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Tomographic reconstruction:
the challenge of “dark”
Information

S. Roux

Meeting on Tomography and Applications, Politecnico di Milano, 20-22 April, 2015



Tomography

« A mature technique, providing an
outstanding wealth of information from
medical applications to material science



Tomography

* Yet, outstanding progress has been
accomplished over the past few years
— Ultra-High spatial resolution

— Ultra-Fast

— Finer sensitivity (Phase contrast)

— Enriched tomography (DCT)



Tomography

* In parallel, further developments involve
a tremendous amount of data

*
\$
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« Motivation is high to reduce the quantity
of needed information

-

e Can we do more with less ?



Big data

* A key element In the context of Images Is
the information content

* A1 Mpix. gray scale image encoded over
8 bits requires

2% x 2% x 2° = 2%° = 8,388,608

bits of information
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Big data

* A key element In the context of Images Is
the information content

* A1 Mpix. gray scale image encoded over
8 bits requires

2% x 2% x 2° = 2%° = 8,388,608

bits of information
* Really ?
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Compression

« Some bits have more “value” than others!

A certain amount of compression can be
harmless (or even beneficial)



Celebrated example

* “Lenna” original




Celebrated example

* “Lenna” 70% compression (Daubechies




Data Compression

» Compression efficiency

depends on the chosen

representation of the

d scale

image an




Data Compression

« Compressibility relies on a possibly
sparse representation of an image:

for a suited basis, only few elements are
non-zero

» Compressibility also means a large
potential for noise reduction



Efficient measurement

» Can we do something smarter and only
“read” the information needed to capture
the sparse components rather than
acquiring all and throwing away the least
meaningful?

 This is the field of Compressed sensing



The case of tomography

« Candes, Romberg and Tao (2004)




Reconstruction
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The case of tomography

« Classical reconstruction from 22 projections
(rather than 600)




The case of tomography

 Suited reconstruction based on 22 projections
minimizing total variation




Complexity

* In this example, ‘Vf‘ IS sparse

* f(X) can be reconstructed as the solution
to

f (X) = argmin _ﬂVg(x)\ dx

Iy9=7,

convex minimization problem (provided
enough projections are considered)

e The trick 1sto use a L1 norm



Opportunities

 Exploit prior information on material
under study (number of phases,
geometry, ...)

 Resort to sparse representation as an
Intermediate step in iterative algebraic
reconstruction

"



Opportunities

 Sparsity Is typically not shared by noise.
Hence finding a sparse representation of
a signal Is naturally a denoising technique

. » Reconstruction is well suited to multi-
scale approaches



What are the limits ?

Classically

* 600 projections are well-suited for FBP
reconstruction for a 400x400 images

 # of inputs Is 400x600 data
 # of outputs is 400x400 data

Slightly redundant (150%)



What are the limits ?

TV minimization

22 projections are sufficient for a
400%x400 images

« # of Inputs Is 400x22 data
 # of outputs is 400x400 data

Significantly underdetermined (5.5%)
~ without additional “dark” iInformation



What are the limits ?

* Why not go to lower values ?



A phase transition

* Donoho & Tanner’s phase transition
— (sparsity = few non-zero pixels)
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A phase transition

Number of pixels N2

Number of projections M
Fraction of non-zero pixels p
Solvability condition P <P,

N M
2N log(N /M)

Pe

Donoho & Tanner, Disc. Comp. Geom. (2010)



Open guestions

* What is the least number of parameters to
describe accurately the tomographied
specimen ?

« Can one combine a suited sparse

representation with efficient
reconstruction techniques ?

* Is there an objective measure of

complexity that would dictate the number
of projections to be used ?

"
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An example from fast tomography

* Al-Cu phase separation images at 0.14 s
(1500 projections) European Synchrotron
Radiation Facility (E. Gouillart, L. Salvo)
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Binary reconstruction

A priori information on the reconstructed field
may reduce drastically the needed information
(projection)

« An example of such prior information is the

reconstruction of binary fields
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Proposed algorithm

* A: Initialize with a first guess
 B: Iteratively enhance the matching with

( : projections
5
\$

* Very efficient algorithm leading to error-
free reconstructions for large image sizes
(1000x1000), few projections (4-20), In
seconds (10-20 iterations)



A: Initialization

® | * Probability that a particular site is valued 1: p
* Known from projection I: p; q;=1-p;

&

Direction 1: p,

Direction 2: p,

P. P,

PP, + 0,0,



A: Initialization

* Anice property:

— Introduce  p(p) = log P 0= e’
1-p 1+e”

— Then o(p) =o(p,) +o(Pp,)

— Holds for an arbitrary number of projections:
FBP can be used on ¢




Non-linear transform

 Transform

(p)




An example
Original Image @ -FBP with 7 projections
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Initialization step

Lowest (<0.01) and highest (>.99) probabilities
can be set to 0 and 1 respectively, and a second
pass of the same FBP can be used on the
undetermined sites
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ART algorithm

* Projection constraint for each projection

dirECtionj Wj £ :ch

» ART correction step
f(n+1) _ f(n) n BJ' -(nj _WJ' , f(n))

(uniform additive correction along each ray)



Other variants

 MART is a Multiplicative variant (f IS
scaled along rays to meet the projection)

* Note that this variant Is an ART
correction on log(f)

* Thus a natural idea Is to design a similar
strategy on ¢(f )



Correction step

 For each direction J, and individual rays,
the ¢(f ) values are translated so that a
binarization would lead to the exact
projection: This amounts to sorting out
the 7J largest values of ¢(f ), and
translate all o(f) so that the 71th value is
setto 0

 After having visited all directions, f is
binarized and convoluted with a Gaussian

-




Correction step
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Conclusion on the example

More than 10 unknowns
7 projections: 7 x 103 data (0.7 %)
Exact solution reached In 4 iterations

Smoothness parameter: r geometrically
decreasing with iteration number from 3to 1

Computation time (Matlab®, single
processor, no optimization): 8.4 S




Multiscale

« The same algorithm can be used on a coarse-
grained image where 2 x 2 pixels are grouped
together (majority rule). The resulting image is
used as a seed for the correction steps at the
finer scale

‘  This scaling feature can be used recursively



A complex microstructure case

 Single scale: 31 iteration steps, 189s, for
an error free reconstruction on 1 Mb
Image.




A complex microstructure case

 Single scale: 31 iteration steps, 189s, for
an error free recosntruction on 1 Mb
Image.

5  Multiscale: 5 levels, 28 s, or 7 times
faster

Generation =4 Error =0 Iteration = 3
Generation =3 Error =0 Iteration =8
Generation =2 Error =0 Iteration =6
Generation=1 Error =0 Iteration=3
Generation =0 Error =0 lteration =3

Total time@




Other examples
Statistics over 200 random samples

* Single convex polygon

Number Perfect Pixel Time (s)
- PrOJ reconst. error

93% 0.36

| 4 99% 0.6 0.45
50

250

50 100 150 200 250
x



Other examples
Statistics over 200 random samples

 Several convex polygons

250
‘B Number | Perfect Pixel Time (S)
Proj j reconst. error 200

90% 21.0 1.92 150

97% 13 1.31 N -
“ 6 100% 0 1.04
50

50 100 150 200 250
@



Other examples
Statistics over 200 random samples

 Several ellipses

250

‘B Number | Perfect Pixel Time (s) 500
PrOj reconst. error

83% 150

99% 0.005 1.4 100
"‘ ‘ 6 100% 0. 1.3
50

50 100 $150 200 250




Other examples
Statistics over 200 random samples

* Many small ellipses

.l Number | Perfect Pixel Time (s) >0
Proj. reconst. error 200
14 5.

98% 14.1

50 100 $150 200 250



If the fraction p, of
boundary pixels is a
proper measure of
complexity, a
solvability criterion
may be guessed to
amount to

Number of projections ?
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How to measure a
3D displacement field efficiently?

Test case:

Nodular cast iron
specimen

09214
=08

ID19 @ ESRF
Energy = 60 keV




In-situ mechanical testing

* In-situ tensile test

(E. Maire & J. Y.
Buffiére’s testing

machine)
 Acquisition of
two 3D images
(elastic regime)




Material

Nodule size 50 um |
Inter nodule distance 50pm gl ws
Rough surface '
Voxel =5.1 um
ROI = 180%x330x400 voxels




Reconstruction

 Reconstruction

f(x)=R|[s(r,4)]
f =R[s]

* Projection

s(r,@) =2, f(x)]
5=, f]




DVC

» Starting from two Iimages f,(x) and f,(x),
of the same object at two different
loading conditions, DVC consists of
measuring the displacement field u(x)

from
f,(X+u(x) = f(x)



Global-DVC

* The displacement field is decomposed
over a library of displacement fields

U(X)=> a%(X)

* As an example, finite-element shape
functions can be chosen



Global DVC

» The amplitudes, a;, are determined from
the minimization of

a = Argmin, j” X)— f(X —b¥. (X)) dX

"‘ ‘ » Multiscale and/or mechanical
regularization strategy to manage
robustness and basin of convergence.



DVC Displacement field

N G Cast Iron Fatigue Crack
C8 DVC

1 voxel «» 3.5 um

*[N.Limodin et al, Acta Mat. 57, 4090, (2009)]



Global DVC vs reconstruction

 Fora10x10x10 vox. cubic mesh,

’
-

Number of kinematic unknowns
Number of voxels

=0.003<< 1

A factor of more than 100 could be saved
on the number of projections !



S(r. ) Classical procedure

- wstruction

1000 projections
1000x1000 pix




sr.p Classical procedure

- @struction

1000 projections
1000x1000 pix

f,(X)
S, (r, ¢) Reconstruction
"

1000 projections
1000%1000 pix




S,(r, @)

Reconstruction
- T~
-fl(X)

10° pix

fw
S, (r, ¢) Reconstruction

1000 projections
1000%1000 pix

1000 projections
1000x1000 pix

Classical procedure

iU(X)

3x103 data



: (‘;Reconstructlon -free” DVC

Reconstruction

\
1000 projections
1000x1000 pix - 1:1( X )
10° pix i U ( X )
- 3x10° data

3x103 unknown




(44

s, (1

Reconstruction

1000 projections
1000x1000 pix -fl( X )

10° pix

/

S,(r, A) Projection 'FZ( X))

' / 3%108 unknowns

10 projections
1000x1000 pix
=107 data

)econstruction-free” DVC

i U (X)

3x106 data



“Reconstruction-free” DVC

 The kinematics can be determined from

. _ Argmin, " [[(s,(r,0) =g, [f,(X —b,¥, (XN fdr
0

N\ < determ
. * Each increment is determined from a
least square fit.



Convergence
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Mesh

e 303 T4 elements
* 97 nodes

e 180x330x400
voxels

disp_reco?’
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Uncertainty
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More complex example

* NG cast iron specimen with a fatigue
crack




More complex example

 Analysis of deformed state based on two
projections

F/ » Mesh conforming to sample geometry
5 and crack (including roughness)

* Prior assumption: elastic behavior with
unknown boundary conditions

|



Projection 1

Projection xzz Corrected zz
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Projection 2

Projection yz Corrected yz
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Residuals
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Deformed mesh

m
itrrtmtmtsttmmbled T ] N
] ] ]

-18

Displacements are
exagerated x100




CONCLUSIONS



Conclusions

* Challenge in tomography is to master the
“dark” information to extract the most
Important information

* In both reported case studies, a reduction
by two orders of magnitude or more was
achieved

5
,

|



Perspectives

* 4D or Dynamic tomography
* Tomography of velocity fields
* Model-based tomographic reconstruction






