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ABSTRACT. The purpose of the talk is to review some of the re- 
cent results on Gorenstein liaison confronting them with clas- 
sical results in complete intersection liaison theory. 

1 I n t r o d u c t i o n  

This expository paper is a slightly modified version of a Colloquium 

talk I gave at the "Seminario Matematico e Fisico di Milano" on Novem- 

ber 15, 1999. The purpose of the talk was to review some of the 

recent  results on Gorenstein liaison (simply, G-liaison) confronting 

them with classical results in complete  intersection liaison theory 

(simply, CI-liaison). 

The notion of using complete intersections to link varieties has 

been  used for a long time ago, going back at least to work of Noether, 

Macaulay and Severi. The development  in the last four decades has 

*Partially supported by DGIC~cT PB97-0893. 
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been  explosive. Many people  has  con t r ibu ted  to it and in the codi- 
m e n s i o n  2 case the picture  is comple te .  It is imposs ible  to make  a 
comple te  survey in one hour.  I will m a k e  no a t t empt  to do so. Ins tead  
I will try to c o n ~ u c e  you that  Gorens te in  liaison is a more  na tura l  ap- 
p roach  if we want  to carry ou t  a p r o g r a m  in higher  cod imens ion  and  
I refer to the m o n o g r a p h  [5] for a m o r e  detai led t rea tment .  

In 1948, Gaeta p roved  that  there  is only one CI-liaison class con- 
taining ari thmetically Cohen-Macaulay (briefly, ACM) curves C c ~3 
or, equivalently, all ACM curves C c ~3 are licci [3]. The first goal 
of  this work  is to see that  in the CI-liaison context  Gaeta's T h e o r e m  
does  no t  generalize well to h igher  cod imens ion .  More precisely, I will 
prove the  existence of infinitely m a n y  different  CI-liaison classes con- 
taining ACM curves C c F 4. I will give two k ind  of examples:  (1) I will 
see that  m a n y  ACM curves on a Cas te lnuovo (resp. Bordiga) surface 
give rise to an infinite n u m b e r  of  CI-liaison classes containing ACM 
curves by j u s t  adding different n a m b e r  of  hyperp lane  sect ions (Exam- 
ple 3.1) and, (2) ACM curves Ct c p4 wi th  a t-linear resolu t ion  be long  

to different  CI-liaison classes p rov ided  t ~ t '  (Corollary 3.3). The  
second goal is to convince the reader  that  G-liaison is in many  ways 
more  na tura l  than CI-liaison and a m o n g  o ther  resul ts  I will state that  
ACM curves C c ~4 l)4ng on a general  smooth ,  rational, ACM surface 
are ghcci, i.e., they belong to the G-liaison class of a complete  inter-  
sect ion (Theorem 4.1). The last goal is to generalize Gaeta's T h e o r e m  
and prove that  s tandard  de te rminan ta l  schemes  are glicci. Since in 

cod imens ion  2, ACM schemes  are s t a n d a r d  de te rminanta l  and  since 
in cod imens ion  2, ari thmetically Gorens te in  schemes  and comple te  
in tersec t ion  schemes  coincide, this resul t  is indeed a full generaliza- 

t ion of Gaeta's Theorem. 

Next we outl ine the struc~Lre of  the  paper.  In sect ion 2, we col- 
lect the ma in  definit ions of this paper .  In sect ion 3, we in t roduce  
some graded  modules  which are l iaison invariants under  CI-liaison 

bu t  no t  u n d e r  G-liaison (Theorem 3.1 and  Theo rem 3.2) and we will 
use t h e m  to prove the eMstence of  infinitely many  different CI-liaison 
classes conta ining ACM curves C c p4. In sect ion 4, we de te rmine  
huge  families of ACM curves C c ~4 which  are gticci (Theorem 4.1 

and T h e o r e m  4.3) and; in sect ion 5, we generalize Gaeta's T h e o r e m  
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(Theorem 5.2). 

In view of the already vast  l i terature I have only inc luded the ref- 
erences that  are directly re la ted to the topics  d iscussed  here. I apol- 
ogize to the many  whose  beaut i fu l  and  deep  cont r ibut ions  could no t  
even be m e n t i o n e d  wi thout  overly enlarging the perspect ive  of  this 
note.  

ACKNOWLEDGMENT. I am greatly indeb ted  to my co-authors  of [5] 
for the enjoyable col laborat ion which led to mos t  of the mater ial  de- 
scribed in this paper:  they are J. Kleppe, J. MJgliore, U. Nagel and  
C. Peterson. I wish to t hank  the "Seminario Matematico e Fisico di 
Milano" for giving me  the  o p p o r t u n i t y  to talk about  this subject  in 
Milano. I am also very grateful  to A. Lanteri for his k ind  hospi tal i ty  
dur ing  my  stay in Milanoo 

NOTATION. Th roughou t  this pape r  we work  over an algebraically 
c losed field k of characterist ic 0. By •N we denote  the N-dimensional  
project ive space over k, by  R the  po lynomia l  ring k[Xo . . . . .  XN] and  
m = (Xo . . . . .  XN). For any closed subscheme  V of ~N we denote  by 
Iv its ideal sheaf, I (V)  its s a tu ra t ed  h o m o g e n e o u s  ideal (note that  
I (V )  = H ~  := O t e x H ~  A ( V )  = R / I ( V )  the homoge-  
neous  coordinate  ring, Nw = 5 f o r e ( I v ,  Or)  the normal  sheaf  of  V 
and  Mi(V)  = H i (Iv) := O t ~ x  Hi (  Pn, I v ( t ) ) ,  i = 1 .... , d im(V),  the i- th 
Rao modu le  of V. 

Let X c pN be a locally Cohen-Macaulay and equid imens iona l  
s cheme  of cod imens ion  c. X is said to be ari thmetically Cohen-Ma- 
caulay (briefly, ACM) if and  only if Mi(X)  = 0 for 1 _< i < N - c or, 
equivalently, A ( X )  is a Cohen-Macaulay ring. X is said to be arith- 
metical ly Gorenstein (briefly, AG) if and  only if I (X)  has  a reso lu t ion  

  C-lR(_nc-1 ) 1 O ~ R ( - t )  ~ i=1 . . . . .  ~ t = l R ( - n i  ) ~ I ( X )  ~ 0. 

In particular,  X is ar i thmetical ly Cohen-Macaulay. It is well k n o w n  
that  in cod imens ion  two AG subschemes  and complete  in tersec t ion  
subschemes  coincide. In h igher  codimension ,  any complete  intersec- 
t ion subscheme  is AG but  no t  vice versa (indeed, a set of n + 2 po in ts  
in ~n in linear general  pos i t ion  is AG bu t  no t  complete  intersection),  
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2 Background  mater ia l  

In this section, we collect the main definitions of this paper. 

DEFINITION 2.1 (See also [5, Definitions 2.3, 2.4 and 2.10]). Let V1 
and V2 c ll ~N be two equidimensional schemes without embedded 
components. We say that V1 and V2 are directly CI-linked (resp. di- 
rectly G-linked) if there exists a complete intersection scheme (resp. 

an A G scheme) X such that Ivl / I x ~ J(orno~N (Or2, Ox ) and lv2 / Ix  -~ 
3 f  omo~N (Or1, Ox). I f  V1 and V2 do not share any common compo- 
nent then this is equivalent to X = V1 ~) V2. 

EXAMPLE 2ol A simple example of schemes directly CI-linked is the 
following one: Let C1 be a twisted cubic in ~3 and let C2 be a secant 
line to C1. The union of C1 and C2 is a degree 4 curve which is the 
complete intersection X of two quadrics Q1 and Q2. So C1 and C2 are 
directly CI-linked by the complete intersection X. 

As a simple example of schemes directly G-linked we have: We 
consider a set YI c y3 of four points in linear general position and a 
sufficiently general point Y2. Since X = Y1 u Y2 is an AG scheme, Y1 
and Y2 are directly G-linked. 

DEFINITION 2.2 Let V1 and V2 c p N  be two equidimensional schemes 
without embedded components. We say that V1 and V2 are in the 
same CI-liaison class (resp. G-liaison class) if  and only if  there exists 

a sequence of  schemes Y1,..., Yr such that Y~ is directly CI-linked (resp. 

directly G-linked) to Y/+I and such that Y1 = V1 and Yr = V2. I f  V1 is 
linked to V2 in two steps by complete intersection (resp. AG) schemes 
we say that they are CI-bilinked (resp. G-bilinked). 

In other words CI-liaison (resp. G-liaison) is the equivalence re- 
lation generated by directly CI-linkage (resp. directly G-linkage) and 
roughly speaking liaison theory is the study of these equivalence re- 
lations and the corresponding equivalence classes. 

DEFINITION 2.3 A scheme X c pN is said to be licci if  it is in the CI- 

Liaison class of  a complete intersection. Analogously, we say that a 
scheme X c p,v is glicci if it is in the Gorenstein Liaison class o f  a 

complete intersection. 
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We are led to pose the following natural  question: 

Do Cl-Liaison and G-Liaison generate the same equivalence relation 
on codimension c subschemes of pn ? 

In codirnension two the answer is yes, since complete intersec- 

tions and AG schemes coincide. In higher codimension the answer is 

no. Indeed, a simple counterexample  is the following: Consider a set 

X of four points in ~3 in linear general  position. By Example 2.1 we 

can G-link X to a single point. Therefore,  X is glicci. On the other  

hand, it follows f rom [4, Corollary 5.13] that X is not licci. 

Although the goal of my talk was to show the merits of studying 

Gorenstein liaison, it is wor th  to ment ion  some disadvantages: (1) It 

is easy to check that both  CI-links and G-links are preserved under  

hyperplane sections. Nevertheless, CI-links lift and G-links do not lift, 

in general. (2) Given a scheme V c ~N it is, in general, very difficult 

to find "good" G-links, i.e., "good" Gorenstein ideals Ix c Iv of the 

same high ("good" often means  "small") 

DEFINITION 2.4 Let X c ~N be a locally Cohen-Macaulay equidimen- 
sional scheme. A graded R-module C(X) which depends only on X 
is a CI-liaison (resp. G-liaison) invariant as an R-module (resp., k- 
module) if there exists a homogeneous R (resp. k)-module isomorphism 
C(X) ~ C(X') for any X' in the CI-liaison (resp. G-liaison)class of X. 

It is well known that for equidimensional,  locally Cohen-Macaulay 
schemes X c pN, the i-th module  ofRao Mi(X) := O t ~  Hi( ~n, Iv(t)), 
1 < i < dim(X), are CI-liaison invariants (up to shifts and duals)~ Even 

more they are G-liaison invariants. In next section, we describe other  

CI-1iaison invariants which allow us to distinguish bePa'een many  CI- 

liaison classes which cannot  be dist inguished by Rao modules  alone. 

3 L ia i son  i n v a r i a n t s  a n d  a p p l i c a t i o n s  

Let X c pn+c be a closed subscheme,  locally CM, equidimensional  

of dim n > 0". If X is ACM all the CI-liaison invariants Mi(X), 1 <_ 

*Throughout t~s paper we work with_ schemes of dimension n > 0. We want 
to point out that the results we give generalize to 0-dimensional schemes and we 
assume n > 0 for avoiding technical complications. 
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i < dim(X),  vanish. Our first goal is to descr ibe  non-trivial CI-liaison 
invariants  of  ACM schemes.  To this end, we cons ider  a g raded  R-free 
reso lu t ion  of I = I(X): 

�9 .~ m i R ( - n ~ )  -- e i R ( - n J )  -- I -- O. (3.1) 

We apply  H o r n ( - ,  Ox) to the exact sequence  (3.1) and  we obta in  

0 - - N x  -- ~ i O x ( - n ~ )  ---. o i O x ( - n 2 ) .  

We take cohomology  (HnOx ~- Hr~+~(R/I), A=R/I); and  we get a nat- 
ural  m a p  

6x " H n N x  ~ H o m R ( I ,  Hn+I(A))  -~ 

HOmR (I, H ~  +2 (I)). 

This map  6x plays an impor t an t  role; in particular,  its kernel  and  
cokernel  are CI-liaison invariants (See T h e o r e m  3.1). 

REMARK 3.1 If I / I  2 is a free R/I -module ,  t hen  6x is an i somorph i sm.  
Thus,  if X c pn+c is a global comple te  intersect ion,  then  4x is an 

i somorph i sm.  

THEOREM 3.1 Let X, X'  c pn+c be ACM subschemes o f  dimension n > 
0 algebraically linked by a complete intersection Y c pn+c. Then: 

1. As  graded  R-modules: Hi, N x  -~ Hi .Nx  , for 1 <_ i <_ n -  1, 

keY(~Sx) ~- ker (~x , )  

2. As  graded  k-modules: Coker  (6x) ~ C o k e r ( 6 x , )  

PROOF. See [5, Theorem 6.11. C] 

As applicat ion,  we get the follow4ng cri ter ion to check if an ACM 

scheme is licci. 

COROLLARY 3.1 Let X c pn+c be a closed subscheme o f  dimension 

n > O. I f X  is licci, then: 

1. H ~ N x  = O for l <_ i < n - 1 ,  
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2. 6x is an isomorphism~ 

PROOF. It follows f r o m  Theo rem 3.1 and  the  fact  tha t  for  comple te  

in te r sec t ions  Y c pn+c Hi.Ny = 0 for  1 < i < n - 1 and  ~y is aI1 

i s o m o r p h i s m  (Remark 3.1). [] 

F rom now unti l  the end  of  this section,  we will res t r ic t  our  atten- 

t ion to c losed subschemes  X c pn+3 n > 0, of  c o d i m e n s i o n  3 and  

we will deduce  f r o m  the previous resu l t s  the CI-liaison tnvariance of  

Him(KR/I| i =  0 .... , n  

being KRH = E x t  3 (R/I ,  R ) ( - n  - 4) the canonical  modu le  of  X~ 

Indeed,  us ing  basic facts  on local cohomology ,  the  spect ra l  se- 

quence  rela t ing local and  global Ext :  

EP2 q := HP(X,  E x t q ( F , G ) )  ~ Ex tP+q(F,G)  , 

and the  spectra l  sequence:  

E'P2 q :=u ExtP(Ml,Uqm(U2)) ~ ExtP+q(M1,M2), 

we obta in  

THEOREM 3.2 Let X c ~n+3 be an ACM subscheme of  codimension 3 
(n > O) a n d K  := E x t 3 ( A , R ) ( - n  - 4) its canonical module. Then, we 
have 

1. Hi.+lNx ~- Him(K | I ) (n  + 4), 0 _< i _< n - 2~ as graded R- 
modules.  

2. There exists an exact sequence: 

0 ~ H n - I ( K  | I)(T[ + 4) -- HnNX ~--~ H o m ( I ,  Hn+I(A)) 

H n  (K | I ) ( n  + 4) ~ O. 

In particular, 
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. H ~  (K | I) are CI-liaison invariant  as graded R (resp. k)-modu-  

les, 0 < i < n (resp. 0 < i <_ n). Moreover, i f X  is locally complete 

intersection then 

Him(K | I ) ( n  + 4) ~- H n - i ( K  | I) v i = 0 ..... n 

as R-modules.  

PROOF. See [5, P ropos i t ion  6.8]. [ ]  

As app l ica t ion  we  get  ano the r  c r i te r ion  to check if an ACM sub-  

s c h e m e  X of  pN is licci. 

COROLLARY 3.2 Let X c ~n+3 be a closed subscheme o f  dimension 

n > O. I f X  is licci t h e n H ~ ( K  | I )  = O, 0 <_ i <-- "It. 

PROOF. It fo l lows  f r o m  T h e o r e m  3.2 and  the  fact  tha t  for  comple t e  

in t e r sec t ions  Y c pn+3, Him(KR/i(y) | I ( Y ) )  = O, 0 <_ i < 14. [] 

We are led to pose  the fol lowing q u e s t i o n  which, to my" knowledge ,  

is still open:  

QUESTION 3.i Whe the r  the  converse  of  Corol lary  3.2 is true, i.e., is a 

c o d i m e n s i o n  3 ACM scheme  X c pn+3 licci if Him(K | I) = 0 for  

0 _ < i < , z ?  

Now, we  will i l lustrate wi th  an example  h o w  to use  T h e o r e m  3.2 

EXAMPLE 3.1 Let C c p4 be  a smoo th ,  c o n n e c t e d  curve of  degree  d 

and  genus  g wi th  an "a lmost  linear" reso lu t ion:  

0 ~ R ( - s  - 3) a - R ( - s  - 2) b ~ R ( - s  - 1) cl �9 R ( - s )  c~ ~ I (C)  - O. 

If d + g - 1 - aco ~ 0 then  C is no t  licci. 

IDEA OF THE PROOF. We c o m p u t e  the  d imens ion ,  

l(C)~ := dim~+5 H~ OR I(C) ), 
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of the CI-liaison invariants ~+sH~ | I)o The exact sequence and 

the duality of Theorem 3.2 gives us (small let ters mean  dimension) 

l( C)t~ - I(C)-~-5 = hl  Nc(p )  - u  h ~  (I ( C ) , H 2  (A) )" 

Since _2homR(I ,  H 2 ( A ) )  = aco and h l N c ( - 2 )  = - x N c ( - 2 )  = d + 
g - 1 (Pdemann-Roch's Theorem), we obtain 

l (C)_2-I(C)_3 = h l N c ( - 2 ) - - 2 h O m R  (I(C), H 2 ( A ) )  = d + g -  1-aco.  

Therefore, by Corollary 3.2, if d + g - 1 - aco 4 = 0 then C is not  licci. 

[] 

REMARK 3.2 

1. The only smooth  connected  curve in p4 with a linear resolut ion 

(co = 0) which is licci is a line. 

2. The smooth rational quartic is not licci. Indeed, (a, b, cl, co, s) = 

(3,8,6,0,  1) and d + g -  1 - a c o  = 3 4 0 .  

Recall that Gaeta's Theorem states the existence of a unique CI- 
liaison class containing ACM curves C c ~3o We will now deduce 

the existence of infinitely many  different CI-liaison classes containing 

ACM curves C c p4  So, in the context  of CI-liaison, Gaeta's Theorem 

does not  generalize well to higher codimension. In next sections, 

we will try to convince the reader  that G-liaison is a more  natural  

approach if we want  to carry out  a program in higher codimension. 

COROLLARY 3.3 Let Ct c ~4 be an ACM curve with a linear resolution: 

t2+t 1) t2+2t t 2+3t+2 
O ~ R ( - t -  2 )  ~ - r - - - R ( - t -  ~ R ( - t )  2 - -  I ( C t )  ~ 0 .  

For t ~ q, Ct and Cq belong to different CI-liaison classes. 

W e h a v e d ( C t )  = (t+43) - ( t+42) ,pa(Ct )=  ( t -  1)d(Ct) + PROOF. 1 -  

(t~3) and d ( C t ) + p a ( C t ) - I  ~ d ( C q ) + p a ( C q ) - i  for t ~ q. Therefore, 

by Example 3.1, Ct and Cq belong to different liaison classes provided 

t ~ q .  [] 
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REMARK 3.3 Corollary 3.3 shows that  in the  context  of  CI-liaison Gae- 
ta's T h e o r e m  does not  generalize to h igher  codimens ion .  To prove 
Corollary 3.3 we s trongly use  that  the  g r aded  modu le s  H ~ ( K  OR I) 
are CI-liaison invariants. So, if one wan t s  to see that  G-liaison is a 
more  na tura l  approach  in higher  cod imens ion ,  we have to prove that  
uirn(K | I) are not  G-liaison invariants .  Indeed,  they are not.  As 
example  we have the following one: 

Denote  by Ct c ~4 the ACM curve def ined  by the maximal  minors  
of  a t x (t + 2) matr ix with linear entries.  Dt has  a t-linear resolution.  

According to Corollary 3.3, H ~  | I (Dt ) )  changes  when t varies 
and  it follows f rom Theorem 5.2 that  Dt is glicci. Therefore,  HO m (K| 

I) is no t  a G-liaison invariant. 

As ano ther  example about  the exis tence of infinitely many  dif- 
ferent  CI-liaison classes containing ACM curves C c [~4 we have the 

following one 

EXAMPLE 3.2 Let S c ~4 be a Cas te lnuovo (resp. Bordiga) surface and  
let C c S be a rational, normal  quartic.  Cons ider  an effective divisor 

Ct E t C + tH[,  where H is a h ~ e r p l a n e  sec t ion  of S and 0 < t ~ Z. It 

holds:  

�9 Ct is no t  licci, V t >_ 0; 

�9 Ct and  Ct, belong to different  CI-liaison classes provided 0 < 

t < t ' .  

This last example is a part icular  case of  a m u c h  more  general re- 

sult  that  I will state after fixing some extra notat ion:  

We cons ider  a Cartier divisor C on  S c ~n§ where  d im C = n and 
C, S c pn+3 are ACM subschemes  generically comple te  intersection.  

We take a f ree  resolut ion of I (S)  : 

0 ~ ~ i R ( - q i )  ~ ~ i R ( - p i )  ~ I (S)  ~ O. 

Since :s t 1 (Is, Ic /s)  -~ m s  (rt + 4) |  applying Ho m (., Ic /s  ) to 
the  above exact sequence we get, for any integer/2,  the complex: 

~ i H O l c / x ( p  i + P) ~ ~iHO!c/s( t l i  + P) cpg~ HO( cos(n  + 4) | Ic/s(la) ). 

We define: 
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1. L~ = Coker~p~, 

2. LJ(C) u = HJ(cos(n  + 4) | Icis(la)), j >- 1o 

137 

Notice that if H is a hyperplane section of S c ~n+3, we have an 

i somorphism L~ ~ L~ for any Ct E IC + tH]. 

PROPOSITION 3.1 Let C c S c ~n+3 be two ACMsubschemes ,  S gener- 
ically complete intersection in pn+3 and suppose C is a Cartier divisor 

on S o f  dim C = n > 0. We take an effective divisor Ct ~ ]C + t i l l ,  
being H a hyperplane section o f  S, and we assume L n-1 (C)uo ~ 0 for 

some integer lao. It holds: 

1. Ct is not licci, V t >> 0; 

2. Ct and Cr belong to different liaison classes for any t > t' >> 0. 

PROOF. See [5, Corollary 7.5]. [] 

4 Glicci  c u r v e s  in  ~4 

In this section, using the fact that  the Picard group of a "general" 

ACM surface X c ~4 is well known together  with the fact that roughly 

speaking Gorenstein liaison is a theory about divisors on ACM sche- 

mes, we will see that there is only one G-liaison class containing ACM 

curves C c ~4 lying on a smooth,  rational, ACM surface S c ~4 More 

precisel% we will see that all ACM curves C c ~4 lying on a smooth, 

rational, ACM surface S c ~4 are glicci (Theorem 4.1)o We will also 
prove that ACM curves C c •4 lying on a "general '~ ACM surface X c 

~4 with degree matrix [ui,j], ui , j  > 0, are glicci provided 16((KH) 2 - 
K2H 2 ) - H 2 [H 2 - K 2 + 8 ( l + Pa) ] > 0; being K the canonical divisor on 

X and  H the hyperplane section of X (Theorem 4.3)~ See Example 4.1 

and Corollary 4.2 for examples of ACM surfaces X c ~4 verifying 

the above numerical condition and [1] for fur ther  generalizations of 

Theorem 4.3. Notice that these results drastically differ f rom the one 

obtained L~ Example 3.2. 

We start with some prel iminary results. 
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DEFINITION 4.1 A noetherian ring A (resp. a noetherian scheme X) 

satisfies the condition G1, "Gorenstein in codimension < 1 ", i f  every 

localization Ap (resp. every local ring Ox) of  dimension <_ 1 is a Goren- 

stein local ring. 

LEMMA 4.1 Let X c pn be an ACM subscheme satisfying the property 

G1, and let C be a subcanonical divisor on X. Let F e I(C) be a 

homogeneous polynomial of  degree d such that F does not vanish on 

any component of  X. Let HF be the divisor cut out on X by F. Then 

the effective divisor HF - C on X, viewed as a subscheme of  P n, is AG. 

In tact, any effective divisor in the linear systern IHF - CI is AG. 

SKETCH OF THE PROOF. We are assuming that C is the divisor as- 

sociated to a regular section o f  cox(l) for some l e 27. Let Y be the 

residual divisor, Y e IHF - CI. We have Iy1x(d) -~ O x ( d H  - Y) 

Ox(C) ~- cox(l) and the exact sequence 

o ~ x ( x )  ~ I ( Y )  ~ U ~  - d )  ~ O. 

Using the minimal free resolutions of I (X)  and H ~ (cox)(l - d) to- 

gether with the Horseshoe Lemma [10, 2.2.8, pag. 371 we deduce that 

Y is AG. []  

In next Proposition we are going to prove that in contrast  to the 

fact that adding hyperplane sections does not  preserve the CI-liaison 

class (see Proposition 3.1), it preserves the G-liaison class. 

PROPOSITION 4.1 Let X c pn be a smooth ACM subscheme and let 

C c X be an effective divisor. Take any divisor Ct in the linear system 

]C + t i l l  being H a hyperplane section o f  X and t c 2L Then, C and 

Ct are G-bilinked. (Notice that if  t = 0 then C and Ct are linearly 

equivalent.) 

SKETCH OF THE PROOF. Let K be a subcanonical divisor of X. Take 

A ~ I(K) a form of degree a >> 0 not  vanishing on any component  

of X. So HA - K is effective (We denote  by HA the codimension one 

subscheme of X cut out by A). Now we choose forms F ~ I(C) and 

G E I(Ct) with degF + t = degG and a divisor D on X such that 



GORENSTEIN LIAISON 139 

HF - C = D = HG - Ct. By l e m m a  4.1, HAF -- K and HAG -- K are 

Gorenstein.  Moreover, HAF - K -  C = (HA - K )  + (HF - C) = HA - K  + D 

and  HAG -- K - Ct = (HA - K) + (HG - Ct) = HA - K + D. So C a n d  Ct are 

Gorens te in  l inked to HA - K  +D as s u b s c h e m e s  of  pn or, equivalently,  

C and Ct are G-bilinked. []  

Propos i t ion  4.1 mot iva tes  the fol lowing def in i t ion  

D E F I N I T I O N  4.2 Let X c pn be a smooth  scheme. We say that  an 

effective divisor C on X is min imal  i f  there is no effective divisor in the 

linear sys tem [C - HI being H a hyperplane section divisor o f  X.  

We are now ready to s ta te  one of  the ma in  resul t s  of  this section~ 

THEOREM 4.1 A l l A C M  curves C c p4 lying on a general  smooth, ratio- 

nal, A C M  surface S c [p4 a r e  glicci, Le~ they belong to the Gorenstein 

liaison class o f  a complete intersection~ 

SKETCH OF THE PROOF. According  to the classif icat ion of  general  

smooth ,  rational,  ACbl sur faces  S is 

o A cubic scroll: S = Bl{pl}(~ 2) e m b e d d e d  in p4 by m e a n s  of  

the  l inear sy s t em 12Eo - Ell ,  deg(S) = 3, and  P i c ( S )  -~ 2~ 2 = <  

Eo;E1 >, or 

. A Del Pezzo surface: S = Bl{p~ ..... psi(P2) e m b e d d e d  in p4 by 
5 m e a n s  of  the l inear sy s t em 13Eo - ~r Ell, deg(S) = 4, and  

P i c ( S ) ~ -  ~6 = <  Eo;E1 .... ,E5 >, or 

. A Caste lnuovo surface: S = Blip 1 ..... ps} (p2) e m b e d d e d  in ~4 by 

m e a n s  of  the l inear s y s t e m  !4Eo 2E1 - ~.8 Ei], deg(S)  = 5, "- i = 2  

and P i c (S )  ~ 29 = <  Eo;E1,...,Es >, or 

. A Bordiga surface: S = Bl{pt ..... plo}([~2) e m b e d d e d  in p4 by 
10 

m e a n s  of  the l inear s y s t e m  14Eo - Zi--1Eit, deg(S) = 6, and  

P i c ( S )  ~- 2 li  = <  Eo;E1 ..... Eto >. 
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For each general  smooth ,  rational, ACM surface, we classify" the 
min imal  ACM curves C on S (see [5, w Finally, we check that  each 
min imal  ACM curve C on S is glicci by direct  examinat ion.  [] 

We are led to pose  the following ques t ion  which shou ld  be viewed 
as a general izat ion of  Gaeta's T h e o r e m  (see sect ion 5). 

QUESTION 4.1 In cod imens ion  three, is there  only one  Gorenste in  li- 
a ison class conta in ing ACM schemes?  or, equivalently,  are all ACM 
subschemes  glicci? 

Al though  we do no t  fully answer  this quest ion,  we make  a sub- 
stantial  progress  and we de te rmine  a huge  family of  ACM surfaces 
S c F 4 such  that  all ACM curves C lying on S are glicci (see, The- 
o r em 4.3). Hence, Theo rem 4.1 and  4.3 suggest  that  the answer  to 
ques t ion  4.1 shou ld  be "yes". 

TERMINOLOGY 4.1 To say that  a s t a t emen t  holds  for a general  po in t  
of  a project ive variety Y means  that  there  exists a countable  un ion  Z 
of  p roper  subvariet ies of Y such  that  the  s t a t emen t  holds  for every 
x E Y \ Z. In particular,  we say that  a s t a t emen t  ho lds  for a general 
surface X C ~4 with  Hilbert po lynomia l  p(t)  if the  s t a t emen t  holds  

�9 ~ 4  
for a general  po in t  of an irreducible c o m p o n e n t  of Htlbp(t).  

From now on, unless  otherwise  specified the word  general, when  
refer red  to e lements  of project ive varieties, will have this meaning.  
We have: 

THEOREM 4.2 Let X c ~4 be a general ACM surface not complete in- 

tersection with degree matrix [ui j] ,  ui,j > 0 for all i , j .  Then, three 
cases are possible for the Picard group of  X: 

1. P ic (X)  ~ 77 9 and X is a Castelnuovo surface, or 

2. P ic (X)  -~ 7711 and X is a Bordiga surface, or 

3. P ic (X)  ~ 772 if X is none of  the above. 
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PROOF. See [6, T h e o r e m  III.4.2]o []  

REMARK 4.1 In the last  case  of  T h e o r e m  4.2, P i c ( X )  is gene ra t ed  b y  

H = Ox (1) and  K, be ing  K the canonica l  shea f  of  X. 

REMARK 4.2 Let X c ~4 b e  a s m o o t h  general  ACM surface.  A s s u m e  

that  e i ther  X is a c o m p l e t e  i n t e r sec t ion  or X is rational.  Then, any 

ACM curve  C on X is glicci. Indeed,  e i ther  X is ra t ional  and  the resul t  

fo l lows T h e o r e m  4.1, or X is a c o m p l e t e  in tersect ion,  deg(X)  > 4 

and  P i c ( X )  _~ g = <  H >. In this las t  case, the  resu l t  fo l lows f rom 

Propos i t i on  4.1 and the fact  tha t  the  h y p e r p l a n e  sec t ion  H of  X is an 

ACM curve  C con ta ined  in ?3, and  accord ing  to Gaeta 's  T h e o r e m  [3], 

H is liccL 

F rom n o w  on, we  res t r ic t  our  a t t en t i on  to general  ACM sur faces  

X c ~4 which  are ne i ther  rat ional ,  no r  comple t e  in tersect ion.  We will 

a lso a s s u m e  that  the  degree  matrLx [ u i j ]  of  X verifies zri,j > 0 for  all 

i, f i  Accord ing  to T h e o r e m  4.2, P i c ( X )  _~ ~H �9 7~K. Set d = H 2 the 

degree  of  X, rr = H(H+K)2 + 1 the  sec t iona l  genus  of  X and  Pa = x O x -  1 

the a r i thmet ic  genus  of  X~ Define 

m0  := min{0 < m E 7: I H 2 [ H  2 - K 2 + 8(1 + Pa) ]  

< 4 m 2 ( ( K H )  2 - K2H2)}.  

REMARK 4-3 Using the doub le  po in t  fo rmula  2K 2 = d 2 - 5d - 10rr + 

12pa  + 22, we can wri te  m0  in t e rms  of  the  degree  of  X, the  a r i thmet ic  

g e n u s  o f  X and the sect ional  genus  of  X: 

r n o = m i n { 0 < m E ~ l  1 0 ~ d - 6 d + 7 d  2 - d  3 + 4 p a d  

_< 4rrt2(8rr 2 - 16rr + 8 + 2 r rd  - 14d + 7d  2 - d 3 - 12pa)} .  

EXAMPLES 4.1 (i) Let X c p4 be  an ACM surface  def ined by  the  max- 

imal  mino r s  of  a matrLx A wi th  ent r ies  h o m o g e n e o u s  fo rms  of  fLxed 

deg ree  n. X has  a g raded  min imal  f ree  r e so lu t ion  

0 O ~ 4 ( - p  n)  e-~-n ~-1 O ~ 4 ( - p )  ez-~ 

w h e r e  p ~ ~ is a mul t ip le  of  n.  
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We have  

(KH) 2 - K2H2 = 

a n d  

p 2 ( p  + n)2 (p2  + n p  - 2H 2) 

144 

p2 
/./2[/./2 _ K2 + 8(1 + Pa)] = (P + H)2(3p2 + 3 n p  + 2 n  2 - 8) 

48 

Therefore ,  m0  = 2 for all p mul t ip le  o f  n ,  p > 2n,  and  for  all rt ~ N. 

(ii) Let X c ~4 be the  ACM sur face  de f ined  by  the  mauximal m i n o r s  

of  a ma t r ix  [A, B] where  A is an n x n ma t r i x  wi th  l inear  entr ies  and  B 

is a c o l u m n  wi th  entr ies  of  degree  n .  Then,  Ix  has  a g r aded  min ima l  

free r e so lu t i on  

0 ~ 0 ~ 4 ( - 2 n )  n ~ 0 ~ 4 ( - 2 n  + 1) n e O ~ 4 ( - n )  ~ Ix  ~ O. 

In this  case, we get  that  for  n > 11, m o  > 2. 

We are n o w  ready  to s tate  the m a i n  resu l t  of  [2]~ 

THEOREM 4.3 Let  X C ~4 be a g e n e r a I A C M  sur face  wi th  degree matr ix  

[ui , j ] ,  ui , j  > 0 Vi ,  j .  Then, there are  at  m o s t m o -  1 G-liaison classes 

contain ing A C M  curves C on X.  

SKETCH OF THE PROOF. We first  prove,  us ing  Propos i t ion  4.1 and  

T h e o r e m  4.2, tha t  the  only  G-Liaison classes  which  m a y  conta in  ACM 

curves  are  those  d e t e r m i n e d  by  a K  with  0 _< a _< rao - 1. 

Now, we will check  tha t  the ones  d e t e r m i n e d  by  H and  K coincide.  

In fact, we k n o w  that  H is licci ( indeed,  H is an  ACM curve con ta ined  

in ~3 and,  by  Gaeta 's  Theorem,  H is licci)~ Therefore ,  any  effective 

divisor  in the  l inear  s y s t e m  ] n H  I is glicci. Now we are going to 

prove  tha t  also any  effective divisor in the  l inear s y s t e m  ] K + l H  I is 

glicci: 

Let L be  the  (n  + 1) x (n  + 2) ma t r ix  def ining the sur face  X and  let  

A = [L,M] be the  mat r ix  ob ta ined  add ing  to L a c o l u m n  M. Thus,  A 

def ines  a c o d i m e n s i o n  3 s t a n d a r d  de t e rm i nan t a l  s c h e m e  D c X c {~4 
By T h e o r e m  5.2 (see below), D is glicci. Moreover,  O x ( D )  -~ w x ( t )  

for  s o m e  t ~ ~, i.e~ D ~ ]K + tHE (see [5, Propos i t ion  10.7]). Hence, K 



GORENSTEIN LIAISON 143 

and  D are G-bilinked (Propos i t ion  4.1). So K is glicci and  it is in the  

same  G-Liaison class of  H.  

There fo re  the n u m b e r  of  G-Liaison c lasses  conta in ing ACM curves  

on  X is at m o s t  mo  - 1. []  

COROLLARY 4.1 Using the notation above, let X c ~4 be a general 

ACM surface with a graded minimal free resolution 

0 ~n+ lO  ( - m i )  n + 2  i=1 p4 ~ @ j = l  O~4(-d j )  --~ Ix ~ O. 

Assume that m o =  2 and m i  - dj  > 0 Vi,  j .  Then every ACM curve 

C c X is gliccL 

PROOF. It fol lows direct ly f r o m  T h e o r e m  4.3. []  

COROLLARY 4.2 Let p E ~ be a multiple of  n E ~ and let Xp,n c ~4 

be a general ACM surface with a graded minimal free resolution: 

0 ~ O p 4 ( - p  - I t )  'P@nn-1 ~ ( 9 ~ 4 ( - p ) ~  ~ Ixp.~ ~ Oo 

Then, m o  = 2, V p and every ACM curve C c Xp,n is gliccL 

PROOF. We may  a s s u m e  tha t  p _> 2n,  b e c a u s e  in the case  p = n 

Xp,n is a comple te  in tersect ion,  and  we m a y  a s s u m e  that  Pic(Xp,n) ~- 

;~H �9 •K (Theorem 4.2 and  R e m a r k  4.2). 

As we have seen  in Example  4.1 (i), m o  = 2 for  all p mul t ip le  of  n, 

so we  conc lude  by  Corol lary 4.1. []  

5 Generalization of Gaeta's Theorem 

In this  sect ion,  we genera l ize  Gaeta ' s  t h e o r e m  and  we prove  that  any 

s t a n d a r d  de te rminan ta l  s u b s c h e m e  X c pn is in the  G-liaison class 

of  a comple t e  intersect ion.  We s tar t  fixing s o m e  notat ion.  

DEFINITION 5.1 A subscheme X c pn o f  codimension c + 1 is said to 

be standard determinantal if I (V)  is defined by the maximal minors 

of  a t x ( t + c) homogeneous matrix A. To simplify, we will often write 
I (X)  = I(A).  
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If X c ~n is s tandard  determinantal  then X is ACMo Moreover, the 

Hflbert-Burch Theorem state that, in codimension 2, the converse is 

also true. 

In section 3, we have pointed out  that  if X c ~n is licci then it is 

ACM, and hence, if we also have codlin(X) = 2, then X is s tandard  de- 

terminantal.  The important  contr ibut ion to liaison theory  of Gaeta's 

theorem (See [9] for a rigorous, m o d e r n  proof  of Gaeta's theorem) is 

the converse: 

THEOREM 5.1 Let V c ~n be a pure codimension 2 subscheme defined 

by the max imal  minors  o f  a t • ( t + 1) homogeneous  matr ix  A.  Then, 

V is liccL 

SKETCH OF THE PROOF. We link V to a scheme V1 by means  of a 
complete intersect ion X defined by two minimal generators  of V. V1 

is ACM and, hence, s tandard determinantal .  Gaeta proved that the 

matrLx AI defining I(V1) is obtained f rom A deleting two columns 

and transposing. Going on, in a finite number  of steps, we reach a 

1 x 2 matrix, io e. a complete intersection. [] 

THEOREM 5.2 Let V c ~n be a pure  codimension c subscheme defined 

by the maximal  minors o f  a t x ( t + c - 1) homogeneous  matrix  A.  

Then, V is gliccL 

IDEA OF THE PROOF. The proof is ra ther  technical and the main idea 

is the follou~ng one: 

We denote  by B the matrLx obtained deleting a "suitable" column 

of A and we call X the subscheme defined by the maximal minors of 

B. ("Suitable" means that codim(X) = c - 1. First take, if necessaw, a 

general linear combination of the rows and columns of A.) We denote  

by A' the matrix obtained deleting a "suitable" row of B and we call 

V' the subscheme defined by the maximal minors of A'. ("Suitable" 

means  that  codim(V')  = c. First take, if necessary, a general linear 

combinat ion of the rows and columns of B.) 
We consider  V and V' as divisors on X, we show that V and V' 

are G-bilinked. Hence in 2t - 2 steps we reach a scheme defined by a 

1 • 3 matrLx, i.e., we arrive at a complete  intersection. [] 
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REMARK 5.1 Gaeta's original t h e o r e m  says that  all ACM subschemes  
of cod imens ion  2 are licci. Since it is well known for subschemes  of 
cod imens ion  two that  ACM s u b s c h e m e s  are s tandard  de te rminanta l  
and  that  AG subschemes  and  comple te  intersect ions coincide, Theo- 
r em 5.2 is a full general izat ion of  Gaeta's Theorem. 

Finally, we want  to s t ress  that  this last result  drastically differs 
f rom the one we obtain when  we l ink by means  of complete  intersec- 
t ion schemes.  Indeed, since any ACM curve Dp in ~4 def ined by the 
maximal  minors  of  a p x (p + 2) mat r ix  with linear entries has a lin- 
ear resolut ion,  we have that  Dp and Dp, belong to different CI-Liaison 
classes provided  p ~ p' (See Corollary 3.3) and, by Theorem 5.2. they 
be long  to the same G-liaison class~ 
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