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ABSTRACT. We consider the asymptotic analysis for the linear
Boltzmann equation with elastic and inelastic scattering. The
physical model describes the motion of test particles propagat-
ing by elastic and inelastic collisions through a host medium
in the Lorentz gas limit. The background is in thermodynam-
ical equilibrium with only two internal energy levels. We ap-
ply the compressed Chapman-Enskog procedure to derive the
diffusive-type approximations in the cases of dominant elastic
and dominant inelastic collisions. Then we present numerical
examples showing the time evolution of the distribution func-
tion in some physically relevant cases. In the appendix the
successive overrelaxation method is briefly outlined.

1 Introduction

Asymptotic analysis is commonly used in kinetic theory to solve the
Boltzmann equation by perturbation expansion and to approximate
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the solutions of kinetic equations by the solutions of suitable fluido-
dynamical equations. When the kinetic equation is written in dimen-
sionless form, the coefficients of each term can be compared with
each other and one or more coefficients can be significantly larger
than the others. Numerous systems are governed by two {(or more)
independent competitive processes. In order to illustrate the role
of asymptotic analysis in linear kinetic theory, we consider a linear
transport model in which the collisional mechanism with the back-
ground is dominant (this justifies the linearity) and which models
elastic and inelastic scattering. Just to give an idea, let us consider
an evolution initial value problem for a kinetic equation in abstract
form
of

1 1
"a"z_' = Sf + E'-l‘Cef + E;CLf

where C, and C;, as we will explain in detail in the next section, are
the operators modeling elastic and inelastic collisions respectively.
The parameters ¢; and €» characterize the importance of the two
phenomena; they may be of the same order (both of them small) or
one of them may be small and the other of order 1. For example, if
we take ¢ = 1 and €3 = ¢, then inelastic collisions are the mechanism
which prevails when the system tends to equilibrium.

In a mathematical framework, we can suppose to have on the
right-hand side a family of evolution operators depending on the pa-
rameter € acting in a suitable Banach space X with a given initial
datum.

The classical asymptotic analysis suggests to look for a solution
in the form of a truncated power series

() = folt) + €fi(E) + €2 f2(b) + - < - + €™ fn(t)

and builds an algorithm to determine the coefficients fo, f1, f2,.--, fn-
fe(")(t) is an approximation of order n to the solution f¢(t) of the
original equation in the sense that

Ife(t) = FEP(0)lIx = o(e™),

forO<t < T,whereT > 0.
Sometimes this approximation does not hold in a neighborhood of
t = 0, because of the existence of an initial layer where the estimate
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is not uniform with respect to t. For this reason it is necessary to
introduce an initial layer correction.

Our point of view is to find, in a systematic way, a new (simpler)
family of operators still depending on €, say Be, and a new evolution

problem
0@e
ot

such that the solutions @¢(t) of the new evolution problem satisfy

= Be@e.

Ife(t) — @c(t)lix = o(e™),

forO<t <T,whereT > 0.

In this work we will apply the Chapman-Enskog procedure in the
version modified by J. Mika in {13], to a transport problem with elas-
tic and inelastic scattering which will be introduced in Section 2. The
main feature of the modified Chapman-Enskog procedure is that of
decomposing the initial value problem into two problems for the ki-
netic and hydrodynamic parts of the solution respectively and of ex-
panding only the kinetic part in series of €, while leaving the hydrody-
namic part unexpanded. This decomposition is performed by a pro-
jection of the unknown solution on the null-space of the dominant
collision operator and on its complement. Then, a two time scaling
is introduced to obtain the initial layer corrections. The asymptotic
algorithm permits to derive in a natural way the solution of the hy-
drodynamic equation, the initial value for the hydrodynamic equation
and the initial layer corrections. Hence, it is possible to prove, under
suitable assumptions, that the error of the approximating solution is
of order €2, uniformly in t = 0.

The reader interested in understanding the essential advantages
of the compressed Chapman-Enskog procedure is referred to the book
by J. Mika and J. Banasiak [14]. Using the compressed procedurewa
rigorous asymptotic analysis of a linear Boltzmann equation with in-
elastic scattering is provided in [3, 4].

In this paper we consider the linear Boltzmann equation with elas-
tic and inelastic collisions, describing the time evolution of an en-
semble of test particles propagating through a background medium
assumed at thermodynamical equilibrium. We consider the two limit
cases of dominant elastic and dominant inelastic collisions, perform
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the asymptotic analysis of the Boltzmann equation and derive the two
hydrodynamic approximations by the compressed Chapman-Enskog
method.

A similar analysis for a transport equation with down-scattering
as the only effective inelastic mechanism was studied in [8]. This
paper generalizes those results.

Finally, we look at some numerical examples which illustrate the
relaxation of the isotropic component of the distribution function to-
wards the kernel of the collision operator, the isotropization of the
distribution function with time and the time behavior of the error of
the diffusion approximation in the case of dominant inelastic colli-
sions. We also report the numerical methods used in the solution of
the Boltzmann equation.

2 The physical model

In this section we introduce a model in the framework of extended
kinetic theory to describe the motion of an ensemble of test particles
of mass m diffusing by elastic and inelastic collisions through a host
medium of particles having mass M. In the literature of kinetic theory
inelastic phenomena have attracted much attention, because inelastic
collisions are very important in various traditional fields, and more
recently in electron transport at low energies and in semiconductor
theory [5, 6]. In [11], Garibotti and Spiga developed a formalism to
include inelastic collisions in the Boltzmann equation.

We consider a gas of test particles endowed only with transla-
tional degrees of freedom, moving in a medium with internal degrees
of freedom. We assume that the background medium consists of
particles having only two energy levels, a ground level and an excited
level, spaced by an energy jump AE. This assumption of only two
significant energy levels is reasonable in the case of a particle gas at
low temperature. Moreover we assume that the background medium
is in thermodynamical equilibrium with temperature T. If n; and n»
are the number densities of the background particles in the ground
state and in the excited state respectively, the thermodynamical equi-
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librium implies the following relation

2o (-2E)

where k is the Boltzmann constant.

We are interested in the so-called Lorentz gas, obtained with the
limit m/M — 0 which describes a physical situation in which light
test particles collide with a heavy background assumed at rest. The
test particles can be deflected elastically or can attain a loss or a gain
of a fixed amount of energy through inelastic collisions. Mass, mo-
mentum and energy of the interacting particles are conserved during
the collision, but a quantity of energy is transferred from one type of
particle to another by up-scattering or by down-scattering. Moreover
we neglect particle-particle interactions, and the Boltzmann transport
equation becomes linear.

In this paper we only consider a one dimensional model, but many
of the papers quoted below on this subject are in the more realistic
three dimensional setting. We denote by x the one-dimensional space
variable, by £ = v the energy variable, by v the velocity modulus, and
by u the cosine of the polar angle. The space variable is rescaled by
L and the time variable by the related characteristic time L/§, where
L is a typical macroscopic length and 6% = 2AF/m. Hence the di-
mensionless variable & = %; is used instead of the adimensionalized
speed obtaining an energy jump equal to unity.

Let f = f(x,&, u,t) be the distribution function of the test parti-
clesand let ® = ®(x, &, u, t) = v f(x, & u,t) be the flux function. By
using the new dimensionless variables introduced above, the Boltz-
mann equation for the flux function is:

od od
'a‘?(x’ gv"Iyt) + \/gu'a—;c'(xx gi“vt) =

+1
-1

+1
nlL i E l _ ’ 7
+bEHE - DV, (5215 jlcb(x,g L', Ddu
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’“LH(E CIVEEB(x, E )

- -"—‘l—é Vi(E +1) ~—-—~§§ ®(x,E, u,t)
ml
S

niL
51

+1
[VE(E) + byve(E)] % j B(x,E 1, )dy’
-1

Vi) + bvi(E)] ®(x,E, pu,t),

where v§{, v§ and v}, v} are the elastic and the inelastic collision fre-
quencies for the scattering of the test particles with the background
particles in the fundamental and excited state respectively and we
have used that the collision frequency v?f can be determined by the
microreversibility conditions [11, 9]

vvi(v) = H(v-38) Vv2 -8 vi(v2 - §?) (2.1)
vvi(v) = V2 +82 vi(Vu2 +62). (2.2)

In the following we assume that the collision frequencies v§, v§
and v} are constant. We now introduce the parameters

1)
€= niL(v§ + bvs) (2:3)
and
]
€ = - 2.4)
¢ nlLv{ (

which characterize the importance of the two collisional mechanisms.
When elastic collisions are dominant, we have€; << landes = 1, and
when inelastic collisions are dominant we have €» << 1 and €; = 1.
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Then the transport equation for the flux takes the following form:

od 0P
S &t + \/Eu-a-;c—(x, Eout) =

1
€1

+1
§ -]_'_ . r 4
+bH(§~1)1/g—:*—1*2J;(I)(X,§ L,y t)du

"H(E—l)@(xagvust)—b :":—g—ltb(x,g,u,t)J

1 +1
[—2- f D(x, &+ 1,14, )dy’
-1

+1
111 P ;
+~[~me§uJMu~@u@#Jﬂ,
€| 2 :

where €; and €» have been introduced in (2.3) and (2.4).

By discretizing the velocity space according to the energy jump
intervals and by defining

SPp(x, &, u,t) =d(x,E+n,u,t), withO0<¥<1, and n=0,1,2,...,

the Boltzmann equation for the flux becomes:

0P o
—#‘—(x,&u,t) +E+n u-—é-)—c’-"—(x, Eu,t) =

= el g ) + L ICOIn L E ) (25)
€1 €2

where the n—th components of the elastic and inelastic collision op-



58 L. DEMEIO AND G. FROSALI

erators C¢ and C* are given by

+1
1 ) ,
(Co@)n(x,Eu08) = 5 j By (x, E 1, )
-1
-~ ®u(x, & u,t), forn=z=0,

+1
i ]- 7 7
[Ci®lo(x, E i, t) = 3 f B1(x, & 1’ D) du
)

~b1}§g1®o(X,§,IJyt),

+1
1 1 [ ’
[Clé]‘n(xv §1u1t) = ¢n+1(x-§,ﬂ !t)du .‘@Yl(xygyu) t)
2 1

+1
+n 1 ' ’
+ b\/’g‘%m'i j Qp-1(x, &1, t)du
-1
—bw/%-g%—l@n(x,f,u,t). fornz=1,

3 Abstract formulation of the problem

and0 <& < 1.

Before introducing some spaces and operators, we remark that in the
original three dimensional problem the particle distribution function
f = flx,v,t) represents the expected number of test particles at
time t in dx at = and in dv at v. Here dxzdv = dzdQu?dv, where
Q is the solid angle variable and v the particle speed, is the volume
element in phase space. Hence, the corresponding particle density
p = p{x,t) is obtained with the weighted integral

_ 53 + 00 12
pla,t) = | E? | fi@EQnd0dE

2 -
where & = % is the dimensionless energy variable, & the charac-
teristic speed, and £ the velocity direction. Obviously the remaining
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variables x and t can be regarded as hydrodynamic macroscopic vari-
ables.

In the one-dimensional case, the previous physical consideration
suggests introducing the following weighted norm for the particle
distribution function f:

+oo + 00 +

LFl = jdx j dE

-0 O

1
JELF e Emldu

1

Consequently, it is natural for the flux function ® = v f to intro-
duce the Banach space Z defined as L1 (R) ®7 L1 (0, +0) @ L1(—-1,1),
where ®, denotes the projective tensor product, with the norm

®llz = +dex ng Tl@(x, . ldu.
e B

Let X be the Banach space definedas L; (R)®5L;(0,1)®,L1(-1,1)
with the usual norm

+00 +1 +

lodx = [ ax | az

—00 O

1
|Pi(x, &, p)lduy,
1

XN the Banach space defined as XV = L1 (R) ®7 L1N"1(0, 1) ® L1 (-1,
1), whose elements ® are vectors with components (&g, ¢, $2,...dy),
with ®; € X, and the norm given by

N

Bl = > I1®ilx,
i=0

and let Y be the Banach space of all sequences of functions ®; of X,
whose elements ® are vectors with components (®g, ®;,P2,...$5,...)
with ®; € X, such that

1@fly = D l1®sllx < +oo.
i=0
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In the Y Banach setting our problem can be written in the abstract
form as

2 _so+Leeas Loig
ot €1 €2 (3.1)
®(x,E 1, 0) = ¢°
where the streaming operator S is given by
~JEuZ 0 0 0
0 —yE+1luik O 0

0 0 —JE+n-1ug 0

0 0 0 —JE+npl

The elastic operator C¢ can be written in the form

~]+P 0 0 0 0
0 -I+P 0 O 0
0 0 ... 0 ~I+P 0 Ll
0 0 ... O 0 ~]+ P

and the inelastic operator C! in the form

SN p 0 0 0
b 5P —1-b 55 P 0 0

0 bERP  ~I-b\E5 P 0
0 0 Ve CI-bEEL P

where P - =

(RIS
f
-5
(8
=
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4 The compressed Chapman-Enskog procedure

In this section we recall the principal steps of the compressed Chap-
man-Enskog procedure. One of the main ingredient of the compressed
procedure is the projection of the unknown function onto the hydro-
dynamic subspace.

In our problem we consider the system (3.1) in two cases: in the
first case, when elastic collisions are dominant, withe; = ¢ and €2 =
1,

o 1

== =5P+ -

ot €
and in the second case, when inelastic collisions are dominant, with
ei=1lander =€

CeP + Clo @.1)

CA S® + CeP + —1-Ciq> ) (4.2)
ot €

Letus begin with the first case. If we put formally € = 0 in equation
(4.1) we have out into
Céf =0.
Similarly to the standard case in kinetic theory, the eigenspace of C¢
corresponding to the 0—eigenvalue is one-dimensional and is spanned

by the equilibrium function depending only on the energy variable,
i.e.

ker(C¢) = {®:®,(x,& u) = Pn(x,&), arbitrary,
but independent of u, for n = 0}

and the range of C¢ is given by the functions f such that

+1
J f(xy Ey;u)du = O.
-1

The hydrodynamic quantity, i.e. the quantity that is conserved in
the absence of streaming, in this case is given by

+1
pé(x, &5 t) = %— J ®(x, & u, t)du, £<[0,+x) 4.3)
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and the spectral projection 7¢ onto the kernel of the elastic collision
operator, in the Banach setting V, is defined by

+1
[P0, E) = 5 j b (x, E w)du, k = 0. (4.4)
)

Let us consider now the case of dominant inelastic collisions, which
corresponds to the second case. Putting formally € = 0 in equation
(4.2), we have

Cif =0.
This case differs from the classical case, because the eigenspace of
C? corresponding to the O—eigenvalue is infinite dimensional. We
can prove that the null space of C! consists of functions which are

periodic for £ > 1 a part from the factor b" %—ﬂ ie.

ker(CH) = {(I) 1 ®o(x, &, 1) = Ppo(x, &), arbitrary, but independent

of yand ®n(x,&, 1) = b" é%ﬂdmuaEyMrnzl}-
In other words the kernel of the inelastic collision operator is made
of functions which are arbitrary in the first interval of energy (0, 1),

and whose other components are multiplied by the factor b* gin

We remark that if we reformulate the problem in terms of the particle
distribution function, instead of the flux, the slightly different form
of the operator Ct leads to a kernel of periodic functions, a part from
the only constant factor b™.

In this case, the hydrodynamic quantity is given by

© +1 ;
i ED = Y 5 [ealc B, E€l01] @)
n=0 -1

and the projection P! on the kernel of C! is given by

P Evk 217
%J®ﬂx&uﬁmka& (4.6)
-1

[PIR]i(x,E) = ——e
‘ T3 obiJE+ ) 2,
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For the spectral properties of such collision operators see {1].

In the following, we shall denote by 9¢ = 7 — P¢ and Q! = 7 ~ P*
the complementary projections in the Banach setting Y, where 7 is
the identity operator. The projections (4.4) and (4.6) can be written
in matrix form. For example, we have for the projection P on ker(C?),
as an operator acting in Y:

N

byE+1
T Pe;

=0 E+J b”\/—gﬁ

Pigp

+1
where P®; = i— | ®(x,& u)dy, and it is easy to see that
-1

5 o
Do(x, & 1) - %ZFOP@

BTl e .
P1(x, &, 1) Zﬁobjmzjzopcbj

b /E+n I~
‘I’n(xv ng) - % ZJz()P(I)J

Qe =

The projections P¢ and ¢ for their simplicity have a diagonal matrix
form.

The next step in the compressed Chapman-Enskog procedure is to
decompose the Banach space Y by the projections P¢ and 9°¢, when
the elastic collisions are dominant and by the projections 7! and 9/,
when the inelastic collisions are dominant.

According to this decomposition, we can write the unknown func-
tion as the sum of a function in the kernel of the dominant collision
operator (hydrodynamic solution) and the complementary part (ki-
netic solution). For example in the case of system (4.1), we can write
the flux function ® € Y as

® = PO + Q%D = + 1, (4.7)
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where ¢ is the hydrodynamic part of the solution and v is the kinetic
part.

The subsequent step in the procedure is to derive new equations
for the new unknowns ¢ and 4, and this can be performed by op-
erating formally on both sides of (4.1) with the projections P¢ and
Q°.

In the following section we illustrate formally this modified Chap-
man-Enskog procedure, in the two different scalings of the kinetic
equation corresponding physically to having the ratio of the elastic
to inelastic collision frequencies very large or very small.

To make the treatment easier theoretically and numerically, we
introduce a cut-off in the range of the energy variable, assuming
that & € [0,N + 1] or equivalently that, if &, = & + n, we have
n = 0,1,...,N. Physically, the cut-off corresponds to the assump-
tion that the number of particles having energies larger than NAE is
negligible.

5 The diffusion approximations

In this section we derive formally the diffusion approximations of
systems (4.1) and (4.2).

Let us begin with the first case, when elastic collisions are domi-
nant. Making use of the decomposition of the unknown function as
in (4.7), we operate formally on both sides of (4.1) with the projection
operators 7¢ and Q¢ and we obtain the following system of equations:

|

%9—;1 = PSP + PESQe + PECIPep
9
3t

(5.1)

i

Qe5Pep + QU5 + QUCIQeY + 2Q°C° QY
with initial conditions

©(0) = o = PP
$(0) = o = Q%

Now we split the unknown funtions ¢ and  into the sums of the
“bulk" parts @ and % and of the initial layer parts ¢ and ¥ which
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take account of the rapid changes of ® for small times:

il

B0+ ()
P(t) + ¢ (é) (5.2)

p(t)

i

P(t)

According to the Chapman-Enskog procedure, we expand the un-
known functions @, ¢, and v in series of €, and we leave the bulk part
@ unexpanded because we are interested in the complete behaviour
of the hydrodynamic part:

P(t) = olt) +edr(L)...
P(T) = @ol(T) +epi(T)...
P(T) = Pol(T) +edr(T)..., (5.3)

where T = t/¢. Now we have to obtain equations for the terms of the
expansions introduced above and we substitute the bulk and initial
layer parts separately into the second equation of (5.1).

For the bulk part we have:

0 (5.4)
—(92C?98) !t QoS PR (t) (5.5)

i

Po(t)
P1(t)

i

and the diffusion equation, correct up to first order in the bulk kinetic
part, is

%% = PeSPep + PECHPep — ePES Q8 (gecege)! Q¢SPp. (5.6)
In this case, it is easy to see that P¢SP¢p = 0, while the evolution
of @ is affected by the inelastic collision operator by P¢C*P¢ and the
contributions of elastic collisions appear with the correction of first
order in €. It could be possible to improve such approximation and
obtain equations for the hydrodynamic part ¢ which takes account
also of the second order corrections, but this is out of our aim.
Hence, the diffusion equation reduces to

%ﬁf. = PECIPeGH — ¢PESOC (0°CC0°) ! 005 P, (5.7)
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If we want to give a more explicit form to equation (5.7), some algebra
is necessary to invert the operator Q¢C¢2¢ and to get the forms of
the operators PeCIPe, P¢SQ¢ and Q°¢SPe.

Finally the diffusion equation (5.7) takes the form

Pdy z Pdg

3 PPy g +1 32 Po,

2| Pd, = = 21 Pdy

57 . 63 E+2 350 . (5.8)
Poy E+N Pdy

~b |5 Py + PO,
b5 Pdg — PO - b, [¥2P0) + PO

* | b JESPR - POy ~ b, [ESPd; + P

b5 POy — POy

In order to equip the previous equation with the appropriate ini-
tial condition, we need to consider the initial layer part. Referring the
reader to [14], here we limit ourselves to say that expanding in series
of € the initial layer equations corresponding to (5.1) and equating
the corresponding powers of ¢, we get a set of equations for ¢q, @1,
... and 9, 91, .... Then we have to find the appropriate initial con-
ditions for such equations, keeping in mind that at the end we want
to obtain an estimate of the error of order €.

We now study the case of eq. (4.2), when inelastic collisions are
dominant. Here, the mathematical difficulties require a more delicate
treatment.

Making use of the projections P* and 9, we obtain from (4.2) the
following system of equations:

%s—t’i PiSPip + PLSQNY
ot . . . , , . 1 s (5.9)
a QiSPlp + QISQMP + QIC°QY + —QC'R%,

Il

i
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with initial conditions

p(0) = o = Ti_¢>°
P {(0) Yo = Q10

il

Splitting the unknown functions into the sums of the “bulk” and “ini-
tial layer” parts and expanding the unknown functions in series of
€, with the bulk part @ unexpanded, we obtain for the bulk parts,
corrected up to first order in the kinetic part

b = 0, (5.10)
b= -(Qicie) @isP, (5.11)
%—‘f = 'PiS?i@—e?isQi(QiCiQi)“lQiS?isb_ (5.12)

We see that, up to first order in ¢, the evolution of ¢ is not affected
by the elastic collision term. The effect of the elastic term appears
only after correcting the evolution of @ with terms of the second order
in €. Since PiSPip = 0, because SP® is an odd function of y, the
diffusion equation reduces to

0p icoi (0iriol)  pigpic
57 = —eP'sQ (giciQl)  aisPip. (5.13)

It is easy to give an explicit form to the operators 9@!SP! and
PiSQL

Then, it is necessary to solve (Q{CiQ!)® = g. Because (Q'CiQ))d
= Ci{(® — Pid), we have

~b %l% + Pdy
b -E—glp(bo -~® - b -EL%‘IH +P®,

CHe - P'®) = | p [E2po; — &, — b, [F550: + PDs
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In order to solve the system (QiCiQ%)® = g, we apply P to all equa-
tions, we use that Pg; = 0 and get

Pdy(x,&)

= by 5Peo(x, )
PO (x,E) = b2 [EEPoo(x,E)

PoN-1(x,E) = DNL[EHEELPa(x,E)

POy (x,E) b A Poo (x, )

I

But @ has to belong to the range of C?, hence

implies P®q = 0, and consequently P$; = 0, foralli = 1,...,N. Then,
the solution of C'Q!® = g in the range of C! is simply given by

1 -1
b El = ~(bE) gt Ew
-1
¢l(x1§uu) = —(1+b g—%) gl(x,E:H)
~ -1
(I)N—l(xygsu) = “(I‘I”b Efj\}_l) gJ’V—I(X7§1u)
(DIV(XSE!IJ) = —gN(xngyLI)

In conclusion, the diffusion equation takes the form

(3 ) AT o b0 T
i

— = € - -
ot 3 SizobIE +J
2 [
(2P
i=0

i=0

(5.14)
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where Sij = 1 - §;j, 6;; is the Kronecker delta and Z%\[:O P®; is the
hydrodynamic quantity suggested by our scaling. Analogously to the
previous case we have to supply equation (5.14) with the initial condi-
tion obtained correctly after having solved the initial layer problem.

We remark that the diffusion equations (5.8) and (5.14) are differ-
ent, both because of the different diffusion coefficients and because
of the presence of the linear term P¢CP¢ in eq. (5.8). Such difference
has to be ascribed mainly to the set theoretical inclusion relation of
the kernels of the two operators, due to the more general form of the
solutions of C? = 0.

6 Numerical results

In this section we present a numerical example illustrating the time
evolution of the distribution function in a particular case, when the
initial datum is chosen with compact support in one of the energy in-
tervals and inelastic collisions are taken to be dominant. We shall see
that the asymptotic evolution is characterized by a homogenization
in the space variable x and in the energy variable & within each inter-
val. More extensive numerical results have already been presented in
[2] and [10]. The numerical methods used for the numerical solution
of the Boltzmann equation are standard, but we describe them here
for completeness, making explicit reference to the present problem.
The rigorous results contained in the previous sections have been
presented for the flux function. The computer programs used for the
numerical solution, instead, are written for the distribution function,
mainly for historical reasons.

In analogy with (2.5), the Beltzmann equation for the distribution
function is:

ofn (x, &, u,t) +E+m u%—f(x, & ut) =

ot
et 8o ) + LICHfIn(x, E ), (6.1)
€1 €2

n = 0,1,..., where the components of the elastic and inelastic colli-
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sion operators C¢ and C* are given by

+1
[COfIn( B t) = 3 | fule, Eop', DM
g}

- fa(x,E, 1, t), forn=0,

+1
[Ciflotx, & b) = |2 : - fl FilE Dy’

Eglfo(x,i,u,t),

+1
(€ FInx B ) = [ 5 [ a0
1

+1
1 , ,
+b_2_ J le*l(xaE)u vt)du ‘fn(xyg,ﬂyt)
-1

_p |t
b Tin Su(x, & u,t), forn=z=1,

- b

and0=<E& < 1.

6.1 Numerical solution of the Boltzmann equation

The Boltzmann equation (6.1) is solved numerically by expanding the
unknown distribution function in Legendre polynomials in the angu-
lar variable and, assuming periodic boundary conditions, by Fourier
collocation in space. For the time discretization we have adopted a
simple backward Euler scheme. o ‘ -

The expansion in Legendre polynomials is given by:

K
fn(x; E»H,t) = Z fnk(xr E:t)Lk(U) (6,2)
k=0

where L (u) is the Legendre polynomial of order k. If we multiply
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the Boltzmann equation by Ly (1) and integrate over p we obtain:

_a_.ﬁllg + gn (akafn,k+1 +Bkafn,k~l) -

ot ox 0x

&n

1 [Ens1
{61 [1 —Ono+ b . :i }fnk, {6.3)

n=01,...,Nk=0,1,... K,

1 1
= «g—-— [ En+1fn+1,0 + bfn—l,O] + "‘fno} ko +
€1 €2

where N is the highest energy interval considered and we have intro-
duced

o = k+1 2
2k +12k+3°
_ k 2
Pe = Siriak-1
and
En =& +mn.

In deriving (6.3) we have used the recurrence relation of the Leg-
endre polynomials and of their derivatives and their orthogonality
properties. The spatial discretization is performed by using Fourier
collocation points, namely x = x; = 2mj/M, j=0,... M-1[7]. In
this representation the derivative of a function f(x) is expressed in

the form
M-1

(5%) e 2005

where f; = .f(x;) and the matrix D¥ is defined by [7]

1 i+ (i— I DL
DM _ ( 1)i+7 cot l%‘]u
0 i=j
Finally, we introduce a backward Euler scheme in time and replace

the time derivative on the left hand side of (6.3) with

of _f+at) - f(t)
ot At ’
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where At is the time step, and evaluate the function f or its spatial
derivatives at the time t+ At in all other places where it appears. After
all the discretizations have been introduced, the unknown function
Snlx, & u, t + At) at the new time step is represented by a set of
discrete values foxj, n =0,... N,k =0,... K, j=0,...,M. After
some algebra, equation (6.3) for the unknowns f,; becomes:

At §n+1 At .
{1 + o (1 - Ono+b z, ) + ) a 5k0)%fnkj +

+AtEn (O‘k ZD%fn,ku,z + ﬁkzD%fn,k—l,l) +
1 1

_at

= ( Eﬂi‘l"fn«kl,o,j + bfn—l,O,j) Sko = [k, (6.4)

&n

where f* denotes f at the old time step. Equation (6.4) gives an
NxM xK sparse linear system which we have solved by the successive
overrelaxation method (SOR). For this purpose, we write (6.4) in the
following block-matrix form:

Unifnk + Anifnis1 + Bukfn-1 + Enkfnr1,0 + Gufn-10 = f;k,
(6.5)

where Unk, Ank, Bnk, Enx and Gy are M X M matrices whose ele-
ments are given by

At En+ At

Ankiij = AtEnoxD]]
Bukiij = At\/gﬁkfo-

At

Eokiij = o Eg:&co
At

Gukij = -?2‘1751«)

and the f,; and f, are the M-dimensional vectors given by fnk;; =
Snkj and £, = f;, respectively.
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Figure 6.1: Isotropic component of the initial distribution of f,0 < x <
21,0 <& <5b,and €; = 1, €; = 0.05 (dominant inelastic case).

Equation (6.5) is then solved by the SOR method [15], which we
recall briefly in the Appendix. In order to apply the SOR method to
equation (6.5), we rewrite the equation itself in the form

1
frkj = T .

" foki — > (ﬂnk;jzfn,kuﬂ + ank;jlfn,k—l;z) +
nKL 1

— Enksjjfner05 - gnk;jjfn—l,O;j} :
which gives the s-th iterate for f,,x,;, with the understanding that up-

dated values for the components of the f,; vectors are used wherever
available (see equation (7.1) of the Appendix).

The parameter w of the SOR method was adjusted ad hoc in each
case.

6.2 Numerical examples

In this section we illustrate the time evolution of the isotropic com-
ponent (the k = 0 term in the Legendre polynomial expansion) of the

73
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Figure 6.2: Isotropic component of fatt=10,0<sx <2m, 0<% <5b
and €; = 1, €; = 0.05 (dominant inelastic case).

distribution function in a case when the initial datum is chosen with
compact support in a specific energy interval and inelastic collisions
are considered as dominant. In particular, we choose an initial distri-
bution which is nonzero only in the n = 2 energy interval, where it is
given by

_ 1+ Ap(l+p)cosx forn =2,
fnlx, & 1) = { 0 otherwise.

Also, we set €1 = 1.0 and ¢2 = 0.05 and the Boltzmann factor is
b = 3, This initial distribution is far, in any sense, from any element
of the kernel of the inelastic or of the total collision operator. It
was shown numerically in [2], where only inelastic collision processes
were included, that the solution of the kinetic equations tends, as
time proceeds, to some element of the kernel of the inelastic collision
operator. The initial distribution is shown in Figure 6.1.

Figures 6.2 and 6.3 show the same distribution at ¢ = 10. Fig-
ure 6.2 shows the energy range from & = 0 to &€ = 5b, while Fig-
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ure 6.3 shows the first two energy intervals, with a change of scale in
the ordinate to better show the behavior at energies close to zero.

Figure 6.3: Isotropic component of fatt =10,0<x<2m, 0<€<2b
and €, = 1, €, = 0.05 (dominant inelastic case).

Figure 6.4 shows the distribution at t = 20 and for 2b < & <
S5b, also with a change of scale in the ordinate to better follow the
behavior at high energies. The distribution at t = 20 doesn’t differ
from the distribution at t = 10 in any appreciable way, so we can
assume that by ¢t = 10 it has settled to its asymptotic shape.

In a space homogeneous case, since both elastic and inelastic col-
lisions don’t mix the populations at different energies within each en-
ergy interval, we would expect to see the distribution réaching apiece-
wise constant shape in energy as time goes to infinity, with the values
of the distribution itself within each interval following a Boltzmann-
like profile. The distribution would also remain independent of space.
The space inhomogeneity of the initial datum changes this picture.
The streaming term now provides some mixing of the populations
within each energy interval, while the diffusion mechanism homoge-
nizes the distribution in space. The resulting time asymptotic shape
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Figure 6.4: Isotropic componentof fatt =20,0<x < 2m,2b <& <5b
and €, = 1, €; = 0.05 (dominant inelastic case).

of the distribution function is homogeneous in space but it is not flat
in energy within each interval, it rather shows a gentle fall. We believe
that this is to be ascribed to the mixing effect of the streaming term.

In the second example we illustrate the isotropization of the dis-
tribution function in energy space. The initial condition is

Jnlx, &, 1) = M(E)[1 + (Ag + A Lo (1)) cos x], (6.6)

where M(&) is the Maxwellian distribution expressed in terms of the
energy, L»>(u) is the Legendre polynomial of order 2 and Ag = 0.5
and A; = 0.2 are constants. In this case, we first report the error of
the diffusion approximation to the Boltzmann equation as function
of time for two different values of €. Figure 6.5 shows the error e(t),
given by

2T 1
e(t) = . dx Jo d&lppe(x,&.t) — pprrr(x, &, 1)1, (6.7)

for e» = 0.05 (solid line) and €» = 0.1 (dashed line) and €; = 1 (domi-
nant inelastic case). We note that the error is smaller for the smaller
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value of €, as expected. Also, the error decays with time, that is the
diffusion approximation becomes better and better as time proceeds.

0.016

0.012¢

@ Q.008F}

0.004 ¢

Figure 6.5: ¢(t),0 <t <50 fore; = 1, €; = 0.05 (solid line) and €, = 0.1
(dashed line).

Finally, in Figure 6.6 we show the time evolution of the isotropic
component of the distribution function as function of time for two
values of €. We see that such function relaxes to a constant value
as time proceeds. The relaxation appears somewhat faster for the
smaller value of €.

7 Appendix: The Successive Overrelaxation Method

The successive overrelaxation method (SOR) is an iterative method
for solving linear and nonlinear systems. We briefly outline here the
main steps of the method in the case of an »n by n linear system of
equations. Let

n
Zaijxj=bi, i=1,...,n
J=1



78 L. DEMEIO AND G. FROSALI

1 . - , . -

t

Figure 6.6: Isotropic component of f,0 <t <50forx =nw/4, % =~ 0
and €; = 1, €2 = 0.05 (solid line) and ¢, = 0.1 (dashed line).

be a linear system in the n unknowns xi, x», ..., X,, with coefficients
a;j and constant terms b;. We first rewrite the system in the form:

n
aixi = bi— Z aijx;. (7.1)
j=1,j#i
Suppose that the values of all variables x;, i = 1,...,n, at the s-th

iterate are known, say x; = x;. Equation (7.1) can then be used to
update the value of the variable x;, by using the xj values in the right
hand side (this gives the Jacobi iteration) or by using, for each variable
x; on the right hand side, its updated value when available, and the
old value x7 otherwise (this gives the Gauss-Seidel iteration). Let x ],
i =1,...,n, be the solution of (7.1) obtained with the Gauss-Seidel
iteration, namely
el 3 Sy

L gty i

where t = * if x; has already been updated, and t = s otherwise.
The SOR method, instead of taking the values x, i =1,...,n as the
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values for the s + 1-th iterate, considers a weighted average of the x;“
with the values x; at the previous iterate, namely
xit = wxf + (1 - w)xg,

where w is a relaxation parameter satisfying 0 < w = 2 and which
accelerates the convergence. In principle, the optimal value for w can
be determined on theoretical grounds [15], but it can also be adjusted
ad hoc by trial end error if the speed of convergence is not of primary
importance.
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