

Tomographic reconstruction: the challenge of "dark" information

Meeting on Tomography and Applications, Politecnico di Milano, 20-22 April, 2015

Tomography

• A mature technique, providing an outstanding wealth of information from medical applications to material science

Tomography

- Yet, outstanding progress has been accomplished over the past few years
 - Ultra-High spatial resolution
 - Ultra-Fast
 - Finer sensitivity (Phase contrast)
 - Enriched tomography (DCT)

Tomography

• In parallel, further developments involve a tremendous amount of data

• Motivation is high to reduce the quantity of needed information

• Can we do more with less ?

Big data

- A key element in the context of images is the information content
- A 1 Mpix. gray scale image encoded over 8 bits requires

$2^{10} \times 2^{10} \times 2^3 = 2^{23} = 8,388,608$

bits of information

Big data

- A key element in the context of images is the information content
- A 1 Mpix. gray scale image encoded over 8 bits requires

 $2^{10} \times 2^{10} \times 2^3 = 2^{23} = 8,388,608$

bits of information

• Really ?

Compression

• Some bits have more "value" than others!

• A certain amount of compression can be harmless (or even beneficial)

Celebrated example

• "Lenna" original

Celebrated example

• "Lenna" 70% compression (Daubechies

wavelets)

Data Compression

• Compression efficiency depends on the chosen *representation* of the image and scale

Data Compression

Compressibility relies on a possibly *sparse* representation of an image: for a suited basis, only few elements are non-zero

• Compressibility also means a large potential for noise reduction

Efficient measurement

• Can we do something smarter and only "read" the information needed to capture the sparse components rather than acquiring all and throwing away the least meaningful?

• This is the field of *Compressed sensing*

The case of tomography

• Candés, Romberg and Tao (2004)

Reconstruction

The case of tomography

• Classical reconstruction from 22 projections (rather than 600)

The case of tomography

• Suited reconstruction based on 22 projections minimizing total variation

Complexity

- In this example, $|\nabla f|$ is *sparse*
- f(x) can be reconstructed as the solution to

$$f(\mathbf{x}) = \underset{\Pi_{\theta}g=\pi_{\theta}}{\operatorname{argmin}} \int |\nabla g(\mathbf{x})| \, \mathrm{d}\mathbf{x}$$

convex minimization problem (provided *enough* projections are considered)

• The trick is to use a L1 norm

Opportunities

• Exploit *prior information* on material under study (number of phases, geometry, ...)

• Resort to sparse representation as an intermediate step in iterative algebraic reconstruction

Opportunities

• Sparsity is typically not shared by noise. Hence finding a sparse representation of a signal is naturally a *denoising* technique

• Reconstruction is well suited to multiscale approaches

What are the limits ?

Classically

- 600 projections are well-suited for FBP reconstruction for a 400×400 images
- # of inputs is 400×600 data
- # of outputs is 400×400 data

Slightly redundant (150%)

What are the limits ?

TV minimization

- 22 projections are sufficient for a 400×400 images
- # of inputs is 400×22 data
- # of outputs is 400×400 data

Significantly underdetermined (5.5%) without additional "dark" information

What are the limits ?

• Why not go to lower values ?

A phase transition

• Donoho & Tanner's phase transition

A phase transition

Number of pixels N^2 Number of projections MFraction of non-zero pixels pSolvability condition $p < p_c$

$$p_c \approx \frac{M}{2N\log(N/M)}$$

Donoho & Tanner, Disc. Comp. Geom. (2010)

Open questions

- What is the least number of parameters to describe accurately the tomographied specimen ?
- Can one combine a suited sparse representation with efficient reconstruction techniques ?
- Is there an objective measure of complexity that would dictate the number of projections to be used ?

dia. **BINARY TOMOGRAP**

SR, Leclerc, Hild, J. Math. Im. Vis. (2013)

An example from fast tomography

 Al-Cu phase separation images at 0.14 s (1500 projections) European Synchrotron Radiation Facility (E. Gouillart, L. Salvo)

Binary reconstruction

- A priori information on the reconstructed field may reduce drastically the needed information (projection)
- An example of such prior information is the reconstruction of binary fields

Proposed algorithm

- A: Initialize with a first guess
- B: Iteratively enhance the matching with projections

• Very efficient algorithm leading to *errorfree* reconstructions for large image sizes (1000×1000), few projections (4-20), in seconds (10-20 iterations)

A: Initialization

- Probability that a particular site is valued 1: *p*
- Known from projection *i*: p_i $q_i = 1 p_i$

A: Initialization

• A nice property: - Introduce $\varphi(p) = \log\left(\frac{p}{1-p}\right)$ $p = \frac{e^{\varphi}}{1+e^{\varphi}}$

- Then
$$\varphi(p) = \varphi(p_1) + \varphi(p_2)$$

– Holds for an arbitrary number of projections: FBP can be used on φ

Non-linear transform

• Transform

An example

Original image

φ -FBP with 7 projections

Initialization step

• Lowest (<0.01) and highest (>.99) probabilities can be set to 0 and 1 respectively, and a second pass of the same FBP can be used on the undetermined sites

ART algorithm

- Projection constraint for each projection direction j $W^{j} \cdot f = \pi^{j}$
- ART correction step $f^{(n+1)} = f^{(n)} + B^j \cdot (\pi^j - W^j \cdot f^{(n)})$

(uniform additive correction along each ray)

Other variants

• MART is a Multiplicative variant (*f* is scaled along rays to meet the projection)

• Note that this variant is an ART correction on log(*f*)

Thus a natural idea is to design a similar strategy on φ(f)
Correction step

- For each direction *j*, and individual rays, the φ(*f*) values are translated so that a binarization would lead to the exact projection: This amounts to sorting out the π^j largest values of φ(*f*), and translate all φ(*f*) so that the π^jth value is set to 0
- After having visited all directions, *f* is binarized and convoluted with a Gaussian

Correction step

Convergence rate

Conclusion on the example

- More than 10⁶ unknowns
- 7 projections: 7×10^3 data (0.7 %)
- Exact solution reached in 4 iterations
- Smoothness parameter: *r* geometrically decreasing with iteration number from 3 to 1
- Computation time (Matlab[®], single processor, no optimization): 8.4 s

Multiscale

- The same algorithm can be used on a coarsegrained image where 2 × 2 pixels are grouped together (majority rule). The resulting image is used as a seed for the correction steps at the finer scale
- This scaling feature can be used recursively

A complex microstructure case

• Single scale: 31 iteration steps, 189s, for an error free reconstruction on 1 Mb image.

A complex microstructure case

- Single scale: 31 iteration steps, 189s, for an error free reconstruction on 1 Mb image.
- Multiscale: 5 levels, 28 s, or 7 times faster

Generation = 4 Error = 0 Iteration = 3 Generation = 3 Error = 0 Iteration = 8 Generation = 2 Error = 0 Iteration = 6 Generation = 1 Error = 0 Iteration = 3 Generation = 0 Error = 0 Iteration = 3 Total time = 28 s

• Single convex polygon

Number Proj.	Perfect reconst.	Pixel error	Time (s)
3	93%	3	0.36
4	99%	0.6	0.45

• Several convex polygons

Number Proj.	Perfect reconst.	Pixel error	Time (s)
4	90%	21.0	1.92
5	97%	1.3	1.31
б	100%	0	1.04

• Several ellipses

Number Proj.	Perfect reconst.	Pixel error	Time (s)
4	83%	41	2.0
5	99%	0.005	1.4
6	100%	0.	1.3

• Many small ellipses

Number Proj.	Perfect reconst.	Pixel error	Time (s)	
14	98%	5.	14.1	
16	98%	5.	14.8	у

Number of projections ?

If the fraction p_b of boundary pixels is a proper measure of complexity, a solvability criterion may be guessed to amount to

 $N\log(N/M)p_b^{crit}$ $\approx cst$ \boldsymbol{M}

DIGITAL VOLUME CORRELATION WITHOUT RECONSTRUCTION

How to measure a 3D displacement field efficiently?

- Test case:
- Nodular cast iron specimen

- ID19 @ ESRF
- Energy = 60 keV

in-situ mechanical testing

- In-situ tensile test (E. Maire & J. Y. Buffière's testing machine)
- Acquisition of two 3D images (elastic regime)

Material

- Nodule size 50 µm
- Inter nodule distance 50µm
- Rough surface
- Voxel = $5.1 \ \mu m$
- $ROI = 180 \times 330 \times 400$ voxels

Reconstruction

- Reconstruction
- $f(\mathbf{x}) = \mathcal{R}[s(\mathbf{r}, \phi)]$ $f = \mathcal{R}[s]$
- Projection
- $s(\mathbf{r}, \phi) = \mathcal{P}_{\phi}[f(\mathbf{x})]$ $s = \mathcal{P}_{\phi}[f]$

DVC

Starting from two images f₁(x) and f₂(x), of the same object at two different loading conditions, DVC consists of measuring the displacement field u(x) from

$$f_2(\boldsymbol{x} + \boldsymbol{u}(\boldsymbol{x})) = f_1(\boldsymbol{x})$$

Global-DVC

• The displacement field is decomposed over a library of displacement fields

$$\boldsymbol{U}(\boldsymbol{X}) = \sum_{i} a_{i} \boldsymbol{\Psi}_{i}(\boldsymbol{X})$$

• As an example, finite-element shape functions can be chosen

Global DVC

• The amplitudes, a_i , are determined from the minimization of

 $a = Argmin_b \quad \iiint (f_2(X) - f_1(X - b_i \Psi_i(X)))^2 dX$

• Multiscale and/or mechanical regularization strategy to manage robustness and basin of convergence.

DVC Displacement field

- N G Cast Iron Fatigue Crack
- C8 DVC

1 voxel \leftrightarrow 3.5 μm

*[N.Limodin et al, Acta Mat. 57, 4090, (2009)]

Global DVC vs reconstruction

• For a $10 \times 10 \times 10$ vox. cubic mesh,

 $\frac{\text{Number of kinematic unknowns}}{\text{Number of voxels}} = 0.003 << 1$

• A factor of more than 100 could be saved on the number of projections !

10⁹ pix

"Reconstruction-free" DVC

• The kinematics can be determined from

$$a = Argmin_b \qquad \sum_{\theta} \iint (s_2(\mathbf{r}, \theta) - \mathcal{P}_{\theta} [f_1(\mathbf{X} - b_i \boldsymbol{\Psi}_i(\mathbf{X}))])^2 \, \mathrm{d}\mathbf{r}$$

• Each increment is determined from a least square fit.

Mesh

- 303 T4 elements
- 97 nodes
- 180×330×400 voxels

$$N_{\rm rad} = 48$$
 U_z

$$N_{\rm rad} = 24$$
 U_z

$$N_{\rm rad} = 12$$
 U_z

 U_{z} $N_{\rm rad} = 6$

 U_{z} $N_{\rm rad} = 3$

$$N_{\rm rad} = 2$$
 U_z

Uncertainty

More complex example

• NG cast iron specimen with a fatigue crack

More complex example

- Analysis of deformed state based on two projections
- Mesh conforming to sample geometry and crack (including roughness)
- Prior assumption: elastic behavior with unknown boundary conditions

Projection 1

Projection 2

Residuals Residual yzResidual xz|0.1|0.1-0500 -0.1 ${}^{100200300400500}_{x}$

Deformed mesh

CONCLUSIONS

Conclusions

- Challenge in tomography is to master the "dark" information to extract the most important information
- In both reported case studies, a reduction by two orders of magnitude or more was achieved

Perspectives

- 4D or Dynamic tomography
- Tomography of velocity fields
- Model-based tomographic reconstruction

