sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 78
TitoloPolyharmonic boundary value problems
Data2010-11-20
Autore/iGazzola, F.; Grunau, H.C., Sweers, G.
LinkDownload full text
PubblicatoLNM 1991, 2010, Springer
AbstractThis monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or polyharmonic operator as leading principal part. Underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity or – since, in contrast to second order equations, a general form of a comparison principle does not exist – on “almost positivity.” The required kernel estimates are also presented in detail. As for nonlinear problems, several techniques well-known from second order equations cannot be utilised and have to be replaced by new and different methods. Subcritical, critical and supercritical nonlinearities are discussed and various existence and nonexistence results are proved. The interplay with the positivity topic from the first part is emphasised and, moreover, a far-reaching Gidas-Ni-Nirenberg-type symmetry result is included. Finally, some recent progress on the Dirichlet problem for Willmore surfaces under symmetry assumptions is discussed.

Dipartimento di Matematica