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Express the reconstruction problem as an optimization problem:

min
x
‖W x− p‖2

2,

where

x ∈ Rn - image

p ∈ Rlm - projection data

W ∈ Rlm×n - projection matrix

n - number of pixels (voxels)

l - number of angles

m - number of detector pixels
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What if the matrix W is not known exactly?

We parametrize W using a number of alignment parameters as W (a).

For example, in a 2D parallel beam geometry, a consists of an angle
and offset perturbation for each projection angle.
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Bi-level optimization problem

min
x,a
‖W (a)x− p‖2

2,

min
x,a

l∑
i=1

‖Wi (ai )x− pi‖2
2,

Wi - projection matrix for the i th angle

ai - alignment parameters for the i th angle,

pi - projection data for the i th angle.
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Can we retrieve both x and a?

If W has full row-rank, we can fit the data for any a

How well we can retrieve a depends on x

Solution is at best unique up to global shifts and rotations
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How do we solve the bi-level optimization problem?

min
x,a

l∑
i=1

‖Wi (ai )x− pi‖2
2,

Exploit structure:

quadratic in x, non-linear in a

for fixed x, separates in l independent low-dimensional problems
for ai
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Intermezzo: Variable projection [Golub & Pereyra, 1973]

min
x,y
‖A(y)x− b‖2

2,

eliminate x explicitly as x = A(y)†b,

formulate a non-linear least-squares problem:

min
y

∥∥∥(A(y)A(y)† − I
)
b
∥∥∥2

2
,

this approach is superior to solving the joint problem with a GN
method.
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This idea can be generalized to solve problems of the form

min
x,y

f (x, y),

by solving for x s.t. ∇xf (x, y) = 0 and substituting this back:

min
y

f (y),

with f (y) = f (x(y), y).

Mathematical Institute Tristan van Leeuwen



Automatic alignment for Tomographic reconstruction > Intermezzo: Variable projection

Theorem [Aravkin & van Leeuwen, 2012]

Given a twice-differentiable function f (x, y), define f (y) = f (x, y) with
∇xf (x, y) = 0 then

∇f (y) = ∇yf (x, y),

and
∇2f = ∇2

yf −∇x,yf
T
(
∇2

xf
)−1∇x,yf .

Corollary

If, in addition, we require that ∇2
xf (x, y) � 0, then a local minimum y

of f , together with the corresponding x is a local minimum of f .
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A gradient-based method for minimizing f can be implemented as
follows

Algorithm

x(k+1) = argminx f (x, y(k))

y(k+1) = y(k) − αk∇yf (x(k+1), y(k))

We are completely free to choose the most appropriate method to
solve the inner and outer optimization problems.
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Bi-level optimization problem

min
x,a
‖W (a)x− pi‖2

2,

There are two natural choices:

project out a (Align-then-Reconstruct),

project out x (Reconstruct-then-Align).
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Basic algorithm for A-R (modified)

a
(k+1)
i = argmin

ai
‖Wi (ai )x

(k) − pi‖2
2

x(k+1) = x(k) + ∆x(k)

Use favourite method to solve alignment problems (independently)

Use GN method to compute ∆x(k):

∆x(k) = W (a(k+1))†
(
p−W (a(k+1))x(k)

)
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Algorithm for R-A

x(k+1) = W (a(k))†p

a(k+1) = a(k) + ∆a(k),

Use standard iterative (Krylov) method to apply pseudo-inverse

Take ∆a(k) to be the (scaled) negative gradient:

∆a(k) ∝ −J(x(k+1), a(k))T
(
W (a(k))x(k+1) − p

)
,

where J(x, a) =
(
∂W (a)x
∂a

)
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Numerical examples
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Simple linear projection model

(Wh,∆θf ) (r , θ) =

∫
Ω
ds f (s)δ(r + h − n(θ + ∆θ) · s),

where Ω = [−1, 1]2, r ∈ [−1, 1], θ ∈ [0, π), n(θ) = (cos(θ), sin(θ))T .

Discretize domain using n pixels, use midpoint rule to
approximate integral,

Finite-width approximation δε → δ as ε ↓ 0,

Use l angles θi ∈ [0, π), m detector positions ri ∈ [−1, 1],

Alignment parameters (hi ,∆θi ) for each angle

Required derivatives can be computed explicitly, use
Quasi-Newton method
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initial reconstruction joint optimization

R-A A-R
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Possible issues:

Gradient w.r.t. a might not be available; use appropriate
derivative-free method [Nocedal & Wright, 2006]

Renegade null-space elements may cause problems in A-R
approach
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Unified mathematical framework to derive algorithms for
automatic alignment

Decouple alignment and reconstruction problems by variational
projection

Regularization (e.g., TV) can be included

Further analysis needed to understand exactly why R-A approach
appears to work better
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Thank you!
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