sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 116
TitoloLocal and global survival for nonhomogeneous random walk systems on Z
Data2012-01-31
Autore/iBertacchi D.; Machado F.P.; Zucca F.
LinkDownload full text
Abstract We study an interacting random walk system on Z where at time 0 there is an active particle at 0 and one inactive particle on each site $n ge1$. Particles become active when hit by another active particle. Once activated they perform an asymmetric nearest neighbour random walk which depends only on the starting location of the particle. We give conditions for global survival, local survival and infinite activation both in the case where all particles are immortal and in the case where particles have geometrically distributed lifespan (with parameter depending on the starting location of the particle). In particular, in the immortal case, we prove a 0-1 law for the probability of local survival when all particles drift to the right. Besides that, we give sufficient conditions for local survival or local extinction when all particles drift to the left. In the mortal case, we provide sufficient conditions for global survival, local survival and local extinction. Analysis of explicit examples is provided.

Dipartimento di Matematica