
Tomographic reconstruction: 

the challenge of “dark” 

information 

S. Roux

Meeting on Tomography and Applications, Politecnico di Milano, 20-22 April, 2015



Tomography

• A mature technique, providing an 

outstanding wealth of information from 

medical applications to material science



Tomography

• Yet, outstanding progress has been 

accomplished over the past few years

– Ultra-High spatial resolution

– Ultra-Fast 

– Finer sensitivity (Phase contrast)

– Enriched tomography (DCT)



Tomography

• In parallel, further developments involve 

a tremendous amount of data

• Motivation is high to reduce the quantity 

of needed information

• Can we do more with less ?



Big data

• A key element in the context of images is 

the information content 

• A 1 Mpix. gray scale image encoded over 

8 bits requires

bits of information 
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Big data

• A key element in the context of images is 

the information content 

• A 1 Mpix. gray scale image encoded over 

8 bits requires

bits of information 

• Really ?
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Compression

• Some bits have more “value” than others!

• A certain amount of compression can be 

harmless (or even beneficial)



Celebrated example

• “Lenna” original



Celebrated example

• “Lenna” 70% compression (Daubechies

wavelets) 



Data Compression

• Compression efficiency 

depends on the chosen 

representation of the 

image and scale



Data Compression

• Compressibility relies on a possibly 

sparse representation of an image: 

for a suited basis, only few elements are 

non-zero

• Compressibility also means a large 

potential for noise reduction



Efficient measurement

• Can we do something smarter and only 

“read”  the information needed to capture 

the sparse components rather than 

acquiring all and throwing away the least 

meaningful?

• This is the field of Compressed sensing



The case of tomography

• Candés, Romberg and Tao (2004)



Reconstruction

In Fourier space



The case of tomography

• Classical reconstruction from 22 projections 

(rather than 600)



The case of tomography

• Suited reconstruction based on 22 projections 

minimizing total variation



Complexity

• In this example,         is sparse

• f (x) can be reconstructed as the solution 
to 

convex minimization problem (provided 
enough projections are considered)

• The trick is to use a L1 norm
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Opportunities

• Exploit prior information on material 

under study  (number of phases, 

geometry, …) 

• Resort to sparse representation as an 

intermediate step in iterative algebraic 

reconstruction



Opportunities

• Sparsity is typically not shared by noise. 

Hence finding a sparse representation of 

a signal is naturally a denoising technique

• Reconstruction is well suited to multi-

scale approaches



What are the limits ? 

Classically

• 600 projections are well-suited for FBP 

reconstruction for a 400×400 images

• # of inputs is 400×600 data

• # of outputs is 400×400 data

Slightly redundant  (150%)



What are the limits ? 

TV minimization

• 22 projections are sufficient for a 

400×400 images

• # of inputs is 400×22 data

• # of outputs is 400×400 data

Significantly underdetermined (5.5%) 

without additional “dark” information



What are the limits ?

• Why not go to lower values ? 



A phase transition

• Donoho & Tanner’s phase transition 

– (sparsity = few non-zero pixels)

Input information
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A phase transition

Number of pixels N2

Number of projections M

Fraction of non-zero pixels p

Solvability condition 
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Donoho & Tanner, Disc. Comp. Geom. (2010)



Open questions

• What is the least number of parameters to 
describe accurately the tomographied
specimen ?

• Can one combine a suited sparse
representation with efficient 
reconstruction techniques ?

• Is there an objective measure of 
complexity that would dictate the number
of projections to be used ?



BINARY TOMOGRAPHY

SR, Leclerc, Hild, J. Math. Im. Vis. (2013)



An example from fast tomography

• Al-Cu phase separation images at 0.14 s 

(1500 projections) European Synchrotron 

Radiation Facility (E. Gouillart, L. Salvo)



Binary reconstruction

• A priori information on the reconstructed field 

may reduce drastically the needed information 

(projection)

• An example of such prior information is the 

reconstruction of binary fields



Proposed algorithm

• A: Initialize with a first guess

• B: Iteratively enhance the matching with 

projections

• Very efficient algorithm leading to error-

free reconstructions for large image sizes 

(1000×1000), few projections (4-20), in 

seconds (10-20 iterations) 



A: Initialization

• Probability that a particular site is valued 1: p

• Known from projection i: pi                    qi = 1- pi

a

Direction 1: p1

Direction 2: p2
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A: Initialization

• A nice property:

– Introduce

– Then

– Holds for an arbitrary number of projections: 

FBP can be used on j
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Non-linear transform

• Transform 

)( pj



An example

Original image j -FBP with 7 projections



Initialization step

• Lowest (<0.01) and highest (>.99) probabilities 

can be set to 0 and 1 respectively, and a second 

pass of the same FBP can be used on the 

undetermined sites



ART algorithm

• Projection constraint for each projection 

direction j

• ART correction step

(uniform additive correction along each ray)
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Other variants

• MART is a Multiplicative variant (f is 

scaled along rays to meet the projection)

• Note that this variant is an ART 

correction on log(f )

• Thus a natural idea is to design a similar 

strategy on j(f )



Correction step

• For each direction j, and individual rays, 
the j(f ) values are translated so that a 
binarization would lead to the exact 
projection: This amounts to sorting out 
the  j largest values of j(f ), and 
translate all j(f ) so that the  jth value is 
set to 0

• After having visited all directions, f is 
binarized and convoluted with a Gaussian    



Correction step
1 2

3 4



Convergence rate
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Conclusion on the example

• More than 106 unknowns

• 7 projections:  7 × 103 data (0.7 %)

• Exact solution reached in 4 iterations

• Smoothness parameter: r geometrically 

decreasing with iteration number from 3 to 1

• Computation time (Matlab®, single 

processor, no optimization): 8.4 s



Multiscale

• The same algorithm can be used on a coarse-

grained image where 2 × 2 pixels are grouped 

together (majority rule).  The resulting image is 

used as a seed for the correction steps at the 

finer scale

• This scaling feature can be used recursively 



A complex microstructure case

• Single scale: 31 iteration steps, 189s, for 

an error free reconstruction on 1 Mb 

image.



A complex microstructure case

• Single scale: 31 iteration steps, 189s, for 

an error free recosntruction on 1 Mb 

image.

• Multiscale: 5 levels, 28 s, or 7 times 

faster 

Generation = 4  Error = 0  Iteration = 3

Generation = 3  Error = 0  Iteration = 8

Generation = 2  Error = 0  Iteration = 6

Generation = 1  Error = 0  Iteration = 3  

Generation = 0  Error = 0  Iteration = 3

Total time = 28  s



Other examples
Statistics over 200 random samples

• Single convex polygon 

Number

Proj.

Perfect

reconst. 

Pixel 

error

Time (s)

3 93% 3 0.36

4 99% 0.6 0.45



Other examples
Statistics over 200 random samples

• Several convex polygons 

Number

Proj.

Perfect

reconst. 

Pixel 

error

Time (s)

4 90% 21.0 1.92

5 97% 1.3 1.31

6 100% 0 1.04



Other examples
Statistics over 200 random samples

• Several ellipses

Number

Proj.

Perfect

reconst. 

Pixel 

error

Time (s)

4 83% 41 2.0

5 99% 0.005 1.4

6 100% 0. 1.3



Other examples
Statistics over 200 random samples

• Many small ellipses

Number

Proj.

Perfect

reconst. 

Pixel 

error

Time (s)

14 98% 5. 14.1

16 98% 5. 14.8



Number of projections ?

If the fraction pb of 

boundary pixels is a 

proper measure of 

complexity, a 

solvability criterion

may be guessed to 

amount to 
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DIGITAL VOLUME 

CORRELATION WITHOUT

RECONSTRUCTION



How to measure a 

3D displacement field efficiently?

• Test case:

• Nodular cast iron 

specimen 

• ID19 @ ESRF

• Energy = 60 keV



in-situ mechanical testing

• In-situ tensile test 

(E. Maire & J. Y. 

Buffière’s testing 

machine)

• Acquisition of 

two 3D images 

(elastic regime)



Material

• Nodule size 50 µm

• Inter nodule distance 50µm

• Rough surface

• Voxel = 5.1 µm

• ROI = 180×330×400 voxels



Reconstruction

• Reconstruction 

• Projection

1x

2x

3x
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DVC

• Starting from two images f1(x) and f2(x), 

of the same object at two different 

loading conditions, DVC consists of

measuring the displacement field u(x) 

from 
)())(( xxux 12 ff 



Global-DVC

• The displacement field is decomposed 

over a library of displacement fields

• As an example, finite-element shape 

functions can be chosen

)()( XΨXU 
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Global DVC

• The amplitudes, ai , are determined from 

the minimization of 

• Multiscale and/or mechanical 

regularization strategy to manage 

robustness and basin of convergence.  
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DVC Displacement field

• N G Cast Iron Fatigue Crack

• C8 DVC 
1 voxel ↔ 3.5 µm

*[N.Limodin et al, Acta Mat. 57, 4090, (2009)]



Global DVC vs reconstruction

• For a 10×10×10 vox. cubic mesh,

• A factor of more than 100 could be saved 

on the number of projections ! 
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Classical procedure

Reconstruction

1000 projections

1000×1000 pix

109 pix
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Classical procedure

Reconstruction

1000 projections

1000×1000 pix

109 pix

Reconstruction

1000 projections

1000×1000 pix

109 pix
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)(X2f
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Classical procedure

Reconstruction

1000 projections

1000×1000 pix

109 pix

3×103 data
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Reconstruction

1000 projections

1000×1000 pix

109 pix
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“Reconstruction-free” DVC

Reconstruction

1000 projections

1000×1000 pix

109 pix

3×103 data

)(XU

3×103 unknown
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“Reconstruction-free” DVC

Reconstruction

1000 projections

1000×1000 pix

109 pix

3×106 dataProjection

10 projections

1000×1000 pix

=107 data

3×106 unknowns
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“Reconstruction-free” DVC

• The kinematics can be determined from

• Each increment is determined from a 

least square fit.
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Convergence

Under-relaxation = 0.5



Mesh

• 303 T4 elements

• 97 nodes

• 180×330×400 

voxels



Nrad = 600 zU

Reference



Nrad = 48 zU



Nrad = 24 zU



Nrad = 12 zU



Nrad = 6 zU



Nrad = 3 zU



Nrad = 2 zU



Uncertainty



More complex example

• NG cast iron specimen with a fatigue 

crack



More complex example

• Analysis of deformed state based on two

projections 

• Mesh conforming to sample geometry

and crack (including roughness)

• Prior assumption: elastic behavior with

unknown boundary conditions



Projection 1



Projection 2



Residuals



Deformed mesh

Displacements are 

exagerated ×100



CONCLUSIONS



Conclusions

• Challenge in tomography is to master the 

“dark” information to extract the most 

important information 

• In both reported case studies, a reduction 

by two orders of magnitude or more was 

achieved 



Perspectives

• 4D or Dynamic tomography

• Tomography of velocity fields

• Model-based tomographic reconstruction




