Recent advances in filter based tomographic reconstruction methods

D.M. Pelt and K.J. Batenburg

Centrum Wiskunde & Informatica

Meeting on Tomography and Applications
Discrete Tomography and Image Reconstruction
April 20-22, Politecnico di Milano

Introduction

- Modern advanced tomographic experiments produce increasingly limited data
 - 4D tomography, in-vivo tomography, ...
- Advanced reconstruction methods can produce accurate reconstructions from limited data

Observation: advanced methods are rarely used in practice

Problems with advanced methods

- Observation: advanced methods are rarely used in practice
- Several causes:
 - Computation time
 - Unknown parameters
 - Difficult practical implementation
- Filtered backprojection is very efficient and easy to use
 - Good implementations often available at experimental facilities
- Idea: improve FBP to resemble advanced methods

Filtered backprojection

• FBP first convolves the projection data with a filter h, then backprojects the result:

$$FBP(\boldsymbol{p},\boldsymbol{h}) = \boldsymbol{W}^T \boldsymbol{C_h} \boldsymbol{p}$$

 Usually a standard filter is used (e.g. the ram-lak filter):

Idea: Change the filter of FBP to approximate slower methods

Three approaches

- Idea: Change the filter of FBP to approximate slower methods
- This talk: Discuss three recent approaches

- Use a filter that depends on the data
- Use a filter that approximates an algebraic method
- Use a filter that is trained by neural networks

[1] Pelt, D. M., & Batenburg, K. J. (2014). Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering. *Image Processing, IEEE Transactions on, 23*(11), pp. 4750-4762.

 Many algebraic methods find an image that minimizes projection error:

$$oldsymbol{x}_{alg} = \mathop{\mathrm{argmin}}_{oldsymbol{x}} \|oldsymbol{p} - oldsymbol{W}oldsymbol{x}\|_2$$

 Idea: find a filter such that the resulting FBP reconstruction minimizes projection error:

$$m{h}^* = \operatorname*{argmin}_{m{h}} \|m{p} - m{W}FBP(m{p},m{h})\|_2$$

- Advantage: a much smaller linear system
 - Faster to solve

1024 x 1024 pixels, 64 projections, Poisson noise

(b) SIRT

(c) MR-FBP

Prior knowledge can be added to improve quality

1024 x 1024 pixels, 64 projections, Poisson noise

(b) SIRT

(c) MR-FBP + prior

Three approaches

- Idea: Change the filter of FBP to approximate slower methods
- This talk: Discuss three recent approaches

- Use a filter that depends on the data
- Use a filter that approximates an algebraic method
- Use a filter that is trained by neural networks

[2] Pelt, D. M., & Batenburg, K. J. (2015). Accurately approximating algebraic tomographic reconstruction by filtered backprojection. To appear in *Proceedings of the 2015 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine*.

Take the standard equation for the algebraic SIRT method:

$$\boldsymbol{x^{i+1}} = \boldsymbol{x^i} + \alpha \boldsymbol{W^T} (\boldsymbol{p} - \boldsymbol{Wx^i})$$

We can rewrite this in matrix form:

$$\boldsymbol{x^{i+1}} = (\boldsymbol{I} - \alpha \boldsymbol{W^T W}) \boldsymbol{x^i} + \alpha \boldsymbol{W^T p}$$

ullet This is a recurrence relation, with solution for iteration n:

$$oldsymbol{x}^n = oldsymbol{A}^n oldsymbol{x}^0 + lpha \left[\sum_{k=0}^{n-1} oldsymbol{A}^k
ight] oldsymbol{W}^T oldsymbol{p}, \quad oldsymbol{A} = (oldsymbol{I} - lpha oldsymbol{W}^T oldsymbol{W})$$

We have rewritten the SIRT equation to:

$$oldsymbol{x}^n = lpha \left[\sum_{k=0}^{n-1} oldsymbol{A}^k
ight] oldsymbol{W}^T oldsymbol{p}$$

Compare with the "backproject, then filter" FBP equation:

$$FBP(\boldsymbol{p},\boldsymbol{h}') = \boldsymbol{C}_{\boldsymbol{h}'} \boldsymbol{W}^T \boldsymbol{p}$$

- ullet Approximate the $oldsymbol{A}^k$ sum with a convolution
 - Filter can be precalculated for a certain acquisition geometry
- Computation time of reconstruction is identical to FBP

1024 x 1024 pixels, 256 projections, Poisson noise

Comparison of algebraic approximation filters

Three approaches

- Idea: Change the filter of FBP to approximate slower methods
- This talk: Discuss three recent approaches

- Use a filter that depends on the data
- Use a filter that approximates an algebraic method
- Use a filter that is trained by neural networks

[3] Pelt, D. M., & Batenburg, K. J. (2013). Fast Tomographic Reconstruction From Limited Data Using Artificial Neural Networks. *Image Processing, IEEE Transactions on, 22*(12), 5238-5251.

- Filters and weights are trained using neural network theory
- To train, high-quality reconstructions of objects are needed
 - Scan representative objects with high dose
 - Scan at the start/end of a dynamic experiment
 - 0 ...
- The network will learn filters that exploit:
 - Acquisition details (noise profile, # projections, ...)
 - Object characteristics
- After training, reconstruction is fast and accurate

4k x 4k pixels, synchrotron data (ESRF)

Conclusions

- FBP with non-standard filters can produce very accurate reconstructions
- The filter can be chosen in different ways, each with advantages and disadvantages
- MR-FBP
 - Use a data-dependent filter that minimizes the projection error
- SIRT-FBP
 - Use a filter that approximates an algebraic method
- NN-FBP
 - Train filters using high-quality training datasets

Thank you for listening!

For more information: D.M.Pelt@cwi.nl

Open source implementations available at: https://github.com/dmpelt/

References:

- [1] Pelt, D. M., & Batenburg, K. J. (2014). Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering. *Image Processing, IEEE Transactions on, 23*(11), 4750-4762.
- [2] Pelt, D. M., & Batenburg, K. J. (2015). Accurately approximating algebraic tomographic reconstruction by filtered backprojection. To appear in *Proceedings of the 2015 International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine*.
- [3] Pelt, D. M., & Batenburg, K. J. (2013). Fast Tomographic Reconstruction From Limited Data Using Artificial Neural Networks. *Image Processing, IEEE Transactions on, 22*(12), 5238-5251.

Comparison of data-dependent filters

Trained filters

