sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 Regolamento della Biblioteca

 Servizi per gli utenti
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori

 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia

CodiceQDD 96
TitoloBehaviour near extinction for the Fast Diffusion Equation on bounded domains
Autore/iBonforte, M.; Grillo, G.; Vazquez, J.L.
LinkDownload full text
PubblicatoJournal de Mathematiques Pures et Appliquees
AbstractWe consider the Fast Diffusion Equation posed in a bounded smooth domain with homogeneous Dirichlet conditions. It is known that for in a certain range of the parameter m appearing in the equation all bounded positive solutions of such problem extinguish in a finite time, and also that such solutions approach a separate variable solution. Here, we are interested in describing the behaviour of the solutions near the extinction time. We first show that the convergence takes place uniformly in the relative error norm. Then, we study the question of rates of convergence. For m close to 1 we get such rates by means of entropy methods and weighted Poincarè inequalities. The analysis of the latter point makes an essential use of fine properties of a associated stationary elliptic problem, which has an independent interest.

Dipartimento di Matematica