sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 145
TitoloQuantum continuous measurements: The stochastic Schroedinger equations and the spectrum of the output
Data2013-01-17
Autore/iBarchielli, A.; Gregoratti, M.
LinkDownload full text
AbstractThe stochastic Schroedinger equation, of classical or quantum type, allows to describe open quantum systems under measurement in continuous time. In this paper we review the link between these two descriptions and we study the properties of the output of the measurement. For simplicity we deal only with the di usive case. Firstly, we discuss the quantum stochastic Schroedinger equation, which is based on quantum stochastic calculus, and we show how to transform it into the classical stochastic Schroedinger equation by diagonalization of suitable quantum observables, based on the isomorphism between Fock space and Wiener space. Then, we give the a posteriori state, the conditional system state at time t given the output up to that time and we link its evolution to the classical stochastic Schroedinger equation. Finally, we study the output of the continuous measurement, which is a stochastic process with probability distribution given by the rules of quantum mechanics. When the output process is stationary, at least in the long run, the spectrum of the process can be introduced and its properties studied. In particular we show how the Heisenberg uncertainty relations give rise to characteristic bounds on the possible spectra and we discuss how this is related to the typical quantum phenomenon of squeezing. We use a simple quantum system, a two-level atom stimulated by a laser, to discuss the di erences between homodyne and heterodyne detection and to explicitly show squeezing and anti-squeezing and the Mollow triplet in the fluorescence spectrum.

Dipartimento di Matematica