sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 109
TitoloIn vitro tissue growth: a multiscale computational model of the dynamically evolving biophysical environment
Data2011-10-19
Autore/iCausin, P.; Sacco, R.; Verri, M.
LinkDownload full text
AbstractTissue Engineering (TE) is a field at the crossroad between Medicine, Life Sciences and Engineering, aimed at understanding the principles of tissue growth, and applying them to produce biologically functional replacements for clinical use. To achieve such an ambitious goal, complex biophysical phenomena must be mastered and related to the appropriate environment (nutrient delivery, fluid-mechanical loading and structural support) to be provided to cells. The TE problem is inherently multiphysics/multiscale, as it is characterized by material heterogeneities and interplaying processes occurring within a wide range of temporal and spatial scales. The concept we pursue in this paper is to use computational modelling of the TE problem to gain a quantitative and comprehensive understanding of phenomena often difficult to be accessed experimentally. The present model represents, to our knowledge, the first example of a self-consistent high-resolution description of coupled nutrient mass transport, fluid-dynamics and biomass production in TE constructs. We specifically focus on articular cartilage regeneration based on dynamically perfused bioreactors and we investigate three issues critical in this application. First, we study oxygen distribution in the construct, since achieving an optimal level throughout the construct is a main tool to improve tissue quality. Second, we provide a quantitative evaluation on how interstitial perfusion can enhance nutrient delivery and, ultimately, biomass production, compared to static culture. Third, we perform a sensitivity analysis with respect to biophysical parameters related to matrix production, assessing their rolein tissue regeneration.

Dipartimento di Matematica