sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 
 
 Biblioteca
 Contatti
 Regolamento della Biblioteca
 Patrimonio


 Servizi per gli utenti
 Consultazione
 Prestito
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori


 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia


  
CodiceQDD 62
TitoloA Conservative and Monotone Mixed-Hybridized Finite Element Approximation of Transport Problems in Heterogeneous Domains
Data2010-03-01
Autore/iBrera, M. ; Jerome, J.W. ; Mori, Y. ; Sacco, R.
LinkDownload full text
PubblicatoComputer Methods in Applied Mechanics and Engineering
AbstractIn this article, we discuss the numerical approximation of transport phenomena occurring at material interfaces between physical subdomains with heterogenous properties. The model in each subdomain consists of a partial differential equation with diffusive, convective and reactive terms, the coupling between each subdomain being realized through an interface transmission condition of Robin type. The numerical approximation of the problem in the two-dimensional case is carried out through a dual mixed-hybridized finite element method with numerical quadrature of the mass flux matrix. The resulting method is a conservative finite volume scheme over triangular grids, for which a discrete maximum principle is proved under the assumption that the mesh is of Delaunay type in the interior of the domain and of weakly acute type along the domain external boundary and internal interface. The stability, accuracy and robustness of the proposed method are validated on several numerical examples motivated by applications in Biology, Electrophysiology and Neuroelectronics.

Dipartimento di Matematica