sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 73
TitoloQuantum stochastic differential equations and continuous measurements: unbounded coefficients
Data2010-10-27
Autore/iCastro Santis R.; Barchielli A.
LinkDownload full text
PubblicatoReports on Mathematical Physics
AbstractA natural formulation of the theory of quantum measurements in continuous time is based on quantum stochastic differential equations (Hudson-Parthasarathy equations). However, such a theory was developed only in the case of Hudson-Parthasarathy equations with bounded coefficients. By using some results on Hudson-Parthasarathy equations with unbounded coefficients, we are able to extend the theory of quantum continuous measurements to cases in which unbounded operators on the system space are involved. A significant example of a quantum optical system (the degenerate parametric oscillator) is shown to fulfill the hypotheses introduced in the general theory.

Dipartimento di Matematica