sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD182
TitoloStable solitary waves with prescribed L2 mass for the cubic Schrodinger system with trapping potentials
Data2014-05-22
Autore/iNoris, B.; Tavares, H.; Verzini, G.
LinkDownload full text
AbstractFor the cubic Schrodinger system with trapping potentials in RN, N <= 3, or in bounded domains, we investigate the existence and the orbital stability of standing waves having components with prescribed L2 mass provide a variational characterization of such solutions, which gives information on the stability through of a condition of Grillakis-Shatah-Strauss type. As an application, we show existence of conditionally orbitally stable solitary waves when: a) the masses are small, for almost every scattering lengths, and b) in the defocusing, weakly interacting case, for any masses.

Dipartimento di Matematica