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1 Introduction

A group G is said to be orderable (an O-group) if there exists a full

order relation ≤ on the set G such that a ≤ b implies xay ≤ xby , for

all a,b,x,y ∈ G, i.e. the order on G is compatible with the product

of G . For example an infinite cyclic group is an O-group.

A subgroup H of an O-group G can be ordered by taking the

restriction to H of any order on G and the cartesian product C =

Crα∈ΩGα of the orderable groups Gα can be ordered with the lexico-

graphic order. Hence the class of O-groups is {S, C , D, R}-closed.
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Furthermore this class is L-closed (i.e. a locally O-group is an O-

group) by a result of B. H. Neumann (see [27]) and w-closed (i.e. the

restricted wreath product of two O-groups is an O-group), as B. H.

Neumann and Fuchs and Sasiada proved in [26] and in [11].

Therefore a torsion-free abelian group is an O-group, and it is

possible to show that a torsion-free nilpotent group is an O-group

(see [2], theorem 2.2.4).

In a quite different direction A. Vinogradov proved in [34] that a

free product of two O-groups is an O-group.

If G is a group with a full order ≤ compatible with the product, we

will say that (G,≤) is an ordered group; we will denote the identity

element by e and, if a ∈ G, we will say that a is positive if a > e,

negative if a < e.

If a is positive, then we have an > e, for any n ∈ N, thus an O-

group is always torsion-free. Therefore the class of O-groups is not

closed under quotients. Furthermore this class is not closed under

extensions, for instance the semidirect product 〈a〉 Ï 〈b〉 of two in-

finite cyclic groups, with ab = a−1, can never be an O-group, since it

contains some element other than e that is conjugate to its inverse.

For the same reason, the unrestricted wreath product of two non-

trivial O-groups can never be an O-group.

A subgroup C of an ordered group (G,≤) is said to be convex

under ≤ if x ∈ C , whenever e ≤ x ≤ c, for some c ∈ C .

Obviously {e} and G are convex subgroups of G, and, if C is a

convex subgroup, then every conjugate Cg of C is convex. It is clear

from the definition that all convex subgroups of an ordered group

form, by inclusion, a totally ordered set, closed under intersection

and union.

A relatively convex subgroup of an O-group G is, by definition, a

subgroup convex under some order on G.

Relatively convex subgroups play important roles, for example

the quotient G/N of an O-group G is an O-group if and only if N is a

normal relatively convex subgroup of G.

Orders on a group G in which {e} and G are the only convex

subgroups are very well-known. They are exactly the archimedean

orders, where an order on G is called an archimedean order if and

only if, for any a,b ∈ G, a > e, b > e, there exists a positive integer
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n such that b < an . By a result of O. Hölder (see [15]) an order

on G is an archimedean order if and only if G is order-isomorphic

to a subgroup of the additive group of the real numbers under the

natural order.

If C and D are convex subgroups of an ordered group G, C < D,

and there is not a convex subgroup H of G such that C < H < D, we

call C → D a convex jump in G.

It is easy to prove that, if C → D is a convex jump in an ordered

group G, then C /D and D/C is order-isomorphic to a subgroup of

the additive group of the real numbers.

A groupG is called right-orderable (or an RO-group) if there exists

a full order relation on the set G such that a ≤ b implies ac ≤ bc for

all a, b, c in G. As before we use the term “right ordered group” to

denote a group with an order that satisfies the previous property.

Obviously an O-group is an RO-group and an abelian RO-group is

an O-group. The class of RO-groups is closed under operations S, L,

D, C , R, W . But this class is also closed under extensions (see [2],

theorem 7.3.2).

For instance the semidirect product 〈a〉Ï〈b〉 of two infinite cyclic

groups with ab = a−1 is an RO-group which is not an O-group.

If (G,≤) is a right ordered group we define a subgroup C of G to

be convex if, for every g ∈ G, c ∈ C , e ≤ g ≤ c implies g ∈ C . If

C < D are convex subgroups, we say that C → D is a convex jump if

there is no proper convex subgroup of G between C and D.

As with ordered groups, the set of all convex subgroups of a right

ordered group (G,≤) forms a chain, but it is not anymore true that

C /D and D/C is abelian, if C → D is a convex jump (see [20] for an

example).

A right order ≤ is called a Conrad order if C / D and D/C is

archimedean, for any convex jump C → D. A group G is called a

Conrad group if there exists a Conrad order on G. Obviously an

O-group is a Conrad group; Conrad orders have been studied by P.

Conrad in [9]. In this paper he proved that a right order is a Conrad

order if and only if for each pair of positive elements a, b there exists

a positive integer n such that anb > a.

It is not difficult to show that if G is a Conrad group, then ev-

ery finitely generated non-trivial subgroup of G has an infinite cyclic
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factor group, i.e. G is locally indicable. Conversely Burns and Hale

proved in [5] that in a locally indicable group it is possible to define

a right order which is a Conrad order.

It has been an open question for some time whether the class of

right ordered groups and the class of locally indicable groups coin-

cide. Then G. Bergman in [4] and V. M. Tararin in [32] constructed

right ordered groups that are not locally indicable.

However for some classes of groups the two concepts are equiv-

alent: in [7], generalizing a previous result by A. H. Rhemtulla, I. M.

Chiswell and P. Kropholler proved that a finite extension of a solvable

group is right orderable if and only if it is locally indicable. This re-

sult has been extended to the class of periodic extensions of radical

groups by V.M. Tararin in [32].

Ordered and right ordered groups have been considered by many

authors (see for instance [2, 4, 10, 16, 19, 20]).

Here we look at some particular classes of ordered and right or-

dered groups. We survey some recent results about ordered and

right ordered groups satisfying a non-trivial semigroup law, we show

that an O-group with this property is nilpotent, while an RO-group

in this class is locally indicable. Furthemore we survey results about

ordered and right ordered n-Engel groups. We show that an n-Engel

O-group is nilpotent (see [16]), and that an RO 4-Engel group satis-

fies a non-trivial semigroup law and then it is nilpotent. We point

out that it is still an open question whether an RO n-Engel group is

nilpotent. Finally we recall some open questions about ordered and

right ordered groups satisfying some finiteness conditions.

2 Orderable and right orderable groups satisfying a non-

trivial semigroup law

Let F = F(x1, x2, ..., xn) be the free group on the letters x1, x2,..., xn.

A word u = u(x1, x2, ..., xn) is called a positive word if it does

not involve x−1
i , for any i ∈ {1,2, ..., n}.

If u = u(x1, x2, ..., xn), v = v(x1, x2, ..., xn) ∈ F , a law u = v

is said to be a semigroup law (or a positive law) if u, v are positive

words.
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Obviously every group of finite exponent satisfies a non-trivial

positive law, and every abelian group satisfies the positive law

xy = yx.

B.H. Neumann and T. Taylor in [28] and A.I. Mal’cev in [25] proved

that a nilpotent group of class c satisfies the positive law

uc(x,y) = vc(x,y) ,

where the words ui(x,y), vi(x,y) are recursively defined by

u0(x,y) = x

v0(x,y) = y

ui+1(x,y) = ui(x,y)vi(x,y)

vi+1(x,y) = vi(x,y)ui(x,y) .

It follows that a group which is a finite exponent extension of a

nilpotent group satisfies a non-trivial semigroup law.

It is easy to prove that if a group G satisfies a non-trivial semi-

group law, then G satisfies a non-trivial semigroup law in two letters.

Hence groups that satisfy a non-trivial semigroup law belong to the

class of groups which contain no free semigroups in two generators.

We will denote the latter class by
�

. Thus a group G ∈
�

if, and only

if, for every pair (a, b) of elements of G, there is a relation of the

form

ar1bs1 ....arjbsj = bm1an1 ....bmkank , (2.1)

where ri, si, mi, ni are all non-negative and r1, m1 are positive in-

tegers. We call j + k the width of the relation (2.1) and the sum

r1 + ...+ rj +n1 + ...+nk the exponent of a in the relation.

Groups with a non-trivial semigroup law and, more generally,

groups in the class
�

have been studied by many authors. By the

result of Mal’cev’s, every group which is a periodic extension of a

locally nilpotent group is in the class
�
. In [30] J. Rosenblatt proved

that, conversely, a finitely generated soluble group in
�

is nilpotent-

by-finite. The same result for finitely generated soluble groups that

satisfy a non-trivial semigroup law had been proved in [21] by J.A.

Lewin and T. Lewin. A. Shalev proved in [31] that every finitely
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generated residually finite group with a non-trivial semigroup law

is nilpotent-by-finite. More generally, Y. Kim and A. H. Rhemtulla

proved in [17] that if G is a locally graded group in
�

and there is a

bound n such that for all ordered pairs of elements of G there is a

relation (2.1) with expa+ expb = n, then G is (locally) nilpotent-by-

finite. We point out that in general a group in
�

is not locally soluble-

by-finite, as has been proved by A. Yu. Ol’shanski and A. Storozev in

[29]. More results about groups satisfying a positive law have been

recently obtained by R. Burns, O. Macedonska and Y. Medvedev in [6].

We will show that O-groups satisfying a semigroup law behave

like soluble groups, and that RO-groups in
�

are locally indicable.

First we remark that

Lemma 2.1 Let (G,≤) be an ordered group, a,b ∈ G, n ∈ Z. Then

i. from [an, b] = 1, it follows [a, b] = 1,

ii. if G is nilpotent-by-finite, then G is nilpotent.

Proof.

i. Assume, for example b−1ab>a. Then (b−1ab)2 > a(b−1ab) >

a2, and, by induction, (b−1ab)s > as , for every positive integer

s, a contradiction.

ii. Let N be a nilpotent normal subgroup of finite index, say t, in G

and write ζi(G) (ζi(N)) the i-centre of G (of N). We show that

ζk(N) = ζk(G), by induction on k . Assume ζk(N) = ζk(G);

then for any g ∈ G, a ∈ ζk+1(N), we have [a,gt]ζk(G) =

ζk(G). But G/ζk(G) is an ordered group (see [2] , Theorem

2.2.4), hence [a,g] ∈ ζk(G), by (i), and a ∈ ζk+1(G). There-

fore G/ζc(G) is finite, for some integer c, and G = ζc(G), since

G/ζc(G) is torsion-free.

Now we will show that a finitely generated O-group satisfying a

semigroup law is nilpotent. More generally, we show (see [22])

Theorem 2.1 Let G be an O-group. Suppose that there is a bound n

such that for all pairs (a, b) of elements of G there is a relation (2.1)

whose width is at most n. Then G is nilpotent of class bounded by a

function of n.
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In order to prove Theorem 2.1, we need the following key Lemma

Lemma 2.2 If G is a group with no free non-abelian subsemigroups,

then, for all a,b in G, the subgroup 〈a〉〈b〉 is finitely generated.

Proof. See [22], Lemma 1.

Groups G in which 〈a〉〈b〉 is finitely generated for any a, b in

G are called constrained, and have been studied by Y. K. Kim e A.

Rhemtulla in [18], where they proved the following useful result

Lemma 2.3 Let G be a finitely generated restrained group. If H / G

and G/H is cyclic, then H is finitely generated. In particular if G is

soluble, then G is polycyclic.

From Lemma 2.3 it follows easily the following

Lemma 2.4 Let C be a convex subgroup of an ordered group (G,≤).

If G ∈
�
, then C is normal in G.

Proof. Suppose not. Then either C < Cx or Cx < C , for some x ∈

G, since the convex subgroups form a chain. Assume, for example,

C < Cx .

Then there exists ax ∈ Cx\C , where a ∈ C .

By Lemma 2.2, 〈a〉〈x〉 = 〈a,a±x , . . . , a±x
n−1
〉, for some n, thus

〈a〉〈x〉 ⊆ Cx
n−1

, ax
n
∈ Cx

n−1
, and ax ∈ C , a contradiction.

Now we are able to prove Theorem 2.1.

Proof of Theorem 2.1. Let (G,≤) be an ordered group. We may

assume G finitely generated. Then every non-trivial finitely generated

convex subgroup of G contains a proper maximal convex subgroup.

Put K := {C / G|C convex, G/C nilpotent}. Then G/K is a resid-

ually (torsion-free nilpotent) group. By theorem 3 of [22], G/K is

nilpotent of bounded class. If K = 1, we have the result. Assume

K 6= 1. Then K is finitely generated, by Lemma 2.3. Thus there ex-

ists a maximal convex subgroup D 6= 1, D < K. Then D / G, by

Lemma 2.4. Moreover K/D is a jump in the set of all convex sub-

groups of G, hence K/D is an abelian torsion-free group. Then G/D

is soluble and G/D is a nilpotent torsion-free group, a contradiction

since D < K.
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The answer to the following question is still unknown:

Problem 1 Is a finitely generated O-group with no free non-abelian

subsemigroup nilpotent?

Arguing as in the proof of Theorem 2.1, we can reduce the prob-

lem to residually (torsion-free nilpotent) groups. Thus Problem 1

reduces to

Problem 2 Let G be a finitely generated torsion-free group with no

free non-abelian subsemigroup. Is G nilpotent?

The structure of an RO-group can be quite complicated, even if G

has no free non-abelian subsemigroup.

Example. Let p be a prime, F be the free group of rank two and F/R

be isomorphic to the Gupta-Sidki p-group constructed in [14]. Then

F/R is an infinite residually finite p-group. Then F/R′ is a residually

(torsion-free solvable) group, and a residually (finite p-group). For all

pairs (a, b) of elements in G, there is a relation (2.1) with j = k = 1,

but G is not nilpotent-by-finite.

We have the following

Theorem 2.2 Let G be an RO-group. If G has no free non abelian

subsemigroup, then G is locally indicable.

Proof. Let ≤ be a right order in G, and let a, b be positive elements

in G. We show that a nb > a, for some positive integer n, thus ≤ is a

Conrad order and the result follows. If b > a, then a nb > b > a, for

all positive integers n, so assume a > b. By hypothesis

ar1bs1 ...arjbsj = bm1an1 ...bmkank , (2.1)

where ri, si, mi, ni are all non-negative and sj , nk are positive.

If a > amb, for all m = 0, then ar1bs1 = (ar1b)bs1−1 < abs1−1 <

ab < a. Continuing in this way, we get ar1bs1 ...arjbsj < a. On the

other side, bm1an1 ...bmk ≥ e, so that bm1an1 ...bmkank ≥ a, and we

get a contradiction.
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Theorem 2.2, togheter with Theorem 3 of [22], gives the following

Theorem 2.3 If G is an RO-group and there is a bound n such that

for all ordered pairs of elements of G there is a relation (2.1) with

exp(a) ≤ n, then G is locally nilpotent-by-finite.

The following recent result (see [24]) generalizes Theorem 2.2.

Theorem 2.4 Let G be an RO-group and assume that there exists an

ascending series of normal subgroups of G with each factor with no

free non-abelian subsemigroup. Then G is locally indicable.

3 Orderable and right orderable k-Engel groups.

Let G be a group, a,b ∈ G, and n ≥ 0 be an integer. We define the

commutator [a,n b] by induction, by putting

[a,0 b] = a , [a,i+1 b] = [[a,i b], b] .

G is said to be a k-Engel group if [a,k b] = 1, for all a, b in G.

Obviously 1-Engel groups are the abelian ones, and every nilpo-

tent group of class
�

is a
�
-Engel group. Conversely, every finite

k-Engel group is nilpotent, by a result of Zorn (see [37]). There ex-

ist infinite 3-Engel groups with trivial centre, but it is still an open

question whether a k-Engel group is locally nilpotent. K. Gruen-

berg proved in [12] that a soluble k-Engel group is locally nilpotent

and in [13] a similar result for linear k-Engel groups. J. Wilson in

[34] proved that a residually finite k-Engel group is locally nilpotent,

and Y. Kim and A. Rhemtulla extended this result to locally graded

groups in [17].

Ordered k-Engel groups have been studied by Y. Kim and A. Rhe-

mtulla in [16]. They proved the following

Theorem 3.1 A k-Engel O-group is nilpotent.

We give a proof of Theorem 3.1 very similar to the proof of The-

orem 2.1.
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First of all we point out that

Lemma 3.1 Let G be a k-Engel group. Then the subgroup 〈a〉〈b〉 can

be generated with k elements, for any a, b in G.

Proof. From [a,k b] = 1, we get easily 〈a〈b〉〉 = 〈a,ab, ..., ab
k−1
〉.

From Lemma 3.1, arguing as in the proof of Lemma 2.4 we get

Lemma 3.2 Let C be a convex subgroup of an ordered group (G,≤). If

G is a k-Engel group, then C is normal in G.

Now we are able to prove Theorem 3.1.

Proof of Theorem 3.1. Let (G,≤) be an ordered group. By a re-

sult of Zel’manov ([37]) a torsion-free nilpotent k−Engel group has

nilpotency class bounded by a function of k. In particular a locally

nilpotent torsion-free k-Engel group is nilpotent. Hence we can as-

sume G finitely generated.

Let K := {C / G|C convex, G/C nilpotent}. Then G/K is a resid-

ually (torsion-free nilpotent) group, then by Zel’manov’s result, G/K

is nilpotent of bounded class. If K = 1, we have the result. Assume

K 6= 1. Then K is finitely generated, by Lemma 2.3. Thus there ex-

ists a maximal convex subgroup D 6= 1, D < K. Then D / G, by

Lemma 3.2. Moreover K → D is a jump in the set of all convex sub-

groups of G, hence K/D is an abelian torsion-free group. Then G/D

is soluble and G/D is a nilpotent torsion-free group, a contradiction

since D < K.

It is still an open question whether a right ordered k-Engel group

is nilpotent. We have the following partial result (see [23])

Theorem 3.2 A 4-Engel right ordered group is nilpotent.

Proof. Let G be a 4-Engel group. Then 〈a,ab〉 is nilpotent of class

≤ 4, for any a, b in G, by a result of M. Vaughan-Lee and G.Traustason

(see [34]). Then u4(a,a
b) = v4(a,a

b), where u4(x,y) and v4(x,y)

are the Mal’cev’s words defined before. Then, for any g, h in G ,

we have u4(gh,hg) = v4(gh,hg), since gh and hg are conjugate.

Then G satisfies a non-trivial semigroup identity and G is nilpotent

by Theorem 2.2.
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Arguing as in the proof of Theorem 3.2 it is possible to show

that a k-Engel group is nilpotent if it satisfies a non-trivial semigroup

identity.

Therefore the following

Problem 3 Is any right ordered k-Engel group nilpotent?

reduces to

Problem 4 Does every right ordered k-Engel group satisfy a non-

trivial semigroup identity?

It is also unknown the answer to the following

Problem 5 Is any right ordered k-Engel group locally indicable?

Lemmas 2.2 and 3.2 are crucial in the proofs of Theorems 2.1

and 3.1. Therefore it is natural to ask the following questions.

Problem 6 What is possible to say about constrained ordered and

right ordered groups?

More generally we may ask

Problem 7 Is any ordered group with the maximal condition on sub-

group solvable?
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