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Reconstructing piecewise constant functions from
tomography data

Reconstruction problem

– given (indirect) information of an object. . .
what can we find out about the object? (also “inverse problem”)

Piecewise constant functions

– let Ωn ⊂ R2 and cn ∈ R, then f (x ) =
∑N

n=1 cnχΩn

Tomography data

– line integrals of an object
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An important question

Ideas for answers:

ask the creator

open head (quite destructive)

. . .

. . .

deduce from behavior

non-invasive head scan

Non-invasive means indirect information.
We can only observe the effect caused by the inside.
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Forward, direct and backward, indirect, inverse

Assume one knows what is inside, say f ;
and one also knows the process, say K ;
(e.g., sums along certain lines)

Then, the expected outcome can be computed, say g .

Forward or direct problem

Given f and K : X → Y , compute g = Kf . (we consider the linear case)

Backward or indirect or inverse problem

Given K : X → Y and g ∈ Y , compute f with Kf = g .

As soon as there is an inverse to K this should not be too hard!
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Example: Integration and differentiation
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This is a very academic and artificial example.

It shows a typical behavior:

gδ close to g (with g = Kf ) leads to f δ := K−1gδ not close at all to f = K−1g
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I``-posed inverse problems and regularization

Given K and gδ that approximates g = Kf , e.g., ‖g − gδ‖ ≤ δ.

ill-posed inverse problems: issues with

existence and uniqueness of solutions and

stability: gδ → g BUT f δ := K−1gδ 6→ f = K−1g

regularization: replace K−1 by Rα with α = α(δ) > 0 such that

approximation: limα→0 Rαg = K−1g

stability: gδ → g implies f δα := Rαg
δ → f = K−1g

The parameter α is called regularization parameter. It controls the
compromise between approximation and stability.
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Example: Tikhonov

Standard Tikhonov: solving Kf = g is replaced by

minimize ‖Kf − gδ‖22 + α‖f ‖22;

This is called a variational formulation.

, parameter choice rule exists, one even has a convergence rate

Generalizations: solving Kf = g is replaced by

minimize ‖Kf − gδ‖pX + αP(f )

The penalty term P
assures the stable dependence on the data,
describes properties of the solution like sparsity or smoothness;

‖f ‖22 or TV(f ) or ‖f ‖H s or . . .
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Tomography, Radon and ill-posedness

In computerized tomography (CT) one wants an image/some
information from inside a body given measurements from the outside.

The data is modeled as the Radon transform of the body density f

Rf (s, ω) =

∫
R
f (sω⊥ + tω)dt (s, ω) ∈ R× [0, π)

Wanted:

get f from g = Rf

U There is an inverse Radon transform.

A R smoothes of order 1/2 in Sobolev scales

The inversion is instable/ill-posed.

Partial data (region of interest) makes it worse.
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Region of interest tomography

Region of interest tomography or Interior problem

information is wanted/available only about a region of interest

of an object not about the whole object

image only that region; save time and money, minimize exposure

increases the ill-posedness/instability

original with ROI full data ROI data
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Region of interest tomography – the big question

Let Ω ⊂ D ⊂ R2 be the region of interest; and f : D → R is wanted.

Radon data/line integrals of f are given

1 over all lines passing through Ω (continuous data)

2 over some lines (densely sampled) passing through Ω (discrete data)

Can one get back f (or maybe just f|Ω) from continuous ROI data?

In general: no . . . . . . For piecewise constant functions: yes.

K., Quinto, Ramlau. A weighted wavelet method for region of interest tomography (2015).

Related work (theoretical results and TV approach):

Han, Yu, Wang (2009); and Ye, Yu, Wang (2009); and Yu, Jang, Jian, Wang (2009).
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Wavelet representation

A (1d-)wavelet ψ is a small wave, a function with zero mean.

It generates a family of wavelets via ψjk (t) := 2−j/2ψ
(

t − k ·2j

2j

)
, j , k ∈ Z

j determines the size of the wavelet:

for j > 0 we get a slow/long wave; general trend or approximation
for j < 0 we get a fast/short wave; details

k determines the location of the wavelet.

For some wavelets the ψjk are an orthonormal system; even a basis:

f =

∞∑
j=−∞

∞∑
k=−∞

〈f , ψjk 〉ψjk

For some wavelets there exists a second function, the so-called scaling
function or father wavelet.
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Wavelets in 2d – example

1d-Haar scaling function and wavelet.

2d functions (wavelets) as products of 1d functions

Ψ1(x , y) := φ(x )φ(y)

Ψ2(x , y) := φ(x )ψ(y)

Ψ3(x , y) := ψ(x )φ(y)

Ψ4(x , y) := ψ(x )ψ(y)
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Different amount of contribution

We have f =
∑

j ,k cjkψjk but also f = fROI + fD\ROI.

Different types of wavelets (position of the wavelet relative to the ROI).

1 empty overlap: suppψ ∩ ROI = ∅;

these wavelets do not contribute to fROI

2 one containes the other: suppψ ⊂ ROI; or ROI ⊂ suppψ;

strong contribution to fROI

3 neither 1 nor 2, i.e., nonempty overlap but not contained;

some contribution to fROI

Think about it: What would you do with type 1?
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Weighted wavelets for ROI tomography – the functional

Given (noisy) ROI data gδROI of f , i.e., gROI = RROIf

compute ~c = (cjk ) ∈ `2 and by that f = F ∗~c =
∑

cjkψjk as

~c = arg min
{
‖RROIF

∗~c − gδROI‖2 + α
∑
j ,k

ωjk |cjk |
}

with weights emphasizing the positioning relative to the ROI
1 empty overlap: ωjk = ωout

2 one containes the other: ωjk = ωin = 1

3 neither 1 nor 2, i.e., ωjk = ωrim interpolates ωout and ωin

~c = arg min
{
‖RROIF

∗~c − gδROI‖2

+ α
(∑

in

|cjk |+
∑
rim

wjk |cjk |+ ωout

∑
out

|cjk |
)}
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Influence of the weights

~c = arg min
{
‖RROIF

∗~c − gδROI‖2

+ α
(∑

in

|cjk |+
∑
rim

wjk |cjk |+ ωout

∑
out

|cjk |
)}

We set ωin = 1.

ωout = 1 . . . all wavelets have the same influence.

ωout << 1, e.g., close to zero; remember: minimize the functional!

; Influence of
∑

out |cjk | is suppressed/controlled by ωout;
the cjk can be large; in light of ill-posedness not a good idea

ωout >> 1, e.g., close to ∞

; Influence of ωout
∑

out |cjk | is not controlled by ωout;
forces outside cjk to be very small (zero); very stable!

We set ωout > ωin = 1, but still bounded, e.g., ωout = 5 or 10.
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Regularization result

We can find conditions for convergence in
Daubechies, Defrise, DeMol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.

2004.

Ramlau. Regularization properties of Tikhonov regularization with sparsity constraints. 2008.

All of the necessary conditions can be fulfilled; and we have a unique
solution for piecewise constant functions from complete ROI tomography
data.

Theorem (Convergence result)

The regularized solutions of the weighted wavelet method converge to the
exact solution.
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Related work

Small wavelets outside the ROI do not contribute to it – get rid of them!

f =
∑N

j=0

∑
k cjkψjk =

∑N
j=0

∑
k cjkψ

ROI
jk +

∑N−1
j=0

∑
k cjkψ

¬ROI
jk

Deleting complete scales of wavelets is called linear shrinkage and it
reduces the number of unknowns!

This is done for ROI tomography (also N − 2, N − 3 etc.) in

Niinimäki, Siltanen, Kohlemainen. Bayesion multiresolution method for local tomography
in dental X-ray imaging. 2007.
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A very sparse wavelet example

A very sparse and very academic example built from 8 wavelets:
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A very sparse wavelet example – reconstruction
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original with ROI weighted wavelets
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delete 2 outer levels; α1 delete 2 outer levels; α2
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A very sparse wavelet example - remarks

Allowing small wavelets outside the ROI results in perfect recovery; 8
nonzero wavelet coefficient.

The reconstruction quality inside the ROI is also very good for the
linear shrinkage.

However, one looses the overall sparsity.
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The MCAT torso phantom

j µj

1 0

2 0.0600

3 0.0100

4 0.1200

5 0.0600

6 0.0100

Torso phantom with numbered domains and ROI. Note the spine region!
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Weighted wavelets versus linear shrinkage
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weighted wavelets, ∂ROI = 10.34% linear shrinkage, ∂ROI = 14.93%

More results, pictures, tables (also for noisy data) in

K., Quinto, Ramlau. A weighted wavelet method for region of interest tomography (2015).

U Allowing small details outside the ROI can lead to a better
reconstruction inside the ROI.
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Region of interest tomography – filtered backprojection

Please be aware! Most of this is this weekend’s ‘shot in the dark’.

From some discussions, mainly last workshop in Leiden (Federica Marone
& ROI discussion group), i got the following ideas what is used

Consider the ROI data as a complete data set.

Use FBP to reconstruct an object of the size of the region of interest.

Data padding (get rid of the ring artefact);

introduce more data, i.e., pad the given sinogram, e.g., constantly with
the first/last measurement;
again consider the padded data as complete data set and reconstruct a
region of the appropriate size.

Rely on the structure not on the values.
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FBP of ROI data

This is again the MCAT phantom.

no padding constant padding l/r 20 constant padding l/r 40
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FBP of ROI data

MCAT phantom with a circle of high attenuation directly outside the ROI.

weighted wavelet constant padding l/r 20 constant padding l/r 40
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FBP of ROI data

Zoom into reco around ROI (first row) and only reco of ROI (2nd row).

weighted wavelet constant padding l/r 20 constant padding l/r 40
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Conclusions/Questions

add noise and do the FBP reconstruction;

reduce number of projections; compare to FBP;

create a phantom for which FBP introduces artefacts;
maybe half a circle (should be non-symmetric)
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