Recent advances in filter based tomographic reconstruction methods

D.M. Pelt and K.J. Batenburg

Centrum Wiskunde & Informatica

Meeting on Tomography and Applications
Discrete Tomography and Image Reconstruction
April 20-22, Politecnico di Milano

Centrum Wiskunde & Informatica
Introduction

- Modern advanced tomographic experiments produce increasingly limited data
 - 4D tomography, in-vivo tomography, ...

- Advanced reconstruction methods can produce **accurate reconstructions** from limited data

- Observation: advanced methods are **rarely used** in practice
Problems with advanced methods

- Observation: advanced methods are rarely used in practice
- Several causes:
 - Computation time
 - Unknown parameters
 - Difficult practical implementation
- Filtered backprojection is very efficient and easy to use
 - Good implementations often available at experimental facilities
- Idea: improve FBP to resemble advanced methods
Filtered backprojection

- FBP first convolves the projection data with a filter h, then backprojects the result:

$$FBP(p, h) = W^T C_h p$$

- Usually a standard filter is used (e.g. the ram-lak filter):

- Idea: Change the filter of FBP to approximate slower methods
Three approaches

- Idea: *Change* the filter of FBP to approximate slower methods
- This talk: Discuss *three* recent approaches

- Use a filter that *depends on the data*
- Use a filter that approximates an algebraic method
- Use a filter that is trained by neural networks

Approach #1: Data-dependent filter

- Many algebraic methods find an image that minimizes projection error:

\[\mathbf{x}_{alg} = \underset{x}{\text{argmin}} \| \mathbf{p} - W \mathbf{x} \|_2 \]

- Idea: find a filter such that the resulting FBP reconstruction minimizes projection error:

\[\mathbf{h}^* = \underset{h}{\text{argmin}} \| \mathbf{p} - W \text{FBP}(\mathbf{p}, h) \|_2 \]

- Advantage: a much smaller linear system
 - Faster to solve
Approach #1: Data-dependent filter

1024 x 1024 pixels, 64 projections, Poisson noise

(a) FBP (b) SIRT (c) MR-FBP
Approach #1: Data-dependent filter

- Prior knowledge can be added to improve quality

1024 x 1024 pixels, 64 projections, Poisson noise

(a) FBP (b) SIRT (c) MR-FBP + prior
Three approaches

- Idea: Change the filter of FBP to approximate slower methods
- This talk: Discuss three recent approaches

- Use a filter that depends on the data
- Use a filter that approximates an algebraic method
- Use a filter that is trained by neural networks

Approach #2: Approximate algebraic method

- Take the standard equation for the algebraic SIRT method:

\[x^{i+1} = x^i + \alpha W^T (p - W x^i) \]

- We can rewrite this in matrix form:

\[x^{i+1} = (I - \alpha W^T W) x^i + \alpha W^T p \]

- This is a recurrence relation, with solution for iteration \(n \):

\[x^n = A^n x^0 + \alpha \left[\sum_{k=0}^{n-1} A^k \right] W^T p , \quad A = (I - \alpha W^T W) \]
Approach #2: Approximate algebraic method

- We have rewritten the SIRT equation to:

\[x^n = \alpha \left[\sum_{k=0}^{n-1} A^k \right] W^T p \]

- Compare with the “backproject, then filter” FBP equation:

\[FBP(p, h') = C_{h'} W^T p \]

- Approximate the \(A^k \) sum with a convolution
 - Filter can be precalculated for a certain acquisition geometry

- Computation time of reconstruction is identical to FBP
Approach #2: Approximate algebraic method

1024 x 1024 pixels, 256 projections, Poisson noise

(a) FBP
(b) SIRT
(c) SIRT-FBP
Approach #2: Approximate algebraic method

Comparison of algebraic approximation filters

- Ram-Lak filter
- $N_\theta = 64$, 200 iterations
- $N_\theta = 64$, 1000 iterations
- $N_\theta = 256$, 200 iterations
- $N_\theta = 256$, 1000 iterations

Filter amplitude vs. Frequency
Three approaches

- Idea: Change the filter of FBP to approximate slower methods
- This talk: Discuss three recent approaches

- Use a filter that depends on the data
- Use a filter that approximates an algebraic method
- Use a filter that is trained by neural networks

Approach #3: Neural networks

Diagram:

- **Sinogram**
 - Connections: f_0, f_1, f_2, f_3
 - Outputs to:
 - f_0 to FBP
 - f_1 to FBP
 - f_2 to FBP
 - f_3 to FBP

- **FBP**
 - Connections: w_0, w_1, w_2, w_3
 - Input from:
 - f_0
 - f_1
 - f_2
 - f_3

- **Reco**
 - Connections: w_0, w_1, w_2, w_3
 - Input from:
 - f_0
 - f_1
 - f_2
 - f_3
Approach #3: Neural networks

- Filters and weights are trained using neural network theory.
- To train, high-quality reconstructions of objects are needed:
 - Scan representative objects with high dose
 - Scan at the start/end of a dynamic experiment
 - ...
- The network will learn filters that exploit:
 - Acquisition details (noise profile, # projections, ...)
 - Object characteristics
- After training, reconstruction is fast and accurate
Approach #3: Neural networks
Approach #3: Neural networks

4k x 4k pixels, synchrotron data (ESRF)

(a) FBP (all projections) (b) FBP (5%) (c) NN-FBP (5%)
Approach #3: Neural networks
Conclusions

- FBP with non-standard filters can produce very accurate reconstructions

- The filter can be chosen in different ways, each with advantages and disadvantages

- MR-FBP
 - Use a data-dependent filter that minimizes the projection error

- SIRT-FBP
 - Use a filter that approximates an algebraic method

- NN-FBP
 - Train filters using high-quality training datasets
Thank you for listening!

For more information: D.M.Pelt@cwi.nl
Open source implementations available at: https://github.com/dmpelt/

References:

Approach #1: Data-dependent filter

Comparison of data-dependent filters

- PHANTOM1, $N_\theta = 64$
- PHANTOM1, $N_\theta = 64$, noise
- PHANTOM1, $N_\theta = 128$
- PHANTOM2, $N_\theta = 64$
- Ram-Lak filter
Approach #3: Neural networks

Trained filters