sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 134
TitoloSharp short and long time L^ infty bounds for solutions to porous media equations with homogeneous Neumann boundary conditions
Data2012-10-04
Autore/iGrillo, G.; Muratori, M.
LinkDownload full text
AbstractWe study a class of nonlinear diffusion equations whose model is the classical porous media equation on euclidean domains, with homogeneous Neumann boundary conditions. We improve the known results in such model case, proving sharp uniform regularizing properties of the evolution for short time and sharp long time bounds for convergence of solutions to their mean value. The generality of the discussion allows to consider, almost at the same time, weighted versions of the above equation provided an appropriate weighted Sobolev inequality holds. In fact, we show that the validity of such weighted Sobolev inequality is equivalent to the validity of a suitable regularizing bound for solutions to the associated weighted porous media equation. The long time asymptotic analysis relies on the assumed weighted Sobolev inequality only, and allows to prove uniform convergence to the mean value, with the rate predicted by linearization, in such generality.

Dipartimento di Matematica