Codice45/2014
Titolo An orthotropic active-strain model for the myocardium mechanics and its numerical approximation
Data2014-10-24
Autore/iPezzuto, S.; Ambrosi,D.; Quarteroni, A.
LinkDownload full text
PubblicatoEuropean journal of mechanics/A - solids
Abstract In the wide literature devoted to the cardiac structural mechanics, the strain energy proposed by Holzapfel and Ogden exhibits a number of interesting features: it has suitable mathematical properties and it is based on few material parameters that can, in principle, be identified by standard laboratory tests. In this work we illustrate the implementation of a numerical solver based on such a model for both the passive and active mechanics of the heart. Moreover we discuss its performance on a few tests that can be regarded as preliminary to the adoption of the Holzapfel-Ogden model for a real cardiac simulation. While the passive behavior of the cardiac muscle is modeled as an orthotropic hyperelastic material, the active contraction is here accounted for a multiplicative decomposition of the deformation gradient, yielding the so-called active strain approach, a formulation that automatically preserves the ellipticity of the stress tensor and introduces just one extra parameter in the model. We adopt the usual volumetric-isochoric decomposition of the stress tensor to obtain a mathematically consistent quasi-incompressible version of the material, then the numerical approximation applies to a classical Hu-Washizu three fields formulation. After introduction of the tangent problem, we select suitable finite element spaces for the representation of the physical fields. Boundary conditions are prescribed by introduction of a Lagrange multiplier. The robustness and performance of the numerical solver are tested versus a novel benchmark test, for which an exact solution is provided. The curvature data obtained from the free contraction of muscular thin films are used to fit the active contraction parameter.