynomials of superlinear degree less than
or equal to r, i.e., for which each monomial has degree at most r ignoring those
variables which enter the monomial linearly (example: the monomial x2yz3 has
superlinear degree 5). From this definition, it is easy to see that Pr(K̂) ⊂ Sr(K̂)
but Pr+1(K̂) 6⊂ Sr(K̂). Thus, from (17), the rate of L2 approximation of Sr

on parallelotope meshes is r + 1. Now Q1(K̂) ⊂ Sr(K̂) for all r ≥ 1, but for
s ≥ 2, Qs(K̂) contains the element (x1 · · ·xn)

s of superlinear degree ns. It
follows that (18) holds if and only if s ≤ max(2, ⌊r/n⌋+ 1), which gives the L2

rate of convergence of the serendipity elements on curvilinear meshes. This was
shown in two dimensions in [5].

7.6 The space SrΛ
k

In [4], Arnold and Awanou defined shape functions and degrees of freedom for a
finite element space SrΛ

k on cubic meshes in n-dimensions for all form degrees
k between 0 and n, and polynomial degrees r ≥ 1. The shape function space
SrΛ

k(K̂) they defined contains PrΛ
k(K̂), so the assembled finite element space

affords a rate of approximation r+1 on parallelotope meshes. In the case k = n,
SrΛ

n(K̂) in fact coincides with PrΛ
n(K̂), so, as discussed above, the rate is

reduced to ⌊r/n⌋−n+2 on curvilinear meshes. In the case k = 0, SrΛ
0 coincides

with the serendipity space Sr, and so the rate is reduced to max(2, ⌊r/n⌋+1) on
curvilinear meshes in that case. In n = 2 dimensions, this leaves the space SrΛ

1,
which is the BDM space on squares, for which the reference shape functions
are PrΛ

1(K̂) together with the span of the two forms d(xr+1y) and d(xyr+1).
To check condition (18) we note that Q−

s Λ
1(K̂) contains xs−1ys dx, which is

contained in SrΛ
1(K̂) only if 2s − 1 ≤ r. Thus the rate of approximation of

SrΛ
1 on curvilinear meshes in two dimension is ⌊(r + 1)/2⌋.
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