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Wait! Local “orientation”, uhm... what?

● Crystallographic Orientation:
“Relationship between the crystal coordinate system and a reference 
coordinate system”

● Plastic deformation can result in an orientation change:
If the deformation doesn't change the intrinsic structure of the 
coordinate system, it simply results in a rotation of the said system.
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OK, but what about deformation in grains?

● Disorientation map  
for a poly-crystal:

● Highest levels of  
deformation at the  
grain boundaries.
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Intro to Diffraction Contrast Tomography 1/2

● Diffraction Contrast Tomography is a non-destructive 
characterization of 3D grain microstructure:
● Assumes undeformed materials
● Uses 2D monochromatic beams
● Simultaneous acquisition of    

transmitted and diffracted beam
● Acquisition time: 0.1-10h
● Performs a continuous rotation  

over 360°, with  steps of  
0.05-0.1° (7200-3600 images)
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Intro to Diffraction Contrast Tomography 2/2

● Using the Friedel pairs it is possible to index the grains
● Diffraction spots as projections
● We use traditional oblique angles

tomography codes to reconstruct
the shape of the grains

● This also works for multi-phase materials!
      a) Phase Contrast Tomography

      b) DCT – Austenite

      c) DCT – Ferrite
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Reconstruction of (un)deformed material

● Given a 3D voxellated volume

● If not deformed:
● All voxels have same projection angle
● Simple (line) back-projection geometry
● Can be handled as a 3D (oblique angle)

ART problem

● If deformed:
● Vector (Tensor) field with 3 (9) unknowns  

Or equivalently: scalar 6D (12D) problem
● Complicated back-projection geometry
● Needs another approach...
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Reconstruction with plastic deformation

● Strain is a small perturbation compared to the plastic 
deformation of the crystal lattice. If we ignore it:
● The reconstruction representation can be modelled either as a 

3D vector field, or as a 6D scalar field
● In the 3D vector field representation, each vector of each voxel is the 

associated local average orientation
● In the 6D scalar field representation, each intensity of each voxel is the 

intensity of the “diffraction signal” for the given point of the extended 
representation

● The deformed projection geometry
both distorts the projected images,
and spreads the signal over multiple
images, for each projection
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Insight of the 6D space

● 3D orientation-space volume that forms an ODF
● 3D real-space a collection of one ODF for each voxel in 

the volume

● In our implementation we do the inverse: 3D real-space 
volume are the voxels of a 3D orientation-space
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Projection geometry in standard DCT

● Undeformed grains will project to the same ωs

● Oblique angle reconstruction, using traditional 
algorithms (e.g. SIRT)
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Points in the orientation space

● Projection geometry of three different orientations:
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Tomography and Mathematical Optimization

● Tomography can be represented as:
● To deal with indeterminacy and noise:
● Our case is not so “easy”:
● But we linearised it! (by unfolding-sampling the 6D 

space, at the expense of multiplying the unknowns)
● Assuming that only few of these orientations will be 

active in each real-space voxel, we can look for a sparse 
solution (l1-min):

● Or, if the density is homogeneous in the grains, we could 
apply a “flatness” constrain on the 3D space 
representation:
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Details of the mathematics

● The implementation is pretty simple: there's a 1↔1 
relationship between the mathematical objects and the 
functions of the algorithm:
●    is the projection of all the volumes to the detector

●      is the back-projection of the images on the detector to the 
volumes
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EBSD Comparison on Ti sample

● Comparing a reconstruction using the 3D-DCT and 6D-
DCT on the surface sensitivity, against EBSD 
measurements
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Deformation in Ti sample

● Looking at the reconstructed deformation:
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NaCl sample (up to 1-2 deg of deformation)

● Surface:          3D-DCT     6D-DCT
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Real Data (up to 1-2 deg spread)

● Surface:          3D-DCT     6D-DCT
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Cluster reconstructions 1/2

● Can we use the 6D algorithm to index grains?
● What if we simply tried reconstructing from the raw detector 

images taken from an arbitrary bounding box in the 6D-space?
● Let's use the indexed grains from a cluster to define the 

6D bounding box:
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Cluster reconstructions 1/2

● Can we use the 6D algorithm to index grains?
● What if we simply tried reconstructing from the raw detector 

images taken from an arbitrary bounding box in the 6D-space?
● Let's use the indexed grains from a cluster to define the 

6D bounding box:
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Cluster reconstructions 2/2

 IGM KAM
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Real Data (up to 1-2 deg spread)

● Surface:          3D-DCT     6D-DCT(1)    6D-DCT(2)
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Recap of the main ideas

● In this model we represent each voxel as a stack of 
discretized orientations, each representing the 
contribution of that voxel to a particular orientation.

● Allowing many orientations per each voxel, it blows up 
the number of unknowns

● By minimizing the l1-norm of the 6D representation, 
sparse solutions are prioritized, thereby improving the 
ability to reconstruct using far more unknowns than 
equations

● Sampling in the orientation domain is an essential topic
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Conclusions

● Real data shows very good improvements especially for 
those scenarios (surface sensitivity) where traditional 
DCT had more troubles.

● Can complement indexing techniques
● Shows potential for further improvements and 

extensions:
● Use of Far-field information
● Overcome spot/blob segmentation issues
● Overcome overlap on experimental images
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