Direttore Vicario: Prof. Gabriele Grillo
Responsabile Gestionale: Dr.ssa Franca Di Censo


Selezionare una sezione
Parola da cercare

Prossimi Seminari

  • Working with compositional data in coordinates
    Eva Fiserova, Palacky University Olomouc, Czech Republic
    mercoledì 21 novembre 2018 alle ore 14:30, aula Saleri VI piano
  • Illuminazione, visione e opere d’arte: il punto di vista del fisico
    Farini Alessandro, Istituto Nazionale di Ottica, CNR, Firenze
    mercoledì 21 novembre 2018 alle ore 15:00, Sala Consiglio VII piano
  • An overview of some mathematical and computational problems in Network Science
    Michele Benzi, Scuola Normale Superiore, Pisa
    giovedì 22 novembre 2018 alle ore 14:00,  Aula Consiglio VII Piano – Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO
    Shigefumi Mori, Kyoto University Institute of Advanced Study
    lunedì 26 novembre 2018 alle ore 16:30, Aula Chisini, Diparimento di Matematica, Via C. Saldini 50
  • The Quantitative Alexandrov Theorem in Space forms
    Luigi Vezzoni, Università degli Studi di Torino
    martedì 27 novembre 2018 alle ore 15:15, Aula seminari 3° piano
  • First Principles Determination of Reaction Rates
    Carlo Cavallotti, Dipartimento di Chimica, Materiali e Ingegneria Chimica, “G. Natta”, Politecnico di Milano
    martedì 27 novembre 2018 alle ore 10:30, aula Saleri VI piano
  • Emodinamica della circolazione epatica: problemi e nuove acquisizioni
    Massimiliano Tuveri, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
    giovedì 29 novembre 2018 alle ore 11:30, aula consiglio VII piano
  • Characterization of Attraction Domains for Generic Quantum Semigroups
    Damiano Poletti, Politecnico di Milano
    giovedì 29 novembre 2018 alle ore 14:30 precise, Aula Seminari III piano

Seminari Passati

  • Heat content asymptotics of bounded domains
    Alessandro Savo, Università La Sapienza Roma
    martedì 8 maggio 2018 alle ore 15:15, Aula Seminari 3° piano
    For a bounded domain in a Riemannian manifold, we consider the solution of the heat equation with unit initial data and Dirichlet boundary conditions. Integrating the solution with respect to the space variable one obtains the function of time known in the literature as the “heat content” of the given domain. In this talk we show how the geometry of the boundary affects heat diffusion by examining the small time behavior of the heat content. In particular, we study a three term asymptotic expansion for polyhedral Euclidean domains, and give a recursive algorithm for the calculation of the entire asymptotic series when the boundary is smooth.
  • Statistical inference for price staleness
    Giulia Livieri, Scuola Normale Superiore
    martedì 8 maggio 2018 alle ore 13:15 precise, Aula Seminari del Sesto Piano
  • Large deviations for the stochastic Allen-Cahn approximation of the mean curvature flow
    Adriano Pisante, Università degli Studi di ROMA “La Sapienza”
    giovedì 3 maggio 2018 alle ore 15:15, Aula seminari 3° piano
    We consider the sharp interface limit for the Allen-Cahn equation on the three dimensional torus with deterministic initial condition and deterministic or stochastic forcing terms. In the deterministic case, we discuss the convergence of solutions to the mean curvature flow, possibly with a forcing term, in the spirit of the pioneering work of Tom Ilmanen (JDG ’93). In addition we analyze the convergence of the corresponding action functionals to a limiting functional described in terms of varifolds. In the second part I will comment on related results for the stochastic case, describing how this limiting functional enters in the large deviation asymptotics for the laws of the corresponding processes in the joint sharp interface and small noise limit.
  • Computing disconnected bifurcation diagrams of partial differential equations
    Patrick Farrell, Mathematical Institute, Oxford
    giovedì 26 aprile 2018 alle ore 14:00, Aula Consiglio VII Piano – Edificio 14, Dipartimento di Matematica POLITECNICO DI MILANO
    Computing the distinct solutions $u$ of an equation $f(u, \lambda) = 0$ as a parameter $\lambda \in \mathbb{R}$ is varied is a central task in applied mathematics and engineering. The solutions are captured in a bifurcation diagram, plotting (some functional of) $u$ as a function of $\lambda$. In this talk I will present a new algorithm, deflated continuation, for this task. Deflated continuation has three advantages. First, it is capable of computing disconnected bifurcation diagrams; previous algorithms only aimed to compute that part of the bifurcation diagram continuously connected to the initial data.
    Second, its implementation is extremely simple: it only requires a minor modification to any existing Newton-based solver. Third, it can scale to very large discretisations if a good preconditioner is available. Among other problems, we will apply this to a famous singularly perturbed ODE, Carrier’s problem. The computations reveal a striking and beautiful bifurcation diagram, with an infinite sequence of alternating pitchfork and fold bifurcations as the singular perturbation parameter tends to zero. The analysis yields a novel and complete taxonomy of the solutions to the problem. We will also apply it to discover previously unknown solutions to equations arising in liquid crystals and quantum mechanics.

    This seminar is organized within the Research project MFAG 17412 «Mathematical insights of glioblastoma growth: a mechano-biology approach for patientspecific clinical tools» funded by the Italian Association for Cancer Research (AIRC), Project coordinator Prof. Pasquale Ciarletta

  • A review on some fourth order problems on manifolds
    Zindine Djadli, Université Grenoble Alpes
    martedì 24 aprile 2018 alle ore 15:15, Sala del Consiglio 7° piano
    I will review some recent works on some non linear problem on manifolds, mostly in conformal geometry.
  • Serrin’s overdetermined problem on the sphere
    Tobias Weth, Goethe-Universitat Frankfurt
    lunedì 23 aprile 2018 alle ore 16:00, Aula 6° piano
    In this talk, I will discuss Serrin’s overdetermined boundary value problem
    -\Delta\, u=1 \quad \text{ in $\Omega$},\qquad u=0, \; \partial_\eta u=\textrm{const} \quad \text{on $\partial \Omega$}
    in subdomains $\Omega$ of the round unit sphere $S^N \subset {\mathbb R}^{N+1}$, where $\Delta$ denotes the Laplace-Beltrami operator on $S^N$. We call a subdomain $\Omega$ of $S^N$ a Serrin
    domain if it admits a solution of this overdetermined problem. In our main result, we construct Serrin domains in $S^N$, $N \ge 2$ which bifurcate from symmetric straight tubular neighborhoods of the
    equator. By this we complement recent rigidity results for Serrin domains on the sphere. This is joint work with M.M.Fall and I.A.Minlend (AIMS Senegal).
  • Ricostruire l’invisibile…fantasmi permettendo
    Paolo Dulio, Politecnico di Milano
    mercoledì 18 aprile 2018 alle ore 12:15, Politecnico di Milano Campus Bonardi Edificio14 aula B21
  • Monotonicity formulas in potential theory with applications
    Lorenzo Mazzieri, Università degli Studi di Trento
    mercoledì 18 aprile 2018 alle ore 15:15, Aula seminari 3° piano
    We present an overview of some new monotonicity formulas, holding in the realm of linear and nonlinear potential theory, together with their main applications to several domains of investigation. These are ranging from the theory of overdetermined boundary value problems in the classical Euclidean setting, to the classification of static black holes in general relativity and to the geometry of manifolds with nonnegative Ricci curvature. (Joint works with V. Agostiniani, M. Fogagnolo and A. Pinamonti).