sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 172
TitoloWeigthed fractional porous media equations: exixtende and uniqueness of weak solution with measure data
Data2014-01-31
Autore/iGrillo, G.; Muratori, M.; Punzo, F.
LinkDownload full text
AbstractWe shall prove existence and uniqueness of solutions to a class of porous media equations driven by weighted fractional Laplacians when the initial data are positive finite measures on the Euclidean space R^d . In particular, Barenblatt-type solutions exist and are unique for the evolutions considered. The weight can be singular at the origin, and must have a sufficiently slow decay at infinity (power-like). Such kind of evolutions seems to have not been treated before even as concerns their linear, non-fractional analogues.

Dipartimento di Matematica