sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 118
TitoloDifferential 1-forms, their integrals ans Potential Theory on the Sierpinski gasket
Data2012-01-31
Autore/iCipriani, F.; Guido, D.; Isola, T.; Sauvageot J.L.
LinkDownload full text
AbstractWe provide a de finition of diff erential 1-forms on the Sierpinski gasket K and their integrals on paths. We show how these tools can be used to build up a Potential Theory on K. In particular, we prove: i) a de Rham re-construction of a 1-form from its periods around lacunas in K; ii) a Hodge decomposition of 1-forms with respect to the Hilbertian energy norm; iii) the existence of potentials of elementary 1-forms on suitable covering spaces of K. We then apply this framework to the topology of the fractal K, showing that each element of the dual of the first Cech homology group is represented by a suitable harmonic 1-form.

Dipartimento di Matematica