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ABSTRACT. We consider the asymptotic analysis for the linear 
Boltzmann equation with elastic and inelastic scattering. The 
physical model describes the motion of test particles propagat- 
ing by elastic and inelastic collisions through a host medium 
in the Lorentz gas limit~ The background is in thermodynam- 
ical equilibrium with only two internal energy levels. We ap- 
ply the compressed Chapman-Enskog procedure to derive the 
diffusive-type approximations m the cases of dominant elastic 
and dominant inelastic collisions. Then we present numerical 
examples show~g the time evolution of the distribution func- 
tion m some physically relevant cases. In the appendLx the 
successive overrelaxation method is briefly outlined. 

1 Introduction 

Asymptot ic  analysis is commonly  used in kinetic theory to solve the 

Bol tzmann equation by per turbat ion expansion and to approximate  
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the  so lu t ions  of  kinetic equat ions  by the solut ions  of suitable fluido- 
dynamical  equat ions .  When the kinetic equat ion  is wr i t ten  in d imen-  
sionless form, the coefficients of  each t e rm can be c o m p a r e d  wi th  
each o ther  and  one or more  coefficients can be significantly larger 
t han  the others .  Numerous  sys tems  are governed  by two (or more)  
i n d e p e n d e n t  compet i t ive  processes .  In order  to i l lustrate the  role 
of  a sympto t i c  analysis in linear kinetic theory, we consider  a l inear 
t r anspor t  m o d e l  in which  the collisional m e c h a n i s m  with the back- 
g round  is d o m i n a n t  (this justif ies the linearity) and  which mode l s  
elastic and  inelastic scattering. Just  to give an idea, let us  cons ider  
an evolut ion  initial value p rob lem for a kinetic equat ion  in abst ract  
fo rm 

1 1 Of = S f  + + 
0"--{ ~1 C e f -~2 C i f 

where  Ce and  Ci, as we will explain in detail  in the  next  section, are 
the opera tors  mode l ing  elastic and  inelastic collisions respectively. 
The pa rame te r s  el and  e2 character ize the impor tance  of the  two 
phenomena ;  they may be of the same order  (both of  t hem small) or 
one of t h e m  may  be small and  the o ther  of  order  1. For example,  if 
we take el = 1 and e2 = e, then inelastic collisions are the m e c h a n i s m  
which  prevails  when  the sys tem tends  to equilibrium. 

In a ma themat ica l  f ramework,  we can suppose  to have on the 
r igh t -hand  side a family of evolut ion opera tors  depend ing  on the  pa- 
r amete r  e act ing in a suitable Banach space X with a given initial 

da tum.  
The classical asymptot ic  analysis suggests  to look for a so lu t ion  

in the f o r m  of  a t runca ted  power  series 

f(en)(t) = f o ( t )  + e f t ( t )  + e2 f2( t )  + ' ~  + e n f n ( t )  

and  bui lds  an  a lgor i thm to de te rmine  the coefficients fo,  f t ,  f2 . . . . . .  f n .  
f(cn)(t) is an  approx imat ion  of order  n to the solut ion f e ( t )  of the 

original equa t ion  in the sense that  

life(t) - f~n) ( t ) l t x  = o(en) ,  

f o r O < _ t < T ,  w h e r e T > O .  
Somet imes  this approx imat ion  does not  hold in a ne ighborhood  of  

t = O, because  of the existence of  an initial layer where the es t imate  
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is not un i fo rm with respect  to to For this reason it is necessary to 
introduce an initial layer correction~ 

Our point  of view is to find, in a systematic way, a new (simpler) 
family of operators still depending on e, say Be, and a new evolution 
problem 

~t = Bcqgc. 

such that  the solutions (PE (t) of the new evolution problem satisfy 

N f e ( t )  - c p e ( t ) l l x  = o ( c r t )  , 

for 0_< t ~ T, where T > O. 
In this work we will apply the Chapman-Enskog procedure  in the 

version modified by J. Mika in [13], to a t ransport  problem with elas- 
tic and inelastic scattering which will be in t roduced in Section 2. The 
main feature of the modified Chapman-Enskog procedure is that  of 
decomposing the initial value problem into two problems for the ki- 
netic and hydrodynamic  parts  of the solution respectively and of ex- 
panding only the kinetic part  in series of e, while leaving the hydrody- 
namic part  unexpandedo This decomposi t ion is per formed by a pro- 
ject ion of the unknown solution on the null-space of the dominan t  
collision operator  and on its complement .  Then, a two time scaling 
is in t roduced  to obtain the initial layer corrections. The asymptotic  
algorithm permits  to derive in a natural  way the solution of the hy- 
drod}~namic equation, the initial value for the hydrodynamic  equat ion 
and the initial layer corrections. Hence, it is possible to prove, under  
suitable assumptions,  that the error of the approximating solut ion is 
of order  e 2, uniformly in t > 0. 

The reader interested in unders tanding  the essential advantages 
of the compressed  Chapman-Enskog procedure  is referred to the book 
by J. Mika and J. Banasiak [14]. Using the compressed  procedurera  
r igorous asymptotic analysis of a linear Boltzmann equat ion with in- 
elastic scattering is provided in [3, 4]. 

In this paper we consider the linear Boltzmann equation with elas- 
tic and inelastic collisions, describing the time evolution of an  en- 
semble of test particles propagating through a background m e d i u m  
assumed  at thermodynamical  equilibrium. We consider the two limit 
cases of dominant  elastic and dominant  inelastic collisions, pe r fo rm 
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the asymptotic analysis of the Boltzmann equation and derive the two 
hydrodynamic approximations by the compressed Chapman-Enskog 
method. 

A similar analysis for a transport equation with down-scattering 
as the only effective inelastic mechanism was studied in [8]. This 
paper generalizes those results. 

Finally, we look at some numerical examples which illustrate the 
relaxation of the isotropic component of the distribution function to- 
wards the kernel of the collision operator, the isotropization of the 
distribution function with time and the time behavior of the error of 
the diffusion appro~mation in the case of dominant inelastic colli- 
sions. We also report the numerical methods used in the solution of 
the Boltzmann equation. 

2 The  p h y s i c a l  m o d e l  

In this section we introduce a model in the framework of extended 
kinetic theory to describe the motion of an ensemble of test particles 
of mass m diffusing by elastic and inelastic collisions through a host 
medium of particles having mass M. In the literature of kinetic theory 
inelastic phenomena have attracted much attention, because inelastic 
collisions are very important in various traditional fields, and more 
recently in electron transport at low energies and in semiconductor 
theory [5, 6]. In [11], Garibotti and Spiga developed a formalism to 
include inelastic collisions in the Boltzmann equation. 

We consider a gas of test particles endowed only with transla- 
tional degrees of freedom, moving in a medium with internal degrees 
Of freedom. ~ We assume that the background medium consists of 
particles having only two energy levels, a ground level and an excited 
level, spaced by an energy jump ~E. This assumption of only two 
significant energy levels is reasonable in the case of a particle gas at 
low temperature~ Moreover we assume that the background medium 
is in thermodynamical equilibrium with temperature T. If n~ and n2 
are the number densities of the background particles in the ground 
state and in the excited state respectively, the thermodynamical equi- 
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l ibr ium implies the following re la t ion 

- - - < 1 ,  

n l  

where k is the Bol tzmann cons tant .  
We are in teres ted in the so-called Lorentz  gas, obta ined with the 

limit m / M  - 0 which descr ibes  a physical  s i tuat ion in which light 
test  part icles collide with a heavy b a c k g r o u n d  a s sumed  at rest~ The 
test  particles can be deflected elastically or can at tain a loss or a gain 
of a fixed amoun t  of energy t h r o u g h  inelastic collisions. Mass, mo- 
m e n t u m  and energy of the in terac t ing  particles are conserved  dur ing  
the  collision, but  a quant i ty  of  energy is t ransfer red  f rom one type of 
particle to another  by up-sca t te r ing  or by down-scat ter ing.  Moreover 
we neglect  particle-particle interact ions,  and  the Bol tzmann t ranspor t  
equat ion  becomes  linear. 

In this paper  we only cons ider  a one  d imens iona l  model,  bu t  many  
of the papers  quoted  below on  this subject  are in the more  realistic 
three d imensional  setting. We deno te  by x the one-dimensional  space 
variable, by ~ = v 2 the energy variable, by v the velocity modulus ,  and  
by ~ the cosine of the polar  angle. The space variable is rescaled by 
L and  the t ime variable by the  re la ted  characterist ic time L/6,  where 
L is a typical macroscopic  l eng th  and  6 2 = 2AE/m.  Hence the di- 

v2 
mens ion less  variable ~ = ~ is u sed  ins tead  of the ad imens ional ized  
speed  obtaining an energy j u m p  equal  to unity. 

Let f = f ( x ,  ~, 1~, t) be the d is t r ibu t ion  func t ion  of the test  parti- 
cles and  let �9 = q)(x, ~,/J, t) = v f ( x ,  ~, I~, t) be the flux funct ion.  By 
us ing  the new dimensionless  variables in t roduced  above, the Boltz- 
m a n n  equat ion  for the flux func t ion  is: 

a (x' 'u't)at + = 
+1 

niL6 _1 = v{(~ + 1)3  ~ ( x , ~ + l , u ' , t ) d l ~ '  
- 1  

+1 

+ b - i 2 
-I 
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n i l . . . . ,  
~ t ~  - 1 ) v ~ ( ~ ) ~ ( x , ~ , m t )  

. n t L  i -- l~ - -~Vl (~  + 1) ~P(X, ~,/1, t) 

+1 
n i L  [vf ( [ )  + b v [ ( [ ) ]  -~ ~ ( x ,  ~, IS, t ) d t /  +-g- 

-1 

niL6 [vie ([)  + bv[ (~) ]  ~ (x ,  [ ,  ~/, t), 

where v~, v~ and v{, v~ are the elastic and the inelastic collision fre- 
quencies for the scattering of the test particles with the background 
particles in the fundamental  and excited state respectively and we 
have used that the collision f requency v~ can be determined by the 
microreversibili ty conditions [11, 9] 

v v ~ ( v )  = H ( v - 6 ) ~ - 6 2 v ~ ( v ~ T v  2 - 6 2  ) (2ol) 

: + + (2.2) 

In the following we assume that the collision frequencies vf, v~ 
and v{ are constant~ We now introduce the parameters  

6 
el = n lL(Vf  + bv.~) (2.3) 

and 

6 
e2 = n l L v  ~ { (Z4) 

which characterize the importance of the two collisiona| mechanisms.  
When elastic collisions are dominant ,  we have 61 << J- and e2 = 1, and 
when  inelastic collisions are dominant  we have r << 1 and el = 1. 
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Then the transport equation for the flux takes the following form: 

[; 1 1 , 
61 2 ~ (x ,~  + l ,p  ,t)d/2' 

- 1  

+1 

~/ ~ 1 ~ d # ( x , ~ - l , p ' , t ) d p  ~ + b H ( ~ -  1) ~ - 1 2  
- 1  

- H ( ~ -  l ) ~ ( x , ~ , p , t )  - b ~ - ~ ( x , ~ , p , t ) ]  

[; t 1 1 , 
+ - -  ~ ( x , ~ , p  , t )dp '  -o~(x,~;,p,t) 

62 2 ' 
- I  

where 61 and 62 have been int roduced in (2.3) and (2.4). 

By discretizing the velocity space according to the energy jump 
intervals and by defining 

�9 n ( x , [ , p , t )  = ~ ( x , [ + n , p , t ) ,  with 0 _ < [ <  1~ and n = O ,  1,2 . . . . .  

the Boltzmann equation for the flux becomes: 

3~n 
~ n  ( X ' ~ ' P ' t ) 3 t  + ~/~ + n p-~--x (x, ~ ,p , t )  = 

= ~[ceq~]n(X,  ~,/2, t) + ~1 [c i~]n(X,  ~, p, t) 
s 62 

(2.5) 

where the n - t h  components  of the elastic and inelastic collision op- 
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erators C e and C i are given by 

+1 

if [cec~]n(X,~,p,t) = -~ a~n(X,~,13',t)dl/ 
- 1  

- ~n(X,~,~, t ) ,  for n > O, 
+1 

[ci~]o(x ,~,~, t )  = ~ ~l (x ,~ ,g ' , t )dIJ '  
- 1  

+1 

[Ci~]n(x ,~ ,g , t )=  ~ ~ n + ~ ( x , ~ ; , p , t ) d ~ ' - ~ n ( x , ~ , p , t )  
- 1  

+1 

~/ ~ + n  l ; ~n_l(X,~,g,  t)dg, 
+ b  ~ + n - 1 2  

- 1  

- b ~ / ~  + n + f o r n > l  

a n d  0 _< ~ _< 1, 

3 Abs t rac t  fo rmula t ion  of the  p r o b l e m  

Before introducing some spaces and operators, we remark that in the 
original three dimensional problem the particle distribution function 
f = f ( x , v ,  t) represents the expected number of test particles at 
time t in d x  at x and in dv at v. Here d x d v  = d x d ~ v 2 d v ,  where 

is the solid angle variable and v the particle speed, is the volume 
element in phase space. Hence, the corresponding particle density 
p = p(x,  t) is obtained with the weighted integral 

~3 ~1/2 f ( x , ~ , ~ , t ) d ~ d ~  p(x ,  t) = y 

V2 
where ~ = -~ is the dimensionless energy variable, 6 the charac- 
teristic speed, and Y~ the velocity direction. Obviously the remaining 
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variables ;r and  t can be r e g a r d e d  as h y d r o d y n a m i c  macroscop ic  vari- 

ables. 

In the  one-d imens iona l  case, the  previous  physical  cons ide ra t ion  

sugges t s  in t roduc ing  the  fol lowing we igh ted  n o r m  for the  par t ic le  

d i s t r ibu t ion  func t ion  f :  

N f l l  = 

+oo +co + 1  

- c o  0 - 1  

Consequent ly ,  it is na tu ra l  for  the  flux func t ion  �9 = v f  to intro- 

duce  the  Banach space ~ de f ined  as L I ( ~ )  | L1 (0, +co) | ( - 1 ,  1), 

whe re  | denotes  the  pro jec t ive  t e n s o r  product ,  wi th  the  n o r m  

+oo +oo + 1  

--oo 0 --1 

Let )t be the Banach space  de f ined as L 1 (~) | rr L 1 (0, 1 ) | rr L 1 ( - 1, 1 ) 

wi th  the  usua l  n o r m  

+co + 1  + 1  

- o o  0 - 1  

~t N the  Banach space de f ined  as 5~ N = LI (~ )  | LI x+l  (0, 1) | L I ( - 1 ,  

1), w h o s e  e lements  4~ are  vec tors  wi th  c o m p o n e n t s  (~0, ~1, ~2 . . . .  ~ x ) ,  

wi th  (I't ~ ~t, and  the n o r m  given by  

N 
= t 

i = 0  

and  let V be the Banach space  of  all sequences  of  func t ions  ~i  of  5~, 

whose  e l emen t s  �9 are vec tors  wi th  c o m p o n e n t s  (~o, 4~1, R52 . . . .  Kbn . . . .  ) 

with  ~t  ~ ~, such  that  

i=O 
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In the ~( Banach sett ing our problem can be wTitten Ln the abstract 
form as 

at  = Sr + l c e ~  + l - - t i c ,  
C.1 s 

�9 (x, ~,/J,O) = q~o 
(3.1) 

where the s t reaming operator S is given by 

- ' ~ / J  Kr 0 0 

0 . . .  0 

0 ,.o 0 
. . . . . . . .  ~ 

+ n -  

0 

0 

0 

0 

- ( f  + 
~  

. ~  

, ~ 1 7 6  

o , .  

The elastic operator  C e can be wri t ten in the form 

- I  + P 0 0 0 ..~ 0 "~i] 

0 . . .  0 - I + P  0 ' 
0 . . .  0 0 - I + P  

a n d  the  i n e l a s t i c  o p e r a t o r  C i in  the  f o r m  

/ - b ~  P 0 0 

b~ a/~@P - [ - b ~  P 0 

,_ j ~ § 2 p I b ~fg73+ 3 0 u~/~,-;-f - - ~,~r P 

0 .~ 

0 ... 

0 ... 

0 0 ,_ ] ~+n ~ b _~/-fTn,t 

1 f + l  w h e r e P .  = ~ j _ l  "d/J. 
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4 T h e  c o m p r e s s e d  C h a p m a n - E n s k o g  p r o c e d u r e  

61 

In this sect ion we recall the  pr incipal  s teps  of the c o m p r e s s e d  Chap- 
man-Enskog procedure.  One of  the m a i n  ingredien t  of  the  c o m p r e s s e d  
p rocedure  is the pro jec t ion  of the  u n k n o w n  func t ion  on to  the  hydro-  
dynamic  subspace.  

In our  problem we cons ider  the sys t em (3.1) in two cases: in the 
first case, when  elastic collisions are dominan t ,  wi th  el  = c and  r = 
1, 

3~ S~ + 1 C e ~  + Cir ~ , (4.1) 
at  e 

and  in the second case, when  inelastic collisions are dominan t ,  with 

C1 = 1 and  e2 = e 

a+ 
Sa) + c e ~  + 1cicb o (4.2) 

at e 

Let us  begin with the first case. If we pu t  formally e = 0 in equa t ion  
(4.1) we have out  into 

C e f  = O. 

Similarly to the s t andard  case in kinetic theory, the e igenspace  of C e 
cor respond ing  to the 0 - e igenva lue  is one-d imens ional  and  is s p a n n e d  
by the  equil ibrium func t ion  d e p e n d i n g  only on the energy variable, 
i.e. 

ker(C e) = {~ : r ~,/.1) = qbn(X, ~), arbitrary, 

bu t  i n d e p e n d e n t  of /a ,  for n > O} 

and  the  range of C e is given by the funct ions  f such  that  

+1 

f f ( x ,  ~, la)dla = O. 

- I  

The hydrodynamic  quanti ty,  i.e. the  quant i ty  that  is conse rved  in 
the  absence of s treaming,  in this case is given by 

+1 

p ~ ( x , ~ , t )  = / ~ (x ,~ , / a , t )d /~ ,  ~ ~ [0,+0o) (4.3) 
3 
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and  the spectral  projection :pe onto the kernel  of the elastic collision 
operator,  in the Banach setting Y, is defined by 

+1 

[Pea~]k(x,~) = ~ ~k(x,~,/~)d/.I,  k >_ O. (4.4) 

-1 

Let us consider  now the case of dominan t  inelastic collisions, which 
corresponds  to the second case. Putting formally e = 0 in equat ion 
(4.2), we have 

c i f  -=- O. 

This case differs from the classical case, because the eigenspace of 
C i corresponding to the O-eigenvahie is infinite dimensional~ We 
can prove that the null space of C i consists of functions which are 

periodic for ~ > i a part f rom the factor ~,n ~ i.eo 

= { ~  "r ~,/~) = 4~o(X, ker(C i) arbitrary, but  independent  

o f y  and ~ n ( X , ~ , y ) =  b n ~ / ~ - ~ p o ( X , ~ ) , f o r  n >_ 1}. 

h~ other  words  the kernel of the inelastic collision operator is made  
of functions which are arbitrary in the first interval of energy" (0, 1)~ 

and whose other  components  are mult ipl ied by the factor bnX/~no 
We remark  that  if we reformulate the problem in terms of the particle 
distr ibution function, instead of the flux, the slightly different form 
of the operator  C i leads to a kernel  of periodic functions, a part f rom 
the only constant  factor b n. 

In this case, the hydrodynamic  quanti ty is given by 

+1 

p~,(x ,~, t )  = g ~On(X,~,lJ, t)dlJ, ~ ~ [0,1] (4.5) 
n=O - 1  

and the project ion :pi on the kernel of C i is given by 

b k + k 1 
[piq~]k(x, ~) = Zy=obJ r/V-yZ. :n=O- • J q~n(X,~,/J)d/J, k > O .  (4.6) 

- 1  



DIFFUSION HMITS OF THE LINEAR ETC. 63 

For the spectral properties of such collision operators see [1]o 
In the following, we shall denote  by Qe ___ j _ pe  arid Qi = j _ p i  

the complementary  projections in the Banach setting Y, where J is 

the identity operator. The project ions (4.4) and (4~ can be written 
in matr ix form. For example, we have for the projection p i  on ker(Ci), 

as an operator  acting in Y: 

V;=0P| p i ~  = : , 

o 

+l 
where POj = �89 J oj (x ,  ~, l~)dg, and it is easy to see that 

-1 

Oo (x, ~, g) - vr Zj%o POj E j%o bJ 

O1 (X, ~,/~) - Zj%0 bJ~-v/~-~ ~-;=0 POj 
QiO = . . . . . .  

b n ~ oo 
On (X, ~,/./) -- Z~=O b ) ~  Zj=O POj 

The projections pe and Qe for their simplicity have a diagonal matrix 

form. 

The next step in the compressed  Chapman-Enskog procedure  is to 

decompose  the Banach space Y by the projections P e and Qe, when 

the elastic collisions are dominant  and by the projections T i and Q i  

when the inelastic collisions are dominant.  

According to this decomposit ion,  we can write the unknown func- 

tion as the sum of a function in the kernel of the dominant  collision 

operator  (hydrodynamic solution) and the complementary  part  (ki- 

netic solution). For example in the case of sys tem (4.1), we can write 

the flux function �9 r Y as 

Co = Peo  + QeO = ~ + ~b, (4~ 
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where ~p is the hydrodynamic part of the solution and r is the kinetic 
part. 

The subsequent step in the procedure is to derive new equations 
for the new unknowns ~ and r  and this can be performed by op- 
erating formally on both sides of (4.1) with the projections pe and 
Qe. 

In the following section we illustrate formally this modified Chap- 
man-Enskog procedure, in the two different scalings of the kinetic 
equation corresponding physically to having the ratio of the elastic 
to inelastic collision frequencies very large or very small. 

To make the treatment easier theoretically and numerically, we 
introduce a cut-off in the range of the energy variable, assuming 
that ~ ~ [O,N+ 1] or equivalently that, if ~n - ~ + n ,  we have 
n = O, 1 . . . . .  N. Physically, the cut-off corresponds to the assump- 
tion that the number of particles having energies larger than NAE is 
negligible. 

5 The diffusion approximations 

In this section we derive formally the diffusion approximations of 
systems (4.1) and (4.2). 

Let us begin with the first case, when elastic collisions are domi- 
nant. Making use of the decomposition of the unknown function as 
in (4.7), we operate formally on both sides of (4.1) with the projection 
operators pe and Qe and we obtain the following system of equations: 

f ~ = 
3t 

0 r  = 

3t 

pespe~o + p e s Q e r  + p e c i p %  2 

Qespe~o + QeSQe~b + QeCiQer + 1QeCeQer 
(5ol) 

with initial conditions 

{ w(O) = ~o = peq~o 

~ ( o )  = r  = Qea>~ 

Now we split the unknown funtions 9~ and r into the sums of the 
"bulk" parts ~ and ~ and of the initial layer parts ~ and ~ which 
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take account  of the rapid  changes  of  @ for small  times: 

~ ( t )  = G ( t ) §  (5.2) 

According to the Chapman-Enskog  procedure ,  we expand  the un- 
knm~Tl funct ions  ~, ~ ,  and  ~ in series of e, and  we leave the  bulk  par t  
tb u n e x p a n d e d  because we are in te res ted  in the comple te  behaviour  

of the  hydrodynamic  part: 

~ ( t )  = 

~(r) = 

~(T) = 

Go(t) + e~,l(t)  o.. 

Go(r)  + COl(T) . . .  

G0(T) + eG~(T) . . . ,  (5.3) 

where  T = t/e. Now we have to obta in  equat ions  for the  te rms  of the  
expans ions  in t roduced  above and  we subs t i tu te  the bu lk  and initial 
layer par ts  separately into the  second  equat ion  of (5.1). 

For the bulk  par t  we have: 

G0(t) = 0 (5.4) 

Gl ( t )  = - (QeCeQe)-~ Qespeco(t) (5.5) 

and  the diffusion equation,  correct  up  to first order  in the bu lk  kinetic 
part ,  is 

= p e s p e o  + p e c i p e  0 - epesQ e (QeceQe)-1 Qespe~b. (5.6) 
~t 

In this case, it is easy to see that  pespecp = 0, while the evolut ion 
of fb is affected by the inelastic collision opera tor  by pecipe and  the 
cont r ibu t ions  of  elastic collisions appear  with the correc t ion  of first 
o rder  in e. It could be possible  to improve  such  approx ima t ion  and 
obta in  equat ions  for the h y d r o d y n a m i c  par t  ~ which takes account  
also of the second order  correct ions,  bu t  this is out  of  our  aim. 

Hence, the diffusion equa t ion  reduces  to 

~b = pecipe~b _ e p e s Q e  (QeCeQe)_~ Q e s p e o "  
~t 

(5.7) 
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If we want  to give a more  explicit fo rm to equation (5.7), some algebra 
is necessary to invert the operator  QeceQe and to get the forms of 
the operators  pecipe~ pesQe~ and Qespe. 

Finally the diffusion equation (5.7) takes the form 

~t  

P 'I, o 
Pe~I 
Pc~ 2 

P@N 

2 
= e-~ 

+ 1 ~2 P~bl 

+ 2 ff~x2 PO2 

+ N P ~ x  

(5.8) 

+ 

-b~7~--~P~o + Pr 

b ~ P O v o  - P~I - b~+~+2~ P~l + Pc~2 

P~2 b ~ P ~ I -  - ~+~+~ Pr b ~ P O 2  + 

b ~ ~ P ~ P N - 1  - P~PN 

In order  to equip the previous equat ion with the appropriate ini- 
tial condition, we need to consider the initial layer part. Referring the 
reader to [14], here we limit ourselves to say that expanding in series 
of e the initial layer equations corresponding to (5.1) and equating 
the corresponding powers of e, we get a set of equations for ~0, ~1, 
. . .  and 2o, ~1 . . . . .  Then we have to find the appropriate initial con- 
ditions for  such equations, keeping in mind  that at the end we want  
to obtain an estimate of the error of order  e 2. 

We now study the case of eq. (4.2), when inelastic collisions are 
dominant .  Here, the mathematical  difficulties require a more delicate 

treatment.  
Making use of the projections p i  and Qi, we obtain from (4.2) the 

following sys tem of equations: 

8t 

p i s p i ~  + p i S Q i ~  

Q i S p i ~  + QiSQi~  + QiCeQi~b + i Q i C i Q i ~ ,  
(5.9) 
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with initial conditions 

{ ~(0)  = ~po = pie,0 
= = Qi Oo 

Splitting the unknown functions into the sums of the "bulk" and "ini- 
tial layer" parts and expanding the unknown functions in series of 
e, with the bulk part  ~b unexpanded,  we obtain for the bulk parts, 
corrected up to first order  in the kinetic part 

~0 - 0, (5.10) 

G1 = - ( Q i C i Q i ) - l Q i S p i ~ ,  (5.11) 

bG~ _ p / s p i ~ _  ep iSQi  (QiCiQi) -1  QiSpiG~" (5.12) 
8t 

We see that, up to first order  in e, the evolution of ~ is not  affected 
by the elastic collision term. The effect of the elastic term appears 
only after correcting the evolution of ~3 with terms of the second order  
in e. Since P i S P i ~  = 0, because s p i ~  is an odd function of/~, the 
diffusion equation reduces  to 

aO _ e p i s Q i  (QiCiQi)-1  Qi sp i~"  (5,13) 
Dt 

It is easy to give an explicit form to the operators QiSpi and 
piSQio 

Then, it is necessary to solve (QiCiQi)r  = g. Because (QiCiQi) r  
= ci(~ - P ~ ) ,  we have 

Ci(~ - pi~) = 

- b ~ o  + Po~I 

~§ -- - b~//~eol + P~2 b ~ P ~ o  ~1 

~+2 _ _ b~/~..2~52 + pd~3 b ~ P ~ l  q52 ~+3 

~+N 
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( iCi i q5 In order to solve the system Q Q ) = g, we apply P to all equa- 
tions, we use that P,gj = 0 and get 

= b ~+1 PdPl (X, ~) 3/U~ P~PO(X, ~) 

P@2(x, ~) = b2~2p~Do(x ,  ~) 

PdPN(X, ~) = bN~ ~[~p~o(x ,~) 

But rb has to belong to the range of C i, hence 

( 1 +  b ~ @ +  b2~ ~ - - ~  + . . . . . .  + b N ~ ) P q b = O  

implies P4)0 = 0, and consequently PcDi = 0, for all i = 1 . . . .  , N. Then, 
the solution of CiQi~p = g in the range of C i is simply given by 

(bo(X,~,12) = - (b go(x,~,/2) 

@l(x,~,/2) = - i+ ~/~;-f] gl(x ,~, /2)  

( b e p N - ~ ( x , ~ , ~ )  = - 1 +  ~ / ~ + N - ~ ]  gN-i(x ,~, t~)  

�9 N(X,~,U) = --gN(X,~,U) 

In conclusion, the diffusion equation takes the form 

3t \ i=o  

-1 
- ~ +  "+1  

= s  
3 

~X 2 PgPi , 

N b J ~ +  Zj=O J 

(5.14) 
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where  5ij = 1 - 5 U, 5ij is the  Kronecker  del ta  and Z~=0 PqSi is the 
hyd rodynamic  quant i ty  sugges ted  by our  scaling. Analogously  to the 
previous  case we have to supply  equa t ion  (5.14) with the initial condi- 
t ion obta ined  correctly after having solved the  initial layer problem. 

We remark  that  the di f fus ion equat ions  (5.8) and  (5.14) are differ- 
ent, b o t h  because of the different  d i f fus ion coefficients and  because 
of the presence  of the linear t e rm  T e c i p  e in eq. (5~ Such difference 
has to be ascribed mainly to the  set theoret ical  inclusion relat ion of 
the kernels  of the two operators ,  due  to the more  general  f o rm of the 
so lu t ions  of C e = O. 

6 N u m e r i c a l  r e s u l t s  

In this sect ion we present  a numer ica l  example  i l lustrat ing the t ime 
evolut ion  of the dis t r ibut ion func t ion  in a par t icular  case, when  the 
initial d a t u m  is chosen  with compac t  s u p p o r t  in one of the energy in- 
tervals and  inelastic collisions are taken  to be dominant .  We shall see 
tha t  the asymptot ic  evolut ion is charac ter ized  by a homogen iza t ion  
in the  space variable x and in the  energy variable ~ within each inter- 
val. More extensive numerical  resul ts  have already been  p re sen t ed  in 
[2] and  [10]. The numerical  m e t h o d s  used  for the numerical  so lu t ion  
of the  Bol tzmann equat ion  are s tandard ,  bu t  we describe t h e m  here 
for comple teness ,  making explicit reference to the p resen t  problem~ 
The r igorous  results  conta ined  in the previous  sections have been  
p r e s e n t e d  for the flux function.  The c o m p u t e r  p rograms  used  for the 
numer ica l  solution, instead, are wr i t ten  for the dis t r ibut ion function,  
main ly  for historical reasons.  

In analogy with (2.5), the Bo l t zmann  equat ion  for the d is t r ibut ion  
func t ion  is: 

Dfn F - "  
( x , ~ , g , t )  + 1/~ + n g ~ ( x , ~ , M , t )  = 

Dt 

l i c e  f i n ( X ,  ~ , . ,  t) + l---[Cif]n(X, ~, I~, t), 
s e2 

(6.1) 

n = O, 1 . . . . .  where  the c o m p o n e n t s  of  the elastic and inelastic colli- 
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sion operators C e and C i are given by 

+1 

1 I [ce f]n(X,~,12, t) = -~ . fn(x ,~, la , t ) d l /  
- I  

- f n ( x , ~ , p , t )  , forn>__0, 
+1 

[Ci f ]o (x ,~ ,~ , t )=  / ~ + 1 1 ~  2 f l ( x , ~ , p , t ) d p '  
- 1  

- b~f~--@fo(x,  ~, U, t),  

+1 

[ci f]n(X,~, l l ,  t, = ~ / ~ + n + 1 1  f ~ + n i fn+t (x ,~ ,p  , t )dp'  
- 1  

+1 

b !  I ' , + 2 f n - l ( x , ~ , l ~ , t ) d l ~ - f n ( x , ~ , l ~ , t )  
- 1  

~ + n + l f n ( x , ~ , p , t ) ,  f o r n >  1 - b  ~ + n  - ' 

andO_< ~< I. 

6.1 Numerical solution of the Boltzmann equation 

The Boltzmarm equation (6.1) is solved numerically by expanding the 
tmknown distribution function in Legendre polynomials in the angu- 
lar variable and, assuming periodic boundary conditions, by Fourier 
collocation in space. For the time discretization we have adopted a 
simple backward Euler scheme. 

The expansion in Legendre polynomials is given by: 

K 

fn(x,~,la, t) = X fnk(x,~,t)Lk(ta) (6.2) 
k=O 

where Lk(la) is the Legendre polynomial of order k. If we multiply 
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the Boltzmann equation by Lk (P) and integrate over p we obtain: 

[ a:.,k+1 Ofn,k-1 
J 

= --j.§  f.o 6ko + ~1 L~--~n + b fn-1,0 + 

n = 0,1 . . . . .  N , k  = O, 1,~ ,K, 

(6.3) 

where N is the highest energy interval considered and we have intro- 
duced 

k + l  2 
tX k -- 

2 k + 1 2 k + 3 '  
k 2 fik = 

2k + 1 2k - 1 

and 

~ n = ~ + n .  

In deriving (6.3) we have used the recurrence relation of the Leg- 
endre polynomials and of their derivatives and their orthogonality 

properties.  The spatial discret ization is performed by using Fourier 

collocation points, namely x = x j  = 2rr j /M,  j = 0 . . . .  , M - 1 [7]. In 

this representat ion the derivative of a function f ( x )  is expressed in 
the form 

Z rlMs 
~ X  x=x t  j=0 "~ iJJ J 

where f j  = f ( x j )  and the matr ix D M is defined by [7] 

M i~=j  D/~ = l ( - 1 ) i + J  COt (,,:-j)rr 

0 i = j  

Finally, we introduce a backward Euler scheme in time and replace 

the time derivative on the left hand  side of (6.3) ~ t h  

Df f ( t  + At) - f ( t )  
~t zXt ' 
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where  At is the time step, and evaluate the function f or its spatial 
derivatives at the time t + At in all o ther  places where it appears. After 
all the discretizations have been  introduced,  the unknown funct ion 
f n ( X , ~ , p , t  + At) at the new time step is represented  by a set of 
discrete values fnkj ,  n = 0 . . . .  ,N,  k = 0 , . . . ,  K, j = 0 , . ~  M. After 
some algebra, equation (6~ for the unknowns  fnkj  becomes: 

1 + - ~ -  1 l - d n o + b  + - - ( l - 6 k O ) e 2  f n k j +  

Djlfn,k+l~l + ~k Z M Djzfn,k-ld + 
l l 

At f F~'n+l_,. ) , 
q T  Jn+l '~  + -- F kj (6.4) 

where  f *  denotes f at the old time step. Equation (6.4) gives an 
N x M x K  sparse linear system which  we have solved by the successive 
overrelaxation method  (SOR). For this purpose,  we write (6.4) in the 
following block-matrix form: 

Unkfnk + Ankfn,k+l + Bnkfn,k-1 + Enkfn+l,0 + Gnkfn-l,O = fnk,* 
(6.5) 

where  Unk, Ank, Tnk, Tnk and Gnl( are M x M matrices whose ele- 
ments  are given by 

"~.lnk;i j = 1 + - -  1 - ~nO + b + - -  (1  --  (~kO) ~i j  
s ~ :rt E2 

-Ank;r = At~nno~kD); 

At ~ ~ k O  
Enk;ij  - ~2 

At 
~nk;i j  - -  bc~kO 

s 

and the fnk and f*k are the M-dimensional  vectors given by fnk;j = 

f n k j  a n d  f*k;j  * = fnkj,  respectively~ 
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xs 

F i g u r e  6.1: Isot ropic  c o m p o n e n t  of  the  in i t ia l  d i s t r i b u t i o n  of f ,  0 _< x _< 
2Tr, 0 _< ~ _< 5b, a n d  el  = 1, e~ = 0.05 ( d o m i n a n t  ine las t ic  case)~ 

Equation (6.5) is then solved by the SOR method [15], which we 
recall briefly in the Appendi,~ In order  to apply the SOR method  to 
equat ion (6~ we rewrite the equat ion itself in the form 

1 {fn*k;j- ~.  (Ank;jlfn&+l;l + Tnk;jlfn,k-1;l) + f t t k ; j -  Unk;ii l 

- Enk;jjfn§ 1,0;j - Gnk;jj fn-  1,0;j } , 

which gives the s-th iterate for fnk;j, with the unders tanding that  up- 
dated values for the components  of the fnk vectors are used wherever  
available (see equation (7.1) of the AppendLx). 

The parameter  to of the SOR m e t h o d  was adjusted ad hoc in each 
case. 

6.2 Numerical examples 

In this section we illustrate the time evolution of the isotropic com- 
ponent  (the k = 0 term in the Legendre polynomial expansion) of the 
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x •  

F i g u r e  6.2: I so t rop ic  c o m p o n e n t  o f f  at  t = 10, 0 _< x _< 2rr, 0 <_ ~ < 5b 

and  e l  = 1, e2 = 0.05 ( d o m i n a n t  ine las t i c  case). 

d i s t r i bu t ion  func t ion  in a case w h e n  the initial d a t u m  is c h o s e n  wi th  

c o m p a c t  s u p p o r t  in a specific energy  interval  and  inelast ic  col l i s ions  

are c o n s i d e r e d  as dominant .  In par t icular ,  we choose  an initial distr i-  

b u t i o n  wh ich  is n o n z e r o  only in the n = 2 energy  interval,  whe re  it is 

g iven b y  

1 + Ao(1 + t.1) c o s x  for  rt = 2,  
f n ( X ,  ~,/-1) = 0 o therwise .  

Also, we  se t  el  = 1.0 and  e2 = 0.05 and  the Bo l t zmann  fac to r  is 

b = 3. This  initial d i s t r ibu t ion  is far, in any sense ,  f r om any e l e m e n t  

of  the  ke rne l  of  the inelast ic or  o f  the  to ta l  coll is ion opera tor .  It 

was  s h o w n  numer ica l ly  in [2], whe re  only  inelast ic  coll ision p r o c e s s e s  

were  inc luded ,  tha t  the so lu t ion  of  the  kinetic equa t ions  tends ,  as  

t ime p roceeds ,  to some  e l emen t  of  the  kerne l  of  the inelast ic  col l is ion 

opera to r .  The  initial d i s t r ibu t ion  is s h o w n  in Figure 6.1. 

Figures  6.2 and  6.3 s h o w  the s a m e  d i s t r ibu t ion  at t = 10. Fig- 

u re  6.2 s h o w s  the energy  range f r o m  ~ = 0 to ~ = 5b, while Fig- 
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u re  6.3 s h o w s  the first two energy  intervals ,  wi th  a change of  scale in 

the  o rd ina te  to be t t e r  s h o w  the behav io r  at energies  close to zero.  

Figure 6.3: Isotropic component of f at t = 10, 0 < x _< 2rr, 0 < ~ _< 2b 
and et = 1, e2 = 0.05 (dominant inelastic case). 

Figure 6.4 shows  the d i s t r ibu t ion  at t = 20 and for  2b < ~ < 

5b, also wi th  a change of  scale in the o rd ina te  to be t t e r  fo l low the 

behav io r  at  high energies.  The d i s t r ibu t ion  at t = 20 d o e s n ' t  differ  

f r o m  the d is t r ibu t ion  at t = 10 in any  apprec iable  way, so we can 

a s s u m e  that  b y  t = 10 it has  se t t led  to its a sympto t i c  shape.  

In a space  h o m o g e n e o u s  case, s ince b o t h  elastic and inelast ic  col- 

l i s ions  don ' t  mix the popu la t ions  at d i f fe rent  energies  wi th in  each  en- 

erg3 ~ interval,  we would  expect  to see the  d i s t r ibu t ion  reaching a piece- 

wise  cons t an t  shape  in energy  as t ime goes  to infinity, with  the  values  

of  the  d i s t r ibu t ion  i tself  wi thin  each interval  fol lowing a Bol tzmann-  

like profile.  The d is t r ibut ion  w o u l d  also remain  i n d e p e n d e n t  o f  space.  

The  space  inhomogene i ty  of  the initial d a t u m  changes  this picture.  

The s t r eaming  term now prov ides  s o m e  mLxing of  the p o p u l a t i o n s  

wi th in  each  energy interval, while the d i f fus ion  m e c h a n i s m  homoge-  

n i zes  the d i s t r ibu t ion  in space.  The resu l t ing  t ime a s ~ n p t o t i c  shape  
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O.O l  

Figure 6.4: Isotropic component of f at t = 20, 0 _< x < 2rr, 2b < ~ < 5b 
and s = 1, e~ = 0.05 (dominant inelastic case). 

of  the  d i s t r i bu t ion  func t ion  is h o m o g e n e o u s  in space  bu t  it is no t  flat 

in ene rgy  wi th in  each  interval, it r a the r  s h o w s  a gent le  fall. We bel ieve  

that  this  is to be  asc r ibed  to the  mixing  effect  of  the s t reaming  term.  

In the  s e c o n d  example  we i l lus t ra te  the  i so t rop iza t ion  of  the  dis- 

t r i bu t ion  func t ion  in energy space.  The initial cond i t ion  is 

f n ( X ,  ~ ,P)  = M(~n) [1  + (Ao +A1L2(P))COSX], (6.6) 

whe re  M (~) is the Maxwellian d i s t r i bu t ion  e x p r e s s e d  in t e rms  of  the  

energy,  L2(p)  is the  Legendre pob~aomial  o f  o rde r  2 and  Ao = 0.5 

and  A1 = 0.2 are cons tan ts .  In this case,  we first  r epo r t  the er ror  o f  

the  d i f fus ion  app rox ima t ion  to the  B o l t z m a n n  eqna t ion  a s  func t i on  

of  t ime for  two dif ferent  values  of  e. Figure 6.5 s h o w s  the error  e ( t ) ,  

given b y  

2 ;  e ( t )  = d x  d~IPBE(X, t )  - p m e F ( x ,  t ) l ,  (6.7) 

for  r = 0.05 (solid line) and Q = 0.1 (dashed  line) and  et = 1 (domi- 

nan t  inelas t ic  case). We note  tha t  the  er ror  is smal ler  for  the smal le r  
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value of  e, as expected. Also, the er ror  decays with time, tha t  is the 

d i f fus ion  approx ima t ion  becomes  be t t e r  and  be t te r  as t ime proceeds .  

0.016 

0.012 

0.008 

0.004 

0 ' 

\\ 

i0 20 30 40 50 

Figure 6.5: e(t), 0 < t < 50 for e] = 1, e2 = 0.05 (solid line) and e2 = 0.1 
(dashed line). 

Finally, in Figure 6.6 we show the  t ime evolut ion of  the i sot ropic  

c o m p o n e n t  of  the d i s t r ibu t ion  func t ion  as func t ion  of t ime for  two 

values of  e. We see tha t  such  func t i on  relaxes to a cons t an t  value 

as t ime proceeds ,  The re laxat ion  appears  somewha t  fas ter  for the 

smal ler  value of  eo 

7 A p p e n d i x :  T h e  S u c c e s s i v e  O v e r r e l a x a t i o n  M e t h o d  

The successive overre laxat ion m e t h o d  (SOR) is an i terative m e t h o d  

for solving l inear and  non l inear  sys tems .  We briefly out l ine here  the 

m a i n  s teps  of  the m e t h o d  in the case of  an n by n l inear s y s t e m  of  

equat ions .  Let 

n 

a i j x j  = bi, i = 1 . . . . .  n 
j=l 
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Figure 6.6: Isotropic component of f ,  0 < t < 50 for x = rr/4, ~ ~ 0 
and et = 1, e2 = 0.05 (solid line) and e2 = 0.1 (dashed line). 

be  a l inear s y s t e m  in the n u n k n o w n s  x t ,  x2 . . . . .  xn,  wi th  coeff ic ients  

aij and  c o n s t a n t  t e rms  bi. We first  r ewr i te  the s y s t e m  in the form: 

n 

a i i x i  = bi - E a i j x j ~  (7~1) 
j=l,j~i 

S u p p o s e  tha t  the values  of  all va r iab les  xi ,  i = 1 . . . . .  n,  at the  s-th 

i te ra te  are known,  say xi  = x f .  Equa t ion  (7.1) can then  be  u s e d  to 

u p d a t e  the value  of  the variable  xi, b y  us ing  the x~ values  in the r ight  

h a n d  side (this gives the Jacobi  i terat ion)  or  b y  using, for  each var iable  

xj  on the  r ight  h a n d  side, its u p d a t e d  va lue  when  available, and  the  

s o the rwise  (this gives the  Gauss-Seidel  iteration). Let x~ ,  o ld  va lue  xj  
i = 1 . . . . .  n,  be  the  so lu t ion  of  (7.1) o b t a i n e d  with the Gauss-Seidel  

i terat ion,  name ly  
n 

X~ bi ~ a i j .  t 
= at---i - j = l , j ~ i  ati2~J' 

w h e r e  t = �9 if x j  has  a l ready b e e n  u p d a t e d ,  and t = s o therwise .  

The SOR me thod ,  ins tead  of  taking the va lues  x~,  i = 1 . . . . .  n as the 
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values for the s + 1-th iterate, considers  a weighted average of the x~ 
with the values x~ at the previous iterate, namely 

x s+l = w x *  + (1 - w ) x  s, i 

where w is a relaxation parameter  satisfying 0 _< w _< 2 and which 
accelerates the convergence. In principle, the optimal value for w can 
be determined on theoretical g rounds  [15], but  it can also be adjusted 
ad hoc by trial end error if the speed of convergence is not of pr imary 
importance.  
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