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ABSTRACT. In connection with a characterization of c logn
within the class of additive arithmetic functions, i.e. such

that f(mn) = f(m) + f(n), which has been conjectured by

P. Erdős in 1946 and is still unproved, we outline some sub-

sequent researches involving various tools and standpoints,

and we report some expressive results either lying close to

that conjecture or revealing a similar spirit.

1 Introduction

On the occasion of a lecture on additive arithmetic functions deliv-

ered at this Seminario forty years ago ([Er2]) Pal Erdős collected some

conjectures by himself concerning characterizations of the logarithm

within the class of such functions. One of them is still of actual inter-

est, because it did not get until now a complete proof in spite of the

number of subsequent papers and different kinds of approaches to
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this problem. We purpose here to trow a bridge backwards, and sum-

marize some partial or even collateral results, framed sometimes in

more recent fields of research.

We shall consider the class of functions f : N1 → R, where N1 :=

N \ {0}, satisfying the equation

f(mn) = f(m)+ f(n) , m,n ∈ N1 ; (1.1)

f is said to be additive if (1.1) is satisfied for (m,n) = 1 ; f is com-

pletely additive (c. a.) when (1.1) holds for every m,n ∈ N1.

The logarithm, as the most important c. a. function, got classical

characterizations. We report here the following one, by Erdős, which

is the starting point of our talk:

Theorem 1.1 (P. Erdős) If f is additive and satisfies

f(n+ 1)− f(n) → 0 , as n → ∞ , (1.2)

then f(n) = c logn, n ≥ 1 ( c = f(2)/ log 2 ).

Two similar propositions, containing each a weakened form of

(1.2), were proposed as conjectures by Erdős and mentioned in the

abovesaid lecture ([Er2]). We shall treat very shortly the first one,

namely the

Conjecture 1.1 ([Er1]) If f is additive and |f(n + 1) − f(n)| < A

then f(n) = c logn+ g(n) with |g(n)| < B.

because it has been completely proved, on the ground of some re-

sults stated by E. Maté (1969) and E. Wirsing (1970,1981):

([Ma]) If f is additive and f(n+1)−f(n) = O(1) as n → ∞ then there

exists a completely additive function g such that f(n) = g(n)+O(1).

([Wi1]) If g is c. a. and g(n+ 1)− g(n) < K then g(n) = c logn.

([Wi2]) If g is c. a. and g(n+1)−g(n) = o(logn) then g(n) = c logn.

In this connection it has to be only noticed that, by resort to a

new point of view from the recently developed theory of “stability” of

functional equations initiated by S. Ulam and D.H. Hyers [Hy] in 1941,

the function f(n) = c logn may be characterized within a larger
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class of functions, including the additive ones, with the advantage

that we do not force the O(1) term to be additive too:

([Sk6]) The function f : N1 → R satisfies f(n) = c logn+O(1) with

c = limr→∞ f(2
r )/ log 2r , if and only if the following conditions are

both fulfilled:

i) |f(mn)− f(m)− f(n)| < A

ii) |f(n+ 1)− f(n)| < B.

In virtue of the Wirsing’s result [Wi2] the condition ii) may be equiv-

alently replaced by

f(n+ 1)− f(n) = o(logn) as n → ∞ .

Now let us proceed to discuss the second weakened form of (1.2)

and the corresponding conjecture, which are the real object of this

talk.

2 The Conjecture E and Its Formulations

Conjecture E. ([Er1, Er2]) If f is additive and f(n+1)−f(n)→ 0 as

n → ∞ when we neglect a sequence of density 0, then f(n) = c logn,

n > 0 (c = f(2)/ log 2).

This proposition contains two elements allowing us to intend the

statement in different ways.

Firstly, it refers to a “density” condition, and it is well known that

density of an increasing sequence Z = {zk} ⊂ N may be defined

in many ways. It is possible that the Author was referring to the

asymptotic (or natural) density δ, which is defined as the common

value, if existing, of lower density δ∗ and upper density δ∗ of the

sequence, where

0 ≤ δ∗ := lim inf
x→∞

(

∑

zk≤x

1

)

/

x ≤ lim sup
x→∞

(

∑

zk≤x

1

)

/

x =: δ∗ ≤ 1 .

However, other kinds of “density” existing in the literature may be

suitably used in this context, as we shall observe later.
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In the second place, when we neglect a sequence of density 0, the

limit condition restricted to the complementary sequence U = {ui}

having density 1 may be intended in different ways, namely either as

f(ui + 1)− f(ui) → 0 (I)

or as

f(ui+1)− f(u) → 0 . (II)

Obviously, if (II) is satisfied along a sequence U with density 1,

there exists a sequence U0 ⊂ U with δ(U0) = 1 such that (I) holds;

but the inverse implication has still to be proved.

Therefore, referring initially to asymptotic density, we shall de-

scribe the evolution of researches about the Conjecture E, following

two different directions originated by (I) or (II) and, correspondently,

we shall speak about “Conjecture (E,I)” or “Conjecture (E,II)”.

3 About Conjecture (E,I)

Conjecture (E,I). If f : N1 → R is additive and satisfies the condition

f(ui + 1) − f(ui) → 0 as i → ∞ along an increasing sequence {ui}

(i ∈ N) with density 1, then f(n) = c logn, n > 1 (c = f(2)/ log 2).

There are rather few papers devoted to the proof of this propo-

sition, which still remains an open problem. It has been proved that

the assumptions, even in a weaker form, imply complete additivity

of f :

([Sk1]) If f : N1 → R is additive and satisfies the condition f(vi) −

f(vi) → 0 as i → ∞ along an increasing sequence {vi} (i ∈ N) having

upper density δ∗ = 1, then f is completely additive.

But neither the logarithmic form is proved nor counterexamples

have been found. It seems to be a crucial point in this context to find

a linkage between the values f(ui) and f(ui+1), in consequence of

the fact that the sequence {ui}, even if density is 1, may have

l.u.b. (ui+1 −ui) = +∞ .

On the contrary, many papers involving various and interesting

topics are devoted to the condition (II), which will be the subject of

the next section.
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4 About Conjecture (E,II)

Conjecture (E,II). If f : N1 → R is additive and satisfies the condition

(II) f(ui+1)− f(ui) → 0 for i → ∞ along an increasing sequence {ui}

(i ∈ N) with density 1, then f(n) = c logn, n ≥ 1 (c = f(2)/ log 2).

4.a) The most direct and natural approach to the problem consists

in searching for some connections between density properties of

the sequence U = {ui} and arithmetic properties of subsequences

{tk} ⊂ N such that the equation f(tk) = c log tk holds for some real

constant c. In this concern, let us report the following proposition

involving, more in general, increasing sequences {ui} with a rather

irregular distribution, in that lower density δ∗ can be less than up-

per density δ∗: however a new condition, namely ui+1 −ui = O(1),

is now required.

([Sk2]) Let U = {ui} ⊂ N be an increasing sequence such that 2/3 <

A = δ∗(U) ≤ δ
∗(U) = 1 and ui+1 −ui = O(1) as i → ∞. If f : N1 →

R is additive and satisfies (II) f(ui+1) − f(ui) → 0 as i → ∞, then

f(t) = c log t (c independent of t) for every natural t composed only

by prime factors p such that (1−A)p < A.

The proof consists in the direct calculation of f(t) through an iter-

ative process involving a suitable sequence of numbers less than t.

The first idea of such an iterative process may be found in a paper

by A. Rényi ([Re]) where a new proof of the classical Erdős theorem

mentioned in Section 1 is given.

Now, rewriting the above proposition in the special case of A =

δ∗(U) = δ
∗(U) = 1, we get

Corollary 4.1 ([Sk2]) Let U = {ui} ⊂ N1 be an increasing sequence

with density δ(U) = 1 and ui+1−ui = O(1) as i → ∞. If f is additive

and f(ui+1) − f(ui) → 0 when i → ∞, then f(n) = c logn,n ≥ 1

(c = f(2)/ log 2).

This proposition looks rather close to the Conjecture (E,II); it will

be a helpful tool for further results in next sections.
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4.b) The just considered condition ui+1−ui = O(1) for the distribu-

tion of the elements within the sequence {ui} does not follow from

density 1, which implies uniquely ui+1−ui = o(ui) as i → ∞. On the

other hand, it seems to be reasonable that the arithmetic composi-

tion of numbers ui and the behaviour of their distribution within N

have to play some role when the sequence {ui} is asked to have influ-

ence on the value c logn of f for every natural n. So, by analogy to

the similar problem of characterizing the regular solution F(x) = ax

for the Cauchy equation F(x + y) = F(x) + F(y) when F : R → R

and to the related well known measure-theoretic responses, one may

purpose to look for a definition of density fulfilling the fundamen-

tal properties of a measure. The asymptotic density does not satisfy

this requisite, but a measure-theoretic approach to “density” of se-

quences in N does exist; it has been developed by R.C.Buck in 1946

([Bu1, Bu2]) starting from an idea by S. Banach ([Ba]).

So, according to Banach and Buck, letD0 be the algebra generated

by finite sets in N and by the arithmetic progressions {a+ nd}, and

λ : D0 → R a set-function defined as follows:

λ(E) = 0 if E is a finite set in N;

λ(E) = 1/d if E is an arithmetic progression {a+nd}, n ∈ N;

λ(E1 ∪ E2) = λ(E1)+ λ(E2) if E1, E2 ∈ D0 and E1 ∩ E2 a finite set.

Denoting by S the set of parts of N, we define in S the outer mea-

sure function µ∗, as an extension of λ to S from D0, in the following

way:

µ∗(E) = g. l. b. {λ(A) : A ∈ D0, E
◦

⊂A} ,

where E
◦

⊂A means E \H ⊂ A \K with H,K finite sets in N.

An increasing sequence E is said to be measurable if and only if

µ∗(E) + µ∗(N \ E) = 1. This infers that for every ε > 0 there exist

A,B ∈ D0 with A
◦

⊂E
◦

⊂B, such that λ(B)− λ(A) < ε.

Within the class Dµ of measurable sequences, µ∗ is a finitely ad-

ditive “measure”, which will be denoted by µ.
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In view of application to the Erdős conjecture, let us point out

some interesting connections between asymptotic and measure-the-

oretic densities:

(M1) Dµ ⊂ D strictly,

whereD denotes the class of the increasing sequences having asymp-

totic density;

(M2) E ∈ Dµ =⇒ µ(E) = δ(E) ;

(M3) δ(E) = 1 =⇒ µ∗(E) = 1 ;

(M4) There exist extremal sequences E ⊂ N, i.e. such that µ∗(E) =

µ∗(N \ E) = 1.

Moreover, it has to be remarked that measurability of a sequence

E infers a more regular distribution of its elements than asymptotic

density, arithmetic progressions being now involved.

As a consequence of this fact, we shall see that the conjecture

(E,II), when density is substituted by the Banach-Buck measure, be-

comes a true sentence. In fact:

([Sk4]) If f : N1 → R is additive and f(ui+1) − f(ui) → 0 as i → ∞

along a sequence {ui} ( i ∈ N) having Banach-Buck measure 1, then

f(n) = c logn, n ≥ 1 (c = f(2)/ log 2).

The proof will use the Corollary in 4.a). In fact, according to

the above property (M2), {ui} turns out to have asymptotic den-

sity 1 ; moreover, for fixed ε > 0 there exist A,B ∈ D0 such that

A
◦

⊂{ui}
◦

⊂B ⊂ N1 and λ(B)−λ(A) < ε. Writing A =: {ar} (r ∈ N) with

ar < ar+1, we get ar+1 − ar = O(1), whence also ui+1 −ui = O(1);

then, by application of the Corollary the theorem is proved.

Obviously measurability of {ui} is a rather strong assumption;

however we shall see in the next section how a further way of ap-

proaching the problem allows us to get the logarithmic form even in

some situations of non-measurability of {ui}.
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4.c) A further approach to density of sequences involves topology.

It will allow us to restrict the class of sequences of density 1 for

which the Conjecture (E,II) is still an open problem.

In N we may define as a neighbourhood of the natural number a

every arithmetical progression {a+ kd} (k ∈ N). On this ground, we

may consider “everywhere dense” and “nowhere dense” sequences in

N and study possible connections between such topological density

properties and the asymptotic densities 1 and 0 of sequences ([Sk3]),

which are involved in the conjecture.

We just present here the properties which will be of use later:

(T1) Every U={ui} having asymptotic density 1 is everywhere dense

in N;

(T2) If the sequence E is everywhere dense in N then its outer mea-

sure µ∗(E) is 1;

(T3) If Z ⊂ N has asymptotic density 0, then each of the follow-

ing situations may occur: Z nowhere dense; Z neither nowhere nor

everywhere dense; Z everywhere dense.

As an example of the last, and less natural, situation, let us consider

Z =

∞
⋃

k=1

Jk where Jk =
{

n ∈ N : 2k < n ≤ 2k + k
}

.

Since every arithmetical progression meets both Z and N\Z infinitely

many times, every natural m is a boundary point of Z and of N \ Z ;

then N is the closure of both Z and N \ Z .

Moreover every such sequence Z with density 0 and everywhere

dense in N is not measurable, since, according to (T2), both Z and

N \ Z have outer measure 1.

This proves also that

There exist sequences with asymptotic density 1 which are not

Banach-Buck measurable.

In this frame we can state some characterizations of the loga-

rithm in the spirit of the Erdős conjecture and also derive an in-

teresting information about sequences with density 0 which may be
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neglected when the condition f(n + 1) − f(n) → 0 has to be weak-

ened. A result which is proved by resort to topological properties of

the sequences involved in the limit condition, is the following one:

([Sk4]) Let U = {ui} ⊂ N be an increasing sequence with density 1

such that µ∗(N \ U) < 1. If f : N1 → R is additive and f(ui+1) −

f(ui) → 0 for i → ∞, then f(n) = c logn, n ≥ 1 (c = f(2)/ log 2).

In fact, the assumptions imply that the sequence N \U cannot be

everywhere dense; then U has at least one inner point and therefore

it contains an arithmetic progression; this implies ui+1 −ui = O(1)

and the Corollary in 4.a) proves the theorem.

In conclusion, on the ground of the different points of view above

mentioned, we can assert that the Conjecture (E, II) is still an open

problem in the unique case when the increasing sequence U with

asymptotic density 1, involved in the limit condition, has both the

properties

i) µ∗(N \U) = 1, then U is non measurable, since µ∗(U) = 1;

ii) l.u.b. (ui+1 −ui) = +∞.

Of course sequences of this kind have also to be considered in order

to construct a counterexample ( if any) to disprove the conjecture.

5 Restricted additivity

According to the formulation of the problem by Erdős, we have as-

sumed till now that the arithmetic function f is defined and addi-

tive all over N1 and satisfies the additional condition along a sub-

sequence of N1. But if we frame the additivity relation f(mn) =

f(m)+f(n) in the context of functional equations, we may get some

suggestions from recent branches in such theory, like that of “stabil-

ity”, as we did in section 1, or that of the equations “on a restricted

domain”. Our aim is now to consider arithmetic functions f having

a given subsequence {ui} ⊂ N1 as domain, in order to formulate

a suitable additional “if and only if” condition so that f can be the

restriction of the function c logn or of c logn+O(1) over its domain.
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Let us notice that the property ui+1 − ui = O(1) will play again

an important role.

First, we shall report the more general result in this context, con-

cerning the uniform approximation of f(t) on its domain W ⊂ N1

by the function c log t. The sequence W will be defined in connec-

tion with a given increasing sequence U = {ui} ⊂ N1 satisfying the

following properties:

(R1) ui+1 −ui = O(1)

(R2) ui ∈ U1 =⇒ u2
i ∈ U1,

then, let us define

(R3) U11 :=
{

uiuj : ui, uj ∈ U1

}

(R4) W := U1 ∪U11 = {wk} , wk < wk+1.

It is easy to find examples of sequences U1 fulfilling (R1) and (R2)

such that U1 ∪U11 is strictly contained in N1.

The theorem reads as follows:

([Sk8]) The arithmetical function f : W → R, with W = U1 ∪ U11 =

{wk} such that (R1), (R2), (R3), (R4) are satisfied, has the form

f(t) = c log t +O(1) , for t ∈ W

if and only if the following conditions are both fulfilled:

(R5) |f(uiuj) − f(ui) − f(uj)| ≤ σ for some real σ ≥ 0 and every

(ui, uj) ∈ U1 ×U1;

(R6) limk→∞

(

lim infn→∞ 2−n
∣

∣

∣f(w2n

k+1)− f(w
2n

k )
∣

∣

∣

)

= 0.

In order to prove this result many tools have to be used: a prelimi-

nary lemma, which gives a stability result for arithmetic functions on

a restricted domain and is proved by adapting the outline of the clas-

sical Hyers proof ([Hy]) through the definition of auxiliary functions

and their suitable extensions; the central part of the proof consists

in calculating f(wk) by a modified “direct” technique like that men-

tioned in 4.a). It has to be noticed that an important role is played

by the condition ui+1 −ui = O(1).
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Now, assuming in particular σ = 0 in the above statement we get

the corollary:

([Sk7]) The arithmetic function f : W → R, withW = U1∪U11 = {wk}

satisfying (R1), (R3), (R4), has the form

f(t) = c log t for t ∈W

if and only if the following conditions are both fulfilled

(R5)0 f(uiuj) = f(ui)+ f(uj) for every (ui, uj) ∈ U1 ×U1;

(R6)0 f(wk+1)− f(wk) → 0 for k → ∞ .

In spite of likeness between this proposition and Conjecture (E,II),

the underlying problem is not exactly the same.

Lastly, in case of U1 ∪ U11 = N1, this corollary becomes the clas-

sical theorem by Erdős.

6 Asymptotic additivity

We shall present here a last variant of the Erdős problem, referring to

asymptotically additive functions, namely to the functions f : N1 → R

such that

f(mn)− f(m)− f(n) → 0 (6.1)

is satisfied as m,n → ∞. It has to be noticed that when (6.1) is sat-

isfied as the product mn goes to infinity, then it is equivalent to

the equation f(mn) = f(m) + f(n): this can be easily proved, for

instance, by defining ϕ(m,n) = f(mn) − f(m) − f(n) and writ-

ing ϕ(pkmn), for a fixed prime p, in two different ways, by use

of pkmn = pk.mn = pkm.n. By comparison one gets ϕ(m,n) =

ϕ(pkm,n)+ϕ(pk,m)−ϕ(pk,mn)→0 as k→∞, whence ϕ(m,n)=

0.

On the contrary, if (6.1) is satisfied as m → ∞ and n → ∞, it is

not the same as additivity: this is shown, for instance, by f(n) =

log(n+ 1).

Asymptotically additive functions are usefully studied in the set-

ting of the theory of stability on a resticted domain, a very recent
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branch of research ([Sk5]). By a suitable choice of the unbounded

domain in N, we can prove the following proposition:

([Sk7]) The function f : N1 → R satisfies (6.1) as m → ∞ and n → ∞

if and only if there exists a completely additive function A : N1 → R

such that

f(n) = A(n)+ o(1) for n → ∞ .

This allows us to close our talk with the following consequent

result, which seems to be quite in harmony with the original Erdős

propositions:

([Sk7]) The function f : N1 → R satisfies the asymptotic conditions

f(mn)− f(m)− f(n) → 0 for m → ∞ and n → ∞

f(n+ 1)− f(n) → 0 for n → ∞

if and only if

f(n) = c logn+ o(1) as n → ∞ , c = lim
k→∞

f
(

22k
)

/

log
(

22k
)

.
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[Sk5] F. Skof, Proprietà locali e approssimazione di operatori, Rend.

Sem. Mat. Fis. Milano, 53 (1983) 113–129.

[Sk6] F. Skof, Sulle funzioni aritmetiche δ−additive, Atti Accad. Sci.

Torino, 122 (1988) 297–306.

[Sk7] F. Skof, On existence of approximately additive extensions

or quasi-extensions of δ-additive functions on unbounded re-

stricted domains, Commun. at the 34th ISFE, Wisla-Jawornik,

Poland (1996).

[Sk8] F. Skof, Arithmetic functions close to the logarithm on some

restricted domains, Commun. at the 36th ISFE, Brno (1998).

[Wi1] E. Wirsing, A characterization of logn as an additive arith-

metic function, Symp. Math. IV, 45–57, Academic Press, Lon-

don/NewYork, 1970.

[Wi2] E. Wirsing, Recent progress in analytic number theory, Vol. 2,

231–280, Academic Press, London, 1981.


