sito in aggiornamento
Responsabile scientifico: Prof. Michele Di Cristo
   Home page  Servizi bibliotecari di Ateneo  Risorse elettroniche di Ateneo  Accesso da remoto  Area login  Collezioni digitali di Dipartimento
 Regolamento della Biblioteca

 Servizi per gli utenti
 Prestito intersistemico
Prestito interbibliotecario
 Richiesta articoli con NILDE
 Assistenza bibliografica
 Proposte di acquisto
 Collezioni Digitali: istruzioni per gli autori

 Servizi per le Biblioteche
 Prestito intersistemico
Prestito interbibliotecario
 Fornitura di articoli in copia

CodiceQDD 58
TitoloA self-regulating and patch subdivided population
Autore/iBelhadji, L.; Bertacchi, D.; Zucca, F.
LinkDownload full text
AbstractWe consider an interacting particle system on a graph which, from a macroscopic point of view, looks like ${ mathbb Z}^d$ and, at a microscopic level, is a complete graph of degree $N$ (called a patch). There are two birth rates: an inter-patch one $ lambda$ and an intra-patch one $ phi$. Once a site is occupied, there is no breeding from outside the patch and the probability $c(i)$ of success of an intra-patch breeding decreases with the size $i$ of the population in the site. We prove the existence of a critical value $ lambda_{cr}( phi, c, N)$ and a critical value $ phi_{cr}( lambda, c, N)$. We consider a sequence of processes generated by the families of control functions $ {c_i }_{i in N}$ and degrees $ {N_i }_{i in { mathbb N}}$; we prove, under mild assumptions, the existence of a critical value $i_{cr}( lambda, phi,c)$. Roughly speaking we show that, in the limit, these processes behave as the branching random walk on ${ mathbb Z}^d$ with intra-neighbor birth rate $ lambda$ and on-site birth rate $ phi$. Some examples of models that can be seen as particular cases are given.

Dipartimento di Matematica