sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 142
TitoloUniform Holder bounds for strongly competing systems involving the square root of the laplacian
Data2012-11-30
Autore/iTerracini, S.; Verzini, G.; Zilio, A.
LinkDownload full text
AbstractFor a class of competition-diffusion nonlinear systems involving the square root of the Laplacian, including the fractional Gross-Pitaevskii system, we prove that uniform boundedness implies Holder boundedness for every exponent less than 1/2, uniformly as the interspecific competition parameter diverges. Moreover we prove that the limiting profile is Holder continuous of exponent 1/2. This system arises, for instance, in the relativistic Hartree-Fock approximation theory for mixtures of Bose-Einstein condensates in different hyperfine states.

Dipartimento di Matematica