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In the last years, convex optimization has been revolutionized by data availability and
data nature [2]. On the one hand, optimization problems of an unprecedented scale need to
be solved. On the other hand, the computation of the solution must be robust with respect
to perturbations and not necessarily very accurate, since data are incomplete or affected by
noise. These two aspects fueled the design of provably convergent first-order optimization
methods. These algorithms use only first order information about the objective function,
such as gradient estimates, and thus are easy to implement, robust, and they have a low
cost per each iteration. Moreover, they can handle nonsmooth objective functions, arising
for example from sparsity priors, using proximal tools [3]. First order methods combined
with monotone operator theory and the splitting technology represent state of the art
optimization methods to solve large scale regularized problems [1].

However, for huge scale problems, the implementation of such algorithms still faces
challenges that render them often inapplicable in their original form.

The starting point of this thesis is the observation that the success of state-of-the-art
splitting methods is due to their ability to take advantage of the structure of optimization
problems arising in data science. These are often the sum of data fit and regularization
terms, with different smoothness or sparsity promoting properties, often composed with
large-size linear operators. Splitting methods are able to isolate the contribution of each
summand, and activate each element in the sum independently. The objective of this
thesis is to exploit further structural properties of data driven optimization problems to
derive more efficient algorithms. The idea is to jointly consider modeling and optimization
with two main outcomes. First, the design of optimization methods intrinsically related
to the modeling assumptions, and second, the use of the model structure to derive a
sharper convergence analysis of the proposed algorithms with respect to the worst case
one. Results in this direction can be found in [4, 5]. More precisely, in this thesis we plan
to analyze from a theoretical point of view some heuristics that improve the scalability of
optimization algorithms and are currently used in practice. Examples include multiscale
approaches [7], possibly combined with stochastic [8] and asynchronous implementations
[6].
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