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Abstract

In the present paper we present a finite element approach for option
pricing in the framework of a well-known stochastic volatility model with
jumps, the Bates model. In this model the asset log-returns are assumed
to follow a jump-diffusion model where the jump component consists of a
Lévy process of compound Poisson type, while the volatility behavior is
described by a stochastic differential equation of CIR type, with a mean-
reverting drift term and a diffusion component correlated with that of the
log-returns. Like in all the Lévy models, the option pricing problem can
be formulated in terms of an integro-differential equation: for the Bates
model the unknown F (S, V, t) (the option price) of the pricing equation
depends on three independent variables and the differential operator part
turns out to be of parabolic kind, while the nonlocal integral operator is
calculated with respect to the Lévy measure of the jumps. In this paper
we will present a variational formulation of the problem suitable for a finite
element approach. The numerical results obtained for european options
will be compared with those obtained with different methods.

1 Introduction

A huge effort has been made in the last few years in order to overcome the
intrinsic limitations of the Black-Scholes model. Although it has been a great
success as a first attempt to provide an evaluation for financial derivatives, it
was soon clear that it’s description of financial market behavior was not satis-
factory. Very well known observed empirical features of the log prices were not
correctly described by this model: heavy tails, volatility clustering, aggregational
gaussianity are some peculiarities that cannot be explained on the basis of the
lognormal assumption on which the Black-Scholes model stands. The volatility
smile is another relevant phenomenon that cannot be explained on the basis of
a Black-Scholes description. Several different approaches have been exploited
in order to give a more satisfactory description of financial markets, but the
main contributions in this direction can be grouped in two different classes of
models, the so called stochastic volatility models and the models with jumps.
An extended literature is available on both kind of approaches and they both
give a more realistic description of the prices evolution in financial markets, but
separately considered they perform very well only in some situations. While
jump models can succesfully reproduce the volatility smiles on short term ma-
turity ranges, stochastic volatility models give a better description of the same
phenomenon on long maturity terms. This has naturally led to the introduc-
tion of more complicated, but more realistic models in which both features of
stochastic volatility and jumps can be present. The three more popular models
in which this integration of jumps and stochastic volatility has been performed
are the BNS model introduced by O. Barndorff-Nielsen and N. Shepard [3], [4],
the model introduced by Bates in [5], and the time-changed Lévy models intro-
duced by Carr, D. Madan, H. Geman and M. Yor in [18]. While in the former
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the volatility dynamics is driven by a positive Lévy process correlated with the
jump process in the log-price of the asset, in the latter the volatility dynamics is
governed by a time-changed Lévy process. We shall concentrate in the present
work on the second model we have just mentioned, the Bates model in which a
Merton jump-diffusion model is combined with a stochastic volatility model of
the Heston type. As R. Cont and P. Tankov have pointed out, the performance of
the time changed Lévy models in calibrating to market option prices are usually
much better than those obtained in a BNS framework [14]: in the last model,
in fact, the possible implied volatility patterns are restricted by the requirement
that the same parameter ρ characterize both the jumps in the returns and the
volatility; on the other hand the calibration performances of the Bates model are
comparable to those of the time changed Lévy processes, ”Thus the Bates model
appears to be at the same time the simplest and the most flexible of the models”
[17], pag. 495. In the framework of option pricing via PDE (PIDE for models
with jumps) several different approaches have been exploited both for stochastic
volatility models and models with jumps. As far as finite element methods are
concerned, we just quote the papers by Y. Achdou and N. Tchou [1] and by N.
Hilber, A.-M. Matache and C. Schwab [14] for the first class of models and the
papers by A.-M. Matache, T. von Petersdorff and C. Schwab [11] and by A.-M.
Matache, P.-A. Nitsche and C. Schab [12] for the second. For models including
both features the numerical methods proposed until now are much less. Some
authors have considered finite-difference schemes for these models. D. Hilber,
A.-M. Matache and Schwab have provided a finite-element approach to a large
class of stochastic volatility models without jumps in [15], including the Heston
model. In the present paper we shall present a finite-element approach to option
pricing in a Bates model framework. In the next section we’ll recall the basic fea-
tures of the Bates model, while in section 3 we’ll provide the PIDE formulation
of the option pricing in this model; in section 4 we shall present the variational
formulation of the problem. In section 5 we’ll describe the numerical method
proposed and in section 6 we’ll expose some comments on the results obtained.
In section 7 we’ll outline some conclusions and some futures perspectives of the
present work.

2 The Bates model

In the Bates model the asset price evolution is given by:

St = S0e
Xt , (1)

where the log-returns X and its volatility Y satisfy the following stochastic
differential equations:

dXt = (α− 1

2
Yt)dt+

√

YtdW
1
t + dZt, X0 = 0. (2)
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dYt = ξ(η − Yt)dt+ θ
√

YtdW
2
t , Y0 = y > 0, (3)

where dW 1
t and dW 2

t are two standard Wiener processes with correlation ρ
and dZt is a Lévy process of compound Poisson type . Let’s assume for the
parameters the following restrictions:

α ∈ R, −1 ≤ ρ ≤ 1, ξ > 0, η > 0, θ > 0 (4)

θ2 ≤ 2ξη. (5)

The last requirement is in order to assure that the volatility process Y will
never hit zero. We’ll assume moreover E[Z2

1 ] <∞, this implying that the Lévy-
Khinchine representation formula for the process Z will be of the following type:

κ(z) = ζz +

∫

(ezx − 1 − zx)U(dx) (6)

where ζ = E[Z1] and U is the Lévy measure of Z. We’ll denote by µ(dx, dt)
the jump measure of Z and by ν(dt, dx) its predictable compensator. We’ll have
moreover ν(dx, dt) = U(dx)dt. We can write then:

Zt = ζt+

∫ t

0

∫ +∞

−∞

x(µ− ν)(dx, ds). (7)

The stochastic differential equation for the price S will be then:

dSt = (α+ κ(1))St−dt+ St−

√
YtdW

1
t +

∫ +∞

−∞

St−(ex − 1)(µ− ν)(dx, dt).
(8)

Remark 1 In the original model of [5], the process Z is a compound Poisson
process,

Zt =

Nt
∑

i=1

Ji, (9)

where N is a standard Poisson process with intensity λ > 0 and (Ji)i≥1 are iid
N(γ, δ2), with γ = ln(1 + k̄) − δ2/2. The corresponding cumulant function is in
that case

κ(z) = λ(eγz+δ2z2/2 − 1). (10)

Remark 2 If Z = 0 then we obtain Heston’s stochastic volatility model from [8].
If θ = 0 and y = η we obtain Merton’s jump diffusion model from [13] with
normal jumps. Consequently we might consider the Bates model as an extension
of a Merton jump-diffusion model with stochastic volatility, or as an extension
of a Heston volatility model with jumps in the returns.
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Lemma 1 The dynamics of the asset price process is given by

dSt = (α+ κ(1))St−dt+ St−

√
YtdW

1
t +

∫ +∞

−∞

St−(ex − 1)(µ− ν)(dx, dt).
(11)

In particular if
α+ κ(1) = 0 (12)

the process S is a local martingale.

Proof: This follows immediately from Itô’s formula for general semimartin-
gales. �

As in other affine stochastic volatility models with and without jumps, it
is possible to obtain the characteristic function of the log-price in closed form.
This characteristic function has been calculated by D. Bates in [5]; a detailed
computation is provided also in [17]; it is given by the following expression:

Φt(u) = exp
[

tλ(e−δ2u2/2+i(ln(1+m)−δ2/2)u − 1
]

(13)

[

cosh
εt

2
+
ξ − iρθu

ε
sinh

εt

2

]−2ξη/θ2

(14)

exp

[

− (u2 + iu)v0

ε coth εt
2 + ξ − iρθu

]

(15)

where:
ε =

√

θ2(u2 + iu) + (ξ − iρθu)2 (16)

Once the characteristic function of the log-price process is known in a closed
form, the valuation problem for vanilla options can be easily solved by an FFT-
related technique like that provided in the paper by P. Carr and D. Madan
[6].

A quadratic approach to option hedhing in the Bates model has been sug-
gested in [10].

3 Option pricing via PIDE approach

By applying Ito lemma, and introducing the market price of risk π, we obtain
the following partial integro-differential equation for the price of a European call
option C(S, y, t) in the framework of the Bates model :

∂C

∂t
+ (r − κ(1))S

∂C

∂S
+

1

2
yS2∂

2C

∂S2
+

[ξ(η − y) − π]
∂C

∂y
+

1

2
θ2y

∂2C

∂y2
+ ρθyS

∂2C

∂y∂S
+

∫ +∞

−∞

[C(Sex, y, t) − C(S, y, t)]W (dx) − rC = 0

(17)
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with the following final condition at t = T :

C(ST , yT , T ) = max [ST −K, 0] (18)

and the following boundary conditions both in S and y:

C(0, y, t) = 0,
∂C

∂S
(∞, y, t) = 1 (19)

C(S,∞, t) = S, (20)

C(S, 0, t) =
∞

∑

n=0

e−λt (λt)
n

n!
CBS(S, t,K, σ̂n, r̂n), (21)

where CBS(S, t,K, σ̂n, r̂n) are the Black-Scholes values of the call options at time
t for underlying price S and strike K with parameters

σ̂n = nγ2/t, (22)

r̂n = r + λ(1 − eγ+δ2/2) + n(γ + δ2/2)/t (23)

By assuming lognormal jumps we have

κ(1) = λ
(

eγ−δ2/2 − 1
)

, (24)

where γ, δ2 are the expected value and variance respectively of the normal dis-
tribution describing the jumps’ size.

The variables S, Y and t can assume values in the following domains: s ∈
[0,+∞), t ∈ [0,+∞) and y ∈ [0,+∞) .

Remark 3 The market price of risk π can be obtained in different ways in
the frame of general equilibrium models; consumption-based models give a risk
premium proportional tu y. In the following, we’ll assume without any lost of
generality, that the market price of risk associated to the volatility is zero. The
method can be generalized to a different choice in a straightforward way.

Remark 4 By the commonly used substitution St = exp(Xt) , F (Xt, yt, t) =
C(eXt , yt, t) the previous equation becomes:

∂F

∂t
+ (r − κ(1) − y

2
)
∂F

∂x
+ ξ(η − y)

∂F

∂y
+

1

2
y
∂2F

∂x2
+

1

2
θ2y

∂2F

∂y2
+ ρθy

∂2F

∂y∂x
+

∫ +∞

−∞

[F (X + u), y, t) − F (X, y, t)]W (du) − rF = 0

(25)
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W (dx) is the Lévy density of the jumps. In the case of gaussian jumps for
X (i.e. lognormal for S) it will be of the following form:

W (du) = λ
1√
2πδ

exp(
(u− γ)2

2δ2
)du (26)

It will be then a gaussian density with expected value γ and variance δ2 multi-
plied by the intensity λ of the Poisson process.

Remark 5 The boundary conditions for the new unknown F (x, y, t) are now
the following. For X ∈ R:

F (−∞, y, t) = 0, (27)

F (+∞, y, t) = ex, (28)

F (x, 0, t) =
∞

∑

n=0

e−λt (λt)
n

n!
CBS(ex, t,K, σ̂n, r̂n), (29)

F (x,∞, t) = ex. (30)

The final condition is now:

F (XT , yT , T ) = max
[

eXT −K, 0
]

(31)

4 Variational Formulation

The integro-differential equation given before can be written in the following
”divergence form”:

DF

Dt
+ ∇ · [K∇F ] +

∫ +∞

−∞

[F (X + u), y, t) − F (X, y, t)]W (du) − rF = 0

(32)

where the symbol
D

Dt
=

∂

∂t
+ (a · ∇) denotes the total derivative, the vector a

is given by:

a :=

[

r − κ(1) − y/2 − ρθ/2
ξ(η − y) − θ2/2

]

(33)

and the matrix K by:

K :=

[

y/2 ρθy/2
ρθy/2 θ2y/2

]

(34)

A variational formulation for the PDE arising in the Heston model has been given
in [15], while the variational formulation for the PIDE in an Exponential Lévy
framework have been provided in [11], [12], [21], where existence and uniqueness
of the solution of the variational problem associated with the differential and

7



integro-differential equations respectively have been proved in suitable weighted
Sobolev spaces and detailed analyses of both localization and discretization er-
rors have been provided. Without performing the same analysis here we are
going to proceed with the variational formulation for the present problem fol-
lowing the same line.

Introducing the following bilinear form:

bD(u, v) : = −
∫

Ω
K∇u · ∇vdxdy (35)

bJ(u, v) :=

−
∫

Ω
u

(
∫

R

[u(x+ z) − u(x)]W (dz)

)

dxdy
(36)

it is possible to define a suitable discretization for our integro-differential
problem 25.

Remark 6 The equation 17 has degenerate coefficients both in the S and in
the y variables; while the substitution x = logS removes the degeneracy in the
S variable, this is still present for the y variable. In particular we want to
discuss the boundary y = 0. If no restrictions on the model’s parameters would
be present, a condition on this boundary should be imposed in order to have a
well-posed problem and the correct condition is given by 28 . On the other hand,
if the restriction on the parameters of the model given in section 2 5 holds, the
variable y never hits that boundary. A closer inspection to the bilinear form
associated to the problem suggests that when Green’s lemma is applied to the
l.h.s. of equation 25 an ”inflow” condition for our backward parabolic equation
appears if the restrictions on the parameters hold and this in turn implies that
the condition on y = 0 need not to be imposed in order to have a well-posed
problem.

5 Numerical Approach

In this section we will introduce a Finite Element Discretization of the above
described PIDE. A similar approach for the Merton’s and Kou’s model has been
introduced in [2].

5.1 Temporal Discretization

The integro-differential equation can be written in the following form

DF

Dt
+ ∇ · (K∇F )+

∫ ∞

−∞

[F (x+ u, y, t) − F (x, y, t)]W (du) − rF = 0
(37)
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where the symbol
D

Dt
=

∂

∂t
+ (a · ∇) denotes the total derivative.

The time interval [0, T ] will be discretized using a time step ∆t such that
tn+1 = tn+∆t; moreover we will use the following notation Fn = F (tn). Starting
from this formulation we can obtain the following temporal discretization

Fn+1 − Fn(X̃)

∆t
+ ∇ · (K∇Fn+1) − rFn+1+

∫ ∞

−∞

[Fn+1(x+ u, y, t) − Fn+1(x, y, t)]W (du) = 0

(38)

where Fn(X̃) is the value of the price evaluated at the foot of the characteristic
line at time tn and X̃ is the solution of the following initial value problem

dX̃(τ ; t,x)

dτ
= a(τ ; X̃(τ ; t,x)) τ ∈ (0, t) (39)

X̃(t; t,x) = x. (40)

This last ODE can be solved using either the implicit Euler method or a more
accurate Runge-Kutta method.

The characteristic Galerkin method, described above, is an Eulerian-Lagrangian
approach and it is stable with a mild stability criterion allowing therefore the
use of a large time step when appropriate.

5.2 Localization

The infinite domain has to be reduced to a finite one: in particular we will
consider a rectangular domain Ω = [0, xmax] × [0, ymax]. Using this reduced
domain the boundary conditions have to be modifed accordingly in the following
way:

F (0, y, t) = 0, (41)

F (x, 0, t) =
∞

∑

n=0

e−λt (λt)
n

n!
FBS(ex, t,K, σ̂n, σ̂r), (42)

F (xmax, y, t) = exmax , (43)

F (x, ymax, t) = ex. (44)

Moreover the extrema of the integral term have to be reduced to finite values;
to this aim we can use

Ldown = −
√

−2δ2 log(ǫδ
√

2π) − |γ|, (45)

and

Lup =

√

−2δ2 log(ǫδ
√

2π) + |γ|. (46)
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5.3 Spatial Discretization

The domain Ω will be discretized using an unstructured triangular mesh.
The discrete weak formulation reads as follows: find Fn+1

h ∈ Vh such that

∫

Ω
Fn+1

h ψdx −
∫

Ω
Fn

h (X̃)ψdx + ∆tbD(Fn+1
h , ψ)

∆tbJ(Fn+1
h , ψ) − ∆t

∫

Ω
rFn+1

h ψdx = 0 ∀ψ ∈ Vh

(47)

where Vh is suitable functional space. In the present paper the unknown F will
be approximated using P1 (linear) finite element i.e.

Fn
h (x, y) =

NN
∑

i=1

Fn
i ψi(x, y), (48)

where NN is the number of nodes of the triangulation and ψi(x, y) ∈ P1(Ω).
The problem has been solved using FreeFEM++.

6 Numerical Results

In this section we shall provide some comments on the numerical results ob-
tained in order to assess the effectiveness of the proposed numerical method. In
particular we’ll present the implicit volatility surfaces for the following sets of
parameters taken from [16], where a suitable calibration methodology has been
developed for a large class of stochastic volatility models with jumps. Moreover
we’ll provide a graphical comparison between the solution obtained with our
finite element approach and that obtained by the usual method proposed by P.
Carr and D. Madan based on the Fast Fourier Transform [6].

The range of the strike prices for the european call option considered is
80 ≤ K ≤ 120 for Fig.1, 3, 4, while for Fig. 2 is 80 ≤ K ≤ 100. The maturities
are between 0 and 3 years. The initial value of the underlying S has been set
S = 100.

Set ξ η θ ρ

S1 0.21568 0.04937 0.23828 -0.44793
S2 0.33502 0.033582 0.26969 -0.42404
S3 0.13279 0.18193 0.37518 -0.59722
S4 0.48443 0.022097 0.21903 -0.40066

Set k δ λ

S1 -0.11889 0.17189 0.13674
S2 -0.077973 0.11048 0.33785
S3 0.080396 0.057373 0.05218
S4 -0.12938 0.16878 0.15977
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Figure 1: Implicit Volatility Surface for parameter set S1.

Figure 2: Implicit Volatility Surface for parameter set S2.

11



Figure 3: Implicit Volatility Surface for parameter set S3.
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Figure 4: Implicit Volatility Surface for parameter set S4.
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All the volatility surfaces obtained exhibit both smiles and skews for short
maturities. While the skew is quite pronounced for the set of parameters denoted
by S2, S3 it seems less evident for the other sets S1, S4. The smiles appear less
and less pronounced for longer maturities for all sets. The explanation of the
different behavior exhibited by the volatility surfaces seems to be related more
to the different values of the diffusion coefficient θ of the volatility dynamics
than to the other parameters, while the ”leverage” coefficient ρ seems to be
responsible of both the skews and the smiles appearing in the volatility surfaces.
The behavior of the smiles in correspondence to the ”at the money values” of
the call option looks moreover quite realistic.

The next two figures represent the solution obtained with the present fi-
nite element method versus the solution obtained via a Fast Fourier transform
method. While the latter is represented by the continuous line, the former is
indicated by the dots. The set of parameters characterizing the model are those
denoted before by S1, S4 respectively. The range of prices is 80 ≤ S ≤ 120. The
calculation has been performed for T = 1, K = 100.

A very good agreement between the solutions can be immediately recognized,
although it looks quite evident that the solution obtained via the finite element
method slightly overprices the call option for higher values of the underlying at
time 0.

In order to check the robustness of the present method with respect to pa-
rameters changed, several trials have been performed corresponding to other
sets of parameters belonging to an enlarged range of parameters and the results
obtained look very close to those just presented.

The CPU time required for a calculation of the call option price for a single
value of the underlying is about 3 minutes, while that required for the volatility
surfaces shown here is about 3 hours on a 2Ghz Centrino Duo with 1MB RAM.
The 2D mesh used in the computation is composed by 2634 triangles and 1398
nodes.

7 Concluding Remarks

We have presented a finite element approach to the european option valuation
problem formulated via a partial integro-differential equation. Several choices
of the functional space suitable for the spatial discretization are possible and
we have made the most simple choice in order to obtain a fast and efficient
algorithm. Other choices have been made by some authors in similar contexts,
like in [9], [12], where Wavelets have been used in an extensive way to produce
an accurate algorithm, but the convergence of the method with this choice seems
to be not very fast. In the present context, with a single underlying, the choice
of piece-wise polynomial function spaces seems to perform slightly better.

A natural development of the present analysis will be the variational formu-
lation and the implementation of a finite element method for American option
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Figure 5: Comparison between the FFT solution and the FEM solution for set
S1: T = 1 and K = 100.
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Figure 6: Comparison between the FFT solution and the FEM solution for set
S4: T = 1 and K = 100.
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pricing with the Bates model. This problem can be formulated as a free bound-
ary problem for the same Partial Integro-Differential equation given before. The
finite element approach seems to be the most promising way to obtain fast and
accurate algorithms for this problem. This will be the subject of future investi-
gations.
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