sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 Regolamento della Biblioteca

 Servizi per gli utenti
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori

 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia

CodiceQDD 103
TitoloMultivariate Functional Clustering for the Morphological Analysis of ECG Curves
Autore/iIeva, F.;Paganoni,A.M.;Pigoli,D.;Vitelli,V.
LinkDownload full text
AbstractCardiovascular ischemic diseases are one of the main causes of death all over the world. In this kind of pathologies, it is fundamental to be well-timed in order to obtain good prognosis in reperfusive treatment. In particular, an automatic classification procedure based on statistical analyses of tele-transmitted ECG traces would be very helpful for an early diagnosis. This work presents an analysis on electrocardiographic (ECG) traces (both physiological and pathological ones) of patients whose 12-leads pre-hospital ECG has been sent by life supports to 118 Dispatch Center of Milan. The statistical analysis starts with a preprocessing step, in which functional data are reconstructed from noisy observations and biological variability is removed by a non linear registration procedure. Then, a multivariate functional k-means clustering is carried out on reconstructed and registered ECG curves and their first derivatives. Hence, a new semi-automatic diagnostic procedure, based on the sole ECG’s morphology, is proposed to classify ECG traces and the performance of this classification method is evaluated.

Dipartimento di Matematica