sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 163
TitoloExistence versus blow-up results for a fourth order parabolic PDE involving the Hessian
Data2013-10-31
Autore/iEscudero, C.; Gazzola, F.; Peral I.
LinkDownload full text
AbstractWe consider a partial differential equation that arises in the coarse-grained description of epitaxial growth processes. This is a parabolic equation whose evolution is dictated by the competition among the determinant of the Hessian matrix of the solution and the biharmonic operator. This model might present a gradient flow structure depending on the boundary conditions. We first extend previous results on the existence of stationary solutions to this model for Dirichet boundary conditions. For the evolution problem we prove local existence of solutions for arbitrary data and global existence of solutions for small data. Depending on the boundary conditions and the concomitant presence of a variational structure in the equation as well as on the size of the data we prove blow-up of the solution in finite time and convergence to a stationary solution in the long time limit.

Dipartimento di Matematica