sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD188
TitoloDiametrically complete sets and normal structure
Data2014-11-11
Autore/iMaluta, E.; Papini, P.L.
LinkDownload full text
AbstractWe prove that in some classes of reflexive Banach spaces every maximal diametral set must be diametrically complete, thus showing that diametrically complete sets may have empty interior also in reflexive spaces. As a consequence, we prove that, in those spaces, normal structure is equivalent to the weaker property that, for every bounded set, the absolute Chebyshev radius is strictly smaller than the diameter. Moreover we prove that, in any normed space, the two classes of diametrically complete sets and of sets of constant radius from the boundary coincide if and only if the space has normal structure.

Dipartimento di Matematica