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1 Introduction

Recent work by N. Iwase [5] has vastly extended the scope of calcula-

tions that can be made concerning Lusternik-Schnirelmann category.

In particular, Iwase is able to settle a long standing question raised

by Ganea [2], prob.2). Moreover, the method may be used to treat

many cases that had been inaccessible. This paper is an exposition

of Iwase’s work as it pertains to the case X × ΣA with X having L.-S.

category 2.

This paper is based on a lecture delivered on July 8, 1998 in the

Seminario Matematica e Fisico di Milano. I thank Prof. Delfina Roux

for the opportunity to make this presentation.

2 Ganea’s Question

The original definition in [6] has undergone extensive reworking. We

shall start with the formulation most convenient for Ganea’s ques-

tion, taken from [2].



166 J. HARPER

Let (X,∗) be a space with a non-degenerate basepoint. Take E0 =

E0(X) to be the basepoint and p0 : E0 → X to be the inclusion. For

m ≥ 0 define spaces Fm = Fm(X) and Em+1 = Em+1(X) inductively

by means of the following pair of push-out and pull-back diagrams,

CFm Fm PX

Em+1 Em X .

� �

qm

�`m�

�

�

jm

�

pm

Here PX → X is the path space fibration over X. It does not matter

for this paper whether cones or suspensions are reduced, so to fix

ideas, we take unreduced cones with vertex at cone coordinate 0. The

map pm+1 : Em+1 → X extending pm is obtained by the universal

property for push-outs, using the composition

CFm
C`m
-→ CPX

e
-→ X ,

with e given by e(t, ξ) = ξ(t).

Following Ganea, we say that cat X ≤ n if and only if there is a

map

sn : X → En(X)

such that pn ◦ sn ' id. We write cat X = n for the minimum such

n, with n = ∞ if no such minimum exists. For spaces of the homo-

topy type of connected CW complexes, this characterization agrees

with the normalized versions of category, which is one less than the

original L.-S. formulation. The question raised by Ganea is whether

cat(X × Sn) = cat X + 1 .

Iwase shows by example that the answer is in the negative.

3 Elementary observations

We note that F0 = ΩX, E1 = ΣΩX and p1 : E1 → X is the evaluation

map. The fibration sequence

ΩX ∂m
-→ Fm

qm
-→ Em
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and the cofibration sequence

Fm
qm
-→ Em

jm
-→ Em+1

are natural for maps f : X → Y . The equations

pm = pm+1 ◦ jm , qm+1 ◦ im = jm ◦ qm and ∂m+1 = im ◦ ∂m

hold, where im : Fm → Fm+1 is defined by naturality for pull-backs.

Since the identity map on ΩX factors through Ωp1, it follows that

each boundary map

∂m : ΩX → Fm , m ≥ 1 (3.1)

is null-homotopic.

Next we recall two elementary facts about maps of pairs. Suppose

we have a homotopy commutative diagram

V Y

V ′ Y ′ .

�α

�

a

�

b

�

α′

Each homotopy H from bα to α′a induces a map of pairs for the

mapping cones

bH : (Cα, Y )→ (Cα′ , Y
′) ,

which extends b. Moreover, there is a homotopy commutative dia-

gram of NDR pairs

(CV,V) (Cα, Y )

(CV ′, V ′) (Cα′ , Y
′) ,

�

Ca

�α̂

�

bH

�

α̂′

(3.2)

with relative homeomorphisms along the horizontal lines.

Next, suppose we have a relative homeomorphism of NDR pairs

f : (X,A)→ (Y , B) ,
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where X is contractible to a point. Then the identity map of B ex-

tends to a homotopy equivalence of pairs

h : (Cf , B) → (Y , B) . (3.3)

To see this, we may use the relative homeomorphism f to place Y in

the following push-out diagram,

A B

X Y .

�

�

iA
�

�

f

Let L : CX → X be a contracting homotopy for X. We obtain h by the

universal property for push-outs

A B

A B

CA Cf

X Y ,

�

iA

�

�

�

�

��
��

����

�

�� �� �� ��

�

�
�

���

�
�

� � �
h

�

f

where L ◦ C(iA) : CA → X. Since (X,A) is an NDR-pair, the inclusion

A→ CA extends to a map X → CA. The compositions

X -→ CA
C(iA)
-→ CX

L
-→ X

and

CA
C(iA)
-→ CX

L
-→ X -→ CA

are both homotopic, rel A, to identity maps. Thus h is a homotopy

equivalence rel B.
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4 Category and products

We are concerned with calculations for the category of X × ΣA, es-

pecially where cat X = 2. For this low value some simplifications of

Iwase’s argument may be made. However, our treatment diminishes

the scope of Iwase’s approach.

We begin with no assumption on cat X and study a certain sub-

space W contained in

E2X × ΣA .

Take W = E2X × {∗} ∪ E1X × ΣA.

Proposition 4.1

(a) cat W ≤ 2

(b) There is a cofibration sequence up to homotopy

F1X ∗A -→ W
j
-→ E2X × ΣA ,

with j inducing a surjection on generalized homotopy groups

[V,−] where V is a suspension.

Proof. We have two pushout diagrams:

F1 × {∗} E1 × {∗}

CF1 × {∗} E2 × {∗}

�

� �

�

(4.1)

ΩX ∗A E1 ∨ ΣA

C(ΩX ∗A) E1 × ΣA ,

�w

� �

�

(4.2)
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where w is the generalized Whitehead product. On the other hand,

we may describeW as a push-out by means of the following diagram:

(E1 × {∗})∨ (E1 ∨ ΣA) E1 ∨ ΣA

(E2 × {∗})∨ (E1 × ΣA) W .

�

inclusion

�fold

�

�

(4.3)

Composing (4.3) with the one point union of (4.1) and (4.2) presents

W in a push-out diagram with a contractible space in one corner.

Hence

cat W ≤ cat(E1 ∨ ΣA)+ 1 = 2 .

For part (b), consider the product of the two relative homeomor-

phisms

(CF1, F1) (E2, E1)

(CA,A) (ΣA,∗) .

�

�

We obtain the relative homeomorphism (CF1 × CA,F1 ∗A) -→ (E2 ×

ΣA,W). Then (b) follows from (3.3). The clause asserting homotopy

surjectivity for j follows because W contains the subspace E1 ∨ ΣA
with this property.

Suppose X is obtained as a mapping cone Cα for α : V → Y and

we now assume that V is a suspension. Suppose cat Y = n − 1 ≥ 1

with structure map

sn−1 : Y → En−1Y .

Proposition 4.2 There is a map

H(α) : V -→ Fn−1Y ,

which is unique up to homotopy, such that the following diagram com-

mutes up to homotopy,

V Y

Fn−1X En−1X ,

�α

�

F(j)◦H(α)

�

E(j)◦sn−1

�

qn−1
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where j is the inclusion of Y in X. Moreover, there is sn : X → EnX

extending the composition E(j) ◦ sn−1 such that pn ◦ sn ' idX .

Proof. Let s : V → E1V → En−1V be the composition of a structure

map for V with the natural inclusion. The compositions of E(α) ◦ s

and sn−1 ◦ α with pn−1 are homotopic. Since V is a suspension, we

may write the difference

δ = sn−1 ◦α− E(α) ◦ s : V → En−1Y ,

and factor it through qn−1 by a map

H(α) : V → Fn−1Y, qn−1 ◦H(α) ' δ .

It follows from (3.1) that H(α) so defined is unique up to homotopy.

By construction, we have the equation

qn−1 ◦ F(j) ◦H(α) ' E(j) ◦ qn−1 ◦H(α) ' E(j) ◦δ ' E(j) ◦ sn−1 ◦α .

To obtain sn, we first observe that some map s′n extending E(j) ◦

sn−1 exists. The maps pn ◦ s′n and idX agree, up to homotopy, when

restricted to Y . Thus there is a map d : ΣV → X such that

idX = pn ◦ s
′
n + d .

We have observed (3.1) that pn−1 induces an epimorphism on gener-

alized homotopy groups, thus d may be factored through En−1X, we

use this factorization to change s′n to the required map sn, satisfying

the equations

jn−1 ◦ E(j) ◦ sn−1 = sn ◦ j

and

pn ◦ sn ' idχ .

Now we impose the restriction that n = 2 in Proposition 4.2. We

write H(α) resp. sn−1 for the compositions F(j) ◦H(α) resp. E(j) ◦

sn−1.

Proposition 4.3 If H(α)∗ idA is null-homotopic then cat (X×ΣA) ≤
2.
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Proof. First we combine Proposition 4.2 with (3.2) to obtain the

following homotopy commutative diagram:

(CV,V) (X,Y)

(CF1X,F1X) (E2X1E1X) .

�

CH(α)

�α̂

�

s2

�

q̂1

Next we take the product of the maps in this diagram with the

relative homeomorphism

(CA,A)→ (ΣA,∗) .

The product of relative homeomorphisms is a relative homeomor-

phism, hence we may apply (3.3) to the rows and obtain the following

diagram:

V ∗A X × {∗} ∪ Y × ΣA X × ΣA

F1X ∗A W E2X × ΣA ,

�

�

H(α)∗idA

�

� �

s2×id

� �

j

where the left square is homotopy commutative and the right square

is strictly commutative. Moreover, the rows are cofibration sequen-

ces, up to homotopy.

The hypothesis on H(α) yields a map

λ : X × ΣA -→ W

extending the middle vertical map. Moreover j ◦ λ and s2 × id agree

on the subspace

X × {∗} ∪ Y × ΣA .
Since j induces an epimorphism on generalized homotopy groups,

we may choose λ satisfying

j ◦ λ ' s2 × id

as well as extending the middle vertical map. Taking composition

with p2 × idΣA, we see that W dominates X × ΣA, completing the

proof.
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5 Iwase’s examples

We now turn to Iwase’s examples. These are of the formQ×Sn where

Q is a certain two-cell complex. Let α : Sr → Sm be a map of spheres

with mapping cone Q. It is well known [1] that cat Q = 1 if and only

if α is a co-H-map. Moreover, the issue whether α is a co-H-map is

settled by the Hilton-Hopf invariants in the formula ([9], p.533).

(ι1 + ι2) ◦α = ι1α
′ + ι2 ◦α

′′ +
∑
w ◦hw(α) ,

where w ranges over a Hall basis for the free Lie algebra on two

generators ι1, ι2 and

w = w(ι1, ι2) : Skm+1
-→ Sm ∨ Sm

is a Whitehead product of weight k. The map

hw : πrS
m
-→ πrS

km+1

is the Hilton-Hopf invariant associated to w .

If m is odd and α has order equal to a power of an odd prime p,

then

hw(α) = 0

provided the weight of w is not congruent to 1 mod p−1. Moreover,

if hw(α) = 0 for w of weight p, then all hw(α) = 0. These facts are

proved in [4]. The latter condition is equivalent to α belonging to the

kernel of the p-th James-Hopf invariant

Hp : ΩS2n+1 → ΩS2np+1 , m = 2n+ 1 .

We now look at some specific elements. Let α1 in π6S3 be an

essential element of order 3. Then α1 is a co-H-map for dimensional

reasons. The classical Hopf maps

η : S3
-→ S2 , σ : S15

-→ S8

have Hopf invariant one, with

(ι1 + ι2) ◦ η = ι1 ◦ η
′ + ι2 ◦ η

′′ + [ι1, ι2]
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and likewise for σ . Now consider the composition

β1 = η ◦α1 ◦ Σ3α1 : S9
-→ S2 ,

which is a composition of η with a co-H-map. This composition has

non-trivial Hilton-Hopf invariant

α1 ◦ Σ3α1 .

Hence Q1 = S2 ∪β1 e
10 has category = 2.

We shall consider two more similar examples. The Whitehead

product

[ι15, ι15] : S29
-→ S15

is both essential and a suspension. Thus the composition

β2 = σ ◦ [ι15, ι15]

has non-trivial Hilton-Hopf invariant equal to [ι15, ι15]. The essential

element of order p constructed by Moore [7]

wn : S2np−3
-→ S2n−1

for n ≥ 1 and p any odd prime has p-th James-Hopf invariant 0 for

dimensional reasons. The fact that this map is essential is the mod

p Hopf invariant one result. We take n even and consider

β3 = [ιn, ιn] ◦wn : S2np−3
-→ Sn .

This composition has non-trivial Hilton-Hopf invariant equal to 2wn.

Thus each of the mapping cones of βi, Qi i = 1,2,3 has category

= 2.

Theorem 5.1 (Iwase’s Theorem) cat (Qi × S
n) = 2 for n ≥ 2 and

i = 1,3. cat (Q2 × Sn) = 2 for n ≥ 1.

Proof. The fundamental theory developed by Ganea [3] provides

two homotopy commutative diagrams,

Sm Sm ∨ Sm

E1Q Q∨Q,

�

s1

�pinch

�

�

S
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with S inducing a monomorphism on generalized homotopy groups

and

Skm+1 Sm ∨ Sm Q∨Q

Skm+1 F1Q

�w �

�

w

�

S◦q1

for each Whitehead product w of weight k. Moreover, w is unique

up to homotopy. Hence we may express the total Hopf invariant of

α : Sr → Sm in terms of the Hilton-Hopf invariants and Whitehead

products

Sr -→
∨

w

Skm+1
-→ F1Q

H(α) =
⊕

w

(w ◦ hw(α)) .

For βi, i = 1,3, the double suspension of the total Hopf invariant is

0, while for β2, a single suspension achieves this. Hence Theorem 5.1

follows from Proposition 4.3.

We conclude this section by comparing Iwase’s argument with

Proposition 4.1, part (a). Iwase makes use of the tensor product fil-

tration ([8], p. 358) to obtain an analogue with EkX,Ek−1X in place

of E2X,E1X. An illustration of the wider scope for Iwase’s method

is provided by the following example. For α : Sr → Sm, we have the

following homotopy commutative diagrams:

(CSr , Sr ) (Q, Sm)

(CF1Q,F1(Q) (E2Q,E1Q) .

�

� �

�

As in the proof of Proposition 4.1, part (b), we may take the prod-

uct of this diagram with itself and extract a ladder of cofibration
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sequences. The result is a homotopy commutative diagram

Sr ∗ Sr Q× Sm ∪ Sm ×Q Q×Q

F1Q∗ F1Q E2Q× E1Q∪ E1Q× E2Q E2Q× E2Q,

�

�

H(α)∗H(α)
�

�

�

� �

with a factorization in the right hand square just as in that argument.

The tensor product filtration provides a map

E2Q× E1Q∪ E1Q× E2Q -→ E3(Q×Q)

and it follows that cat (Q×Q) ≤ 3, for the cases considered in Propo-

sition 5.1. This is an easy argument to make, but one unknown to this

writer, before Iwase’s work.
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les Problémes Variationnels Actualités Scientifiques et Indus-

trielles 188 Paris Hermann et Cie (1934).

[7] J. C. Moore, The double suspension and p-primary components

of the homotopy groups of spheres, Bol. Soc. Mat. Mexicana 2

(1956) 28–37.



CATEGORY AND PRODUCTS 177

[8] N.E. Steenrod, Milgram’s classifying space of a topological

group, Topology 7 (1968) 349–368.

[9] G. W. Whitehead, Elements of Homotopy Theory, Graduate

Texts in Math., Springer-Verlag (1978).


