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Abstract. Generalized conics are subsets in the space all of whose points

have the same average distance from a given set of points (focal set). We

would like to present some results about

the algebraic properties of generalized conics with respect to the taxicab

distance

d1(x,y) =
n∑
i=1

|xi − yi| (1)

in the coordinate space Rn,

the minimizer of the function measuring the average taxicab distance,

applications in geometric tomography (reconstruction of compact connected

hv-convex planar sets given by their coordinate X-rays, the problem of unicity)
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Algebraic properties I. Suppose that the conic Cm is defined by

c = fm(x), where c ∈ R and fm(x) :=
1

m

m∑
i=1

d1(x,xi), (2)

i.e. we have finitely many focal points x1, . . ., xm ∈ Rn and the average

distance is given by the arithmetic mean of taxicab distances from the focuses.

Theorem 1 There exists a polynomial p ∈ Q(x1, . . . ,xm)[x, xn+1] over the

extension of the rationals with the coordinates of the focuses such that

p(x, fm(x)) = 0.

p(x, xn+1) :=
∏

ω∈Mm×n(±1)

mxn+1 −
m∑
i=1

n∑
j=1

ωij|x
j − xji |

 , (3)

where ω runs through the matrices of type m×n with ±1. The right hand side

is an even function of the variable αij = |xj − xji | ⇒ the Taylor expansion at

the origin contains only even powers. Under the choice ωij = 1 it follows that

p(x, fm(x)) = 0. For the same result with respect to the average Euclidean

distance see Nie et. al. [6].
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Conics with infinitely many focal points [7], [8]. The generalized conic

function f
p
K associated to a compact set K ⊂ Rn is the mapping

f
p
K:Rn → R, x 7→ f

p
K(x) :=

∫
K
dp(x,y) dy, (4)

where dp is the distance function coming from the p - norm

dp(x,y) =
p
√

(x1 − y1)p + . . .+ (xn − yn)p (p ≥ 1).

f
p
K is a convex function satisfying a kind of growth condition in case of positive

Lebesgue measure of K: λn(K) 6= 0. The generalized p-conic domain CpK with

focal set K is defined by

1

λn(K)
fK(x) ≤ c. (5)

It is a convex compact subset in Rn. Inequality (5) says that CpK is a ”ball”

with ”center” K ⊂ Rn with respect to the average distance. The following

question is natural: is the center K uniquely determined by the average

distance? Generalized p-conics represent a class of subsets with affirmative

answer in the following sense.
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Theorem 1 Let C be a generalized p-conic and suppose that C∗ is a compact

set with the same area as C. If the generalized p-conic functions associated

to C and C∗ coincide then C ≈ C∗, i.e. C is equal to C∗ except on a set of

measure zero.

Proof Let C be defined by the inequality f
p
K(x, y) ≤ c and suppose that C∗

is a compact set with

λn(C∗) = λn(C) and f
p
C = f

p
C∗.

By the Fubini theorem∫
C
f
p
K =

∫
K
f
p
C =

∫
K
f
p
C∗ =

∫
C∗
f
p
K (6)

and thus∫
C\C∗

f
p
K =

∫
C
f
p
K −

∫
C∩C∗

f
p
K

(6)
=

∫
C∗
f
p
K −

∫
C∩C∗

f
p
K =

∫
C∗\C

f
p
K. (7)

The constant c is working as an upper bound for fpK on C \ C∗ but c is a

(strict) lower bound for fpK on C∗ \C. Therefore 0 = λn(C \C∗) = λn(C∗ \C).
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Corollary 1 Let C and C∗ be generalized p-conics. If the generalized p-conic

functions associated to C and C∗ coincide then C = C∗.

From the tomographic point of view we also have the following corollary.

Corollary 2 Generalized 1-conics are determined by their X-rays parallel to

the coordinate hyperplanes among compact sets.

To prove Corollary 2 we have to pay a special attention to the case p = 1.

The function

fK := f1
K, fK(x) :=

∫
K
d1(x,y) dy

is strongly related to the parallel X-rays as follows:

DiDifK(x) =a.e 2XiK(xi) (i = 1, . . . , n),

where XiK(t) := λn−1(t =i K) and t =i K := {x ∈ K | t = xi}. On the other

hand

fK(x) =
n∑
i=1

∞∫
−∞
|xi − t|XiK(t) dt. (8)
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Theorem 2 [7, 10] fK = fL iff the X-rays parallel to the coordinate hyper-

planes of K and L coincide almost everywhere.

Consider the special case of n = 2; the X-ray functions X1K and X2K

measure the vertical and the horizontal slices, respectively:

The coordinate X-rays in the plane are special cases of the parallel X-rays

into a given direction; see Gardner [2].

Algebraic properties II If K is a convex polygon in the plane then the

coordinate X-rays are piecewise linear functions.
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Substituting piecewise linear functions into the special case

fK(x) =

∞∫
−∞
|x1 − t|X1K(t) dt+

∞∫
−∞
|x2 − t|X2K(t) dt

of formula (8) it follows that fK is a piecewise polynomial function of degree
at most 3:

x = (x1, x2) ∈ [t1i , t
1
i+1]× [t2j , t

2
j+1] ⇒ fK(x) = pi(x

1) + qj(x
2),

where i = 0, . . . , k, j = 0, . . . l,

t11, . . . , t
1
k, t21, . . . , t

2
l are the coordinates of the vertices

t10 := −∞, t1k+1 :=∞ and t20 := −∞, t2l+1 :=∞,

pi and qj are polynomials of degree at most 3. The product

p(x, x3) :=
k∏
i=0

l∏
j=0

(
x3 − pi(x1) + qj(x

2)
)

gives a polynomial over the extension of the rationals with the coordinates
of the vertices such that p(x, fK(x)) = 0.
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The minimizer of the generalized 1-conic functions Let K ⊂ Rn be a

compact subset with λn(K) 6= 0; recall the generalized conic function

fK:Rn → R, x 7→ fK(x) :=
∫
K
d1(x,y) dy.

Since fK is a differentiable convex function it is enough to check the first

order conditions to find the minimizer:

DifK(x) = λn(K ≤ xi)− λn(xi ≤ K) (i = 1, . . . , n),

where

K ≤ xi := {z ∈ K | zi ≤ xi}, xi ≤ K := {z ∈ K | xi ≤ zi},

Theorem 3 The point x∗ ∈ Rn is the minimizer of fK if and only if each

coordinate hyperplane at x∗ divides K into two parts of equal measure.

Since fK is a differential convex function with Lipschitzian gradient we can

use the gradient method to find the minimzer. It can be also formulated in

terms of a stochastic algorithm as follows [1].
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Using a starting point x0 ∈ K let Pk be a sequence of K-valued independent

uniformly distributed random variables. Consider the recursion

Xk+1 = Xk − tk+1Qk+1, (9)

where X0 := x0

Qk+1 := (sgn (X1
k − P

1
k+1), . . . , sgn (Xn

k − P
n
k+1))

and the step size is a decreasing sequence of positive real numbers tk satisfying

the following conditions:

∞∑
k=1

tk =∞ and
∞∑
k=1

t2k <∞.

Then we have the following conditional probability provided that λn(K) = 1:

P (Qk+1 = (1, . . . ,1)|Xk) = λn((K < X1
k ) ∩ . . . ∩ (K < Xn

k ))

because Qk+1 = (1, . . . ,1) means that Xk is greater than Pk+1 with respect

to the partial ordering

x ≺ y ⇔ x1 < y1, . . . , xn < yn.

10



In a similar way

P (Qk+1 = (1,−1,1, . . . ,1)|Xk) =

λn((K < X1
k ) ∩ (X2

k < K) ∩ (K < X3
k ), . . . ∩ (K < Xn

k ))

and so on. Then

E(Qk+1|Xk) = grad fK(Xk) and E(Xk+1) = x0 −
k+1∑
i=1

tiE grad fK(Xk),

Xk
a.s.→ x∗ and lim

k→∞
E‖Xk − x∗‖m = 0

for any positive integer m ∈ N; see [1].

Continuity properties and reconstruction. In what follows we restrict

ourselves to the coordinate plane R2. The reconstruction of planar sets by

their coordinate X-rays is originally motivated by Gardner’s unicity problem

[2]: Characterize those convex bodies that can be determined by two X-rays.

The following figure shows that X-rays can have deviant behavior under the

Hausdorff convergence of the sets:
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the measure of the vertical slice changes the values 1 and 2 with an increasing

lenght of period at ”a great amount” of elements of the supporting interval.

The generalized conic functions are more regular objects in some sense. This

makes them to be a natural starting point of the reconstruction.
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Definition 1 The Hausdorff convergence Ln → K is called regular iff

lim
n→∞λ2(Ln) = λ2(K).

It is X-regular iff limn→∞ λ2(In) = λ2(K), where In := ∩∞n=iLi.

Theorem 4 [8], [9] If Ln → K with respect to the Hausdorff metric then

lim sup
n→∞

fLn(x) ≤ fK(x).

If the Hausdorff convergence Ln → K is regular then

lim
n→∞ fLn(x) = fK(x)

and the convergence fLn → fK is uniform over any compact subset in R2. If

the Hausdorff convergence Ln → K is X-regular then it is regular,

lim
n→∞X1Ln(s) =a.e X1K(s) and lim

n→∞X2Ln(t) =a.e X2K(t).

Under the hypothesis of the Hausdorff convergence the regularity is equivalent

to the convergence in symmetric difference.
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Theorem 5 Bianchi et al. [5] The sequence Ln converges in Hausdorff dis-

tance to K if and only if

lim
n→∞λ2((Ln)δ 4 Kδ) = 0 for each δ > 0.

Example 1 Bianchi et al. [5] If each Ln is obtained from a compact set L

via finitely many Steiner symmetrizations and Euclidean isometries then the

Hausdorff convergence Ln → K is regular.

Example 2 [9] If Ln is a sequence of compact connected hv-convex sets

tending to the limit K with respect to the Hausdorff metric, then the con-

vergence is regular.

Example 3 [8] Any outer Hausdorff approximation K ⊂ Ln → K is X-regular.

Example 4 The Hausdorff convergence of compact convex subsets Ln to K

with non-empty interior is X-regular.
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In the sense of Example 4, the Hausdorff convergence in the class of com-

pact convex sets (with nonempty) interior implies the X-regularity and the

reconstruction can be based on direct comparisons of X-rays; Gardner and

Kiderlen [3] (four directions, compact convex planar bodies).

In the sense of Example 2, the Hausdorff convergence in the class of compact

connected hv-convex sets implies the regularity and the reconstruction can be

based on direct comparisons of generalized conic functions. More precisely

we have the following result:

Theorem 6 Consider the collection of compact connected hv-convex sets

contained in the axis parallel bounding box B ⊂ R2 and let K be one of them;

for any ε > 0 there exists δ > 0 such that∫
B
|fL(x)− fK(x)| dx < δ

implies that H(L,K∗) < ε, where fK = fK∗, i.e. K and K∗ have the same

coordinate X-rays almost everywhere.
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An algorithm for the reconstruction [10]

Input: n ∈ N and X1K, X2K, the coordinate X-rays of a non-empty compact
connected hv-convex set K ⊂ R2 with K = cl (int (K)).

STEP 1: Let B and the function fK associated to K be given by the formulas

B = supp (X1K)× supp (X2K) = [a, b]× [c, d] (10)

and

fK(x) =

∞∫
−∞
|x1 − t|X1K(t) ds+

∞∫
−∞
|x2 − s|X2K(s) ds. (11)

Remark 1 Condition K = cl (int (K)) implies that the Cartesian product
of the supports of the coordinate X-rays gives a box containing K, i.e. the
vertical and horizontal ears are cutted.

STEP 2: Let si ∈ [a, b] and ti ∈ [c, d] be equally spaced points as follows:

si = a+ i
b− a
n

, ti = d− i
d− c
n

(i = 0, . . . , n)
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STEP 3: Bnij = [si−1, si]× [tj, tj−1], where i, j = 1, . . . , n.

STEP 4: The control grid GnK :=
{
yij ∈ BK|i, j = 1, . . . , n

}
consists of the

centers of the subrectangles Bnij.

STEP 5: L ∈ Hn ⇔ L is a compact connected hv-convex set consisting of

Bnij’s and

fL(yij) ≥ fK(yij) for any i, j = 1, . . . , n. (12)

STEP 6: Choose Ln from Hn that minimizes

n∑
i,j=1

∣∣∣fLn(yij)− fK(yij)
∣∣∣

n2

Output: Ln.
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This procedure can be formulated in terms of a linear 0 - 1 programming

as follows. Any element L in the feasible set can be represented as a 0 − 1

(interval) matrix by the variables

xkl =


1 if Bnkl ⊂ L

0 otherwise
(k, l = 1, . . . , n) and xkl = 1− xkl.

Constraints:

xk1 + . . .+ xkn ≥ 1 and x1l + . . .+ xnl ≥ 1,

k = 1, . . . , n and l = 1, . . . , n. Connectedness: equations like

xkjxk+1j−1 = 1, xkjxk+1j = 1 or xkjxk+1j+1 = 1 (13)

allow us to step left-and-down, down or right-and-down. Their sum provides

the connectedness. The convexity into the horizontal direction means that

the implication

xkl = 0⇒

((xk1 = 0) ∧ . . . ∧ (xkl = 0)) ∨ ((xkl = 0) ∧ . . . ∧ (xkn = 0))
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must be true. In an equivalent way

xkl = 1⇒

((xk1 = 1) ∧ . . . ∧ (xkl = 1)) ∨ ((xkl = 1) ∧ . . . ∧ (xkn = 1)) ,

i.e.

xk1 · . . . · xkl + xkl · . . . · xkn ≥ xkl.

Using

fL(yij) =
n∑

k,l=1

xklfBnkl
(yij) (14)

we can also formulate the last condition

fL(yij) ≥ fK(yij) for any i, j = 1, . . . , n

of STEP 5 in terms of the variables xkl. These inequalities imply that the

objective function in STEP 6 is linear. The linearization of the constraints

is based on Li and Sun [4].
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To make the algorithm more effective we can use greedy versions [10] based
on deleting the subrectangle which causes the extremal average decreasing
at the control points or the version adapted to finitely many and/or noisy
measurements of the coordinate X-rays [11]. These ideas follow Gardner
and Kiderlen’s original work [3] but we use the generalized conic function (⇔
two X-rays) and the procedure is working for compact connected hv-convex
planar sets.

An algorithmic answer to the problem of unicity The ”plain enumeration”
is based on the following estimation: let K and L be compact connected hv-
convex sets contained in the box B; then

|fL(x)− fK(x)| ≤ 2kH(K,L)
(
k

2
+ 2H(K,L)

)
, (15)

where k is the perimeter of the box [10]. Using the minimal covering

L∗n :=
⋃

Bnkl∩K 6=∅
Bnkl

of K we have that

|fL∗n(x)− fK(x)| ≤
k3(n+ 2)

n2
. (16)
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If

On = {L1
n, L

2
n, . . . , L

mn
n }

is the set of elements of the feasible set such that inequality (16) is satisfied
then On contains the minimal covering of any K∗ for which fK = fK∗, i.e.
K and K∗ have the same coordinate X-rays almost everywhere (in case of
convex sets the phrase almost everywhere can be omitted). Therefore K is
uniquely determined by its coordinate X-rays iff

lim
n→∞ diam On = 0,

i.e. On collapses to a single element as n → ∞. As a special consequence
if K is a compact connected hv-convex set determined by the coordinate
X-rays then the (set-valued) inverse Φ−1 of the mapping Φ:L→ Φ(L) := fL
is continuous at fK. For the class of K2

0 (nonempty compact convex bodies)
Gardner [2] proved that the sets that are determined by the coordinate X-
rays form a dense subset. Therefore we can also formulate the converse
statement.

Theorem 7 The body K ∈ K2
0 is determined by the coordinate X-rays if and

only if the (set-valued) inverse Φ−1 of the mapping

Φ:L→ Φ(L) := fL

is continuous at fK.
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The set we are looking for.
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Input: the coordinate X-rays
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The optimal solution
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The greedy version
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The set we are looking for
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Input: the coordinate X-rays (finitely many measurements)
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The optimal solution I
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The optimal solution II
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The greedy version
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The set we are looking for and the optimal solutions
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One more pair of directions - the optimal solutions
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Comparison
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The intersection and the union
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