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ABSTRACT. The classical problem of small denominators is

revisited in its historical development, ending with recent re-

sults on exponential stability.

1 Overview

In 1959 J.E. Littlewood published two papers [30, 31] devoted to the

stability of the Lagrangian equilateral equilibria of the problem of

three bodies. Le me quote the incipit of the first of those papers:

The configuration is one of two point masses S and J,

with mJ = µmS , and a body P of zero mass, the law of

attraction being the inverse square; the equilateral trian-

gle SJP , of side 1, rotates in equilibrium with unit angular

velocity about the centre of gravity of S and J. If µ < µ0,

where µ0 is the smaller root of µ0(1+µ0)
−2 = 1

27 , the con-

figuration is stable in the sense that a small disturbance

does not double in a few revolutions; there are real peri-

ods 2π/λ1, 2π/λ2 of ‘normal oscillations’.
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It is notorious that no non–trivial system whatever is

known to be stable (or bounded) over infinite time. It

is possible, however, to ask a less far–reaching question:

given that the initial disturbance in coordinates and veloc-

ities is of order ε, for how long a time, in terms of ε, can

we say the disturbance will remain of order ε? We shall

find that, for almost all values of µ < µ0, this time is as

long as exp
(
Aε−1/2| log ε|−3/4

)
, where A depends only on

µ; while not eternity, this is a considerable slice of it.

Following Littlewood, I will call exponential stability the property of

a system of being stable for a time that increases exponentially with

the inverse of a perturbation parameter ε.

The problem of the Lagrangian equilibria is just the simplest case

of the many stability problems that show up in the dynamics of a

many body system, like, e.g., the solar system. By the way, Little-

wood himself in a note to his papers says that he started his investi-

gations without being aware of previous works on the same subject,

e.g., by Whittaker and Birkhoff, that he discovered only later. On the

other hand, Littlewood’s work appeared while a significant progress

on the general subject of the dynamics of nearly integrable Hamil-

tonian systems was starting. A few years before Kolmogorov [25]

had announced his celebrated theorem on persistence of invariant

tori under small perturbations; his work was going to be extended a

few years later by Moser [37] and Arnold [1], thus originating what is

now called KAM theory. Furthermore, the phenomenon of exponen-

tial stability had already been investigated by Moser [36].

As a matter of fact, the problem of Lagrangian equilibria inves-

tigated by Littlewood is a very classical one, being related to the

problem of the so called small denominators that was well known

to people interested in the dynamics of the planetary system.

My purpose here is to illustrate in an informal manner the theory

of exponential stability and its relations with the problem of small

denominators. I will start with a simple example that illustrates how

the problem of small denominators arises, and how it is related to

the problem of secular terms that was a major one in the planetary

theories of the past century. Then I will follow the historical de-
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velopment of the theory. However, since this is not intended as an

historical note, I will emphasize only the steps that have shown to be

relevant, according to my limited experience and knowledge. Finally,

I will conclude by illustrating how the theory of exponential stability

may be pushed up to the point of giving results that are realistic for

a physical model. To this end, I will use as example the problem of

stability of the orbits of the Trojan asteroids that are close to the

equilateral solutions of Lagrange in the Sun–Jupiter system.

2 Model problems

I will consider three typical model problems that often appear in the

investigation of the dynamical behaviour of physical systems.

The first model is a harmonic oscillator of proper frequency λ

subjected to a nonlinear, time dependent forcing that is periodic with

frequency ν . The corresponding differential equation may be written

in the general form

ẍ + λ2x = ψ0(νt)+ xψ1(νt)+x2ψ2(νt)+ · · ·
ψj(νt) = ψj(νt + 2π) , j = 0,1, . . . (2.1)

with x ∈ R and the functions ψj : T → R will be assumed to be

real analytic. This model has been investigated in particular by Lind-

stedt [27, 28, 29], who introduced his method for constructing so-

lutions with given frequencies. I will discuss this method in some

detail in the next section, making reference to the particular case of

the Duffing equation

ẍ + x = ε(cos νt + x3) , (2.2)

where ε is a (small) perturbation parameter. This is perhaps the sim-

plest example of a non–integrable system exhibiting all problems due

to the small denominators. Remark that forgetting the periodic forc-

ing cos(νt) the resulting system may be integrated with elementary

methods, being just a nonlinear oscillator; similarly, forgetting the

cubic term x3 one obtains a forced linear oscillator, which is trivially

integrable, too.
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The second model is a system of canonical differential equations

in the neighborhood of an elliptic equilibrium point. In general the

Hamiltonian may be given the form of a system of n harmonic oscil-

lators with a nonlinear perturbation, namely

H(x,y) = 1

2

n∑

l=1

ωl
(
x2
l +y2

l

)
+H3(x,y)+H4(x,y)+ · · · (2.3)

where (x,y) ∈ R2n are the canonically conjugated variables,ω ∈ Rn
is the vector of frequencies (that are assumed to be non vanishing),

and Hs(x,y) for s > 2 is a homogeneous polynomial of degree s

in (x,y). The problem of the Lagrangian equilibria investigated by

Littlewood may be given this form. It will be useful to rewrite the

Hamiltonian (2.3) in action–angle variables (p, q) ∈ [0,∞)n × Tn, in-

troduced via the canonical transformation

xj =
√

2pj cosqj , yj =
√

2pj sinqj . (2.4)

The Hamiltonian then reads

H(p,q) =
n∑

l=1

ωlpl +H3(p
1/2, q)+H4(p

1/2, q)+ · · · (2.5)

where Hs turns out to be a trigonometric polynomial of degree s in

the angles q.

The third problem is a canonical system of differential equations

with Hamiltonian

H(p,q, ε) = h(p)+ εf (p, q, ε) , (2.6)

where (p, q) ∈ G×Tn are action angle variables, G being an open set,

and ε is a perturbation parameter. The functions h(p) and f(p, q, ε)

are assumed to be real analytic functions of (p, q, ε) for ε in a neigh-

borhood of the origin. This problem has been called by Poincaré le

problème général de la dynamique ([42], tome I, chap. I, § 13). In-

deed, it was known from a long time that the Hamiltonian of some

interesting systems that are integrable in Liouville’s sense∗ may be

∗That is, the system possesses n independent first integrals that are in involu-

tion. According to Liouville’s theorem the system may be integrated by quadra-

tures.
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written in action–angle variables p,q as a function h(p) indepen-

dent of the angles. Classical examples are the Keplerian problem,

the Hamiltonian of the solar system when the mutual interaction of

the planets is neglected and the rigid body with a fixed point. The

recent theorems of Arnold and Jost state that action–angle variables

may be introduced for an integrable Hamiltonian system under quite

general conditions.

The dynamics of the integrable system with H = h(p) is quite

simple. The canonical equations are

q̇j =
∂h

∂pj
(p) =:ωj(p) , ṗj = 0 , j = 1, . . . , n . (2.7)

Denoting by p(0), q(0) the initial point for t = 0 the trivial solution is

q(t) = q(0) +ω
(
p(0)

)
t , p(t) = p(0) . (2.8)

Hence the orbits lie on invariant tori Tn parameterized by the actions

p. The system (2.2) for ε = 0 and the system (2.3) forH3 = H4 = . . . =
0 are of this form.

3 The problem of small denominators

I will illustrate the problem by making reference to the simple sys-

tem (2.2). However, the discussion below applies with straightfor-

ward modifications to the cases of the equation (2.1) and of the

Hamiltonian system (2.3). The more general problem of the Hamilto-

nian system (2.6) requires some different setting in order the method

be applicable. This is widely discussed by Poincaré in [42], tome II,

chap. IX.

In view of the fact that for ε = 0 the system (2.2) is trivially inte-

grable, a natural attempt is to look for a solution as a power expan-

sion in the small parameter ε, namely

x(t) = x0(t)+ εx1(t)+ ε2x2(t)+ · · · , (3.1)

where the functions x0(t) , x1(t) , x2(t) , . . . are the unknown func-

tions to be determined. By substitution in eq. (2.2) and by compari-

son of coefficients of the same power of ε we get the infinite system
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of equations

ẍ0 + x0 = 0 ,

ẍ1 + x1 = cos(νt)+ x3
0 ,

. . . (3.2)

ẍs + xs = ψs(x0, . . . , xs−1) ,

. . .

where ψs is a known function of x0, . . . , xs−1 only (actually a third

degree polynomial in our case). We may attempt at solving this in-

finite system recursively. Forgetting an unessential initial phase, a

solution of the equation for x0 is x0(t) = a cos t, where a is the am-

plitude of the unperturbed oscillation, an arbitrary parameter to be

determined by the initial conditions. Replacing the expression above

of x0(t) in the r.h.s. of the equation for x1(t) we get the non homo-

geneous linear equation of a forced oscillator

ẍ1 + x1 = cos(νt)+ a
3

4
cos(3t)+ 3a3

4
cos t .

The solution is

x1(t) =
1

1− ν2
cos(νt)− a

3

32
cos(3t)+ a

3

8
t sin t ;

we do not need to add the arbitrary solution of the homogeneous

equation. Proceeding the same way, we easily see that the r.h.s. of the

equation for xs will be a known trigonometric polynomial in t with

coefficients that are polynomials in t. Terms that have coefficients

t , t2 , . . . are traditionally named secular terms, because in the case

of the planetary motions they correspond to a slow drift, e.g., of

the semi-major axes or of the eccentricities of the orbits; the effect

of such a drift is a deviation from the simple Keplerian motion on

elliptic orbits, and may be observed by collecting data over a few

centuries. The appearance of secular terms in the solutions raises a

number of problems.

A first problem concerns the stability of the motion. For instance,

suppose that the eccentricity of the Earth’s orbits is really subjected

to an uniform secular drift; then it could, e.g, increase so as to take
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a value that is significantly larger than the current one, thus making

the Earth to approach the Sun quite closely when it reaches the peri-

helion of the orbit. This would be incompatible with the existence of

life on the Earth. Similarly, a uniform drift of the eccentricities and

semi-major axes of all planets could cause two planets to collide, or

one planet to escape from the solar system. Remark that this could

happen in a time that is quite short with respect to the estimated age

of the solar system. Thus, it seems likely to expect that the contri-

butions of the secular terms do compensate each other, so that the

overall effect could be bounded.

A second problem is that the solution constructed above is only

local in time. That is, for a fixed ε the series is expected in general

to be convergent only for t small enough; hence, the solution would

be valid only for a quite short time, thus making the problem, e.g., of

calculating the orbits of the planets for a quite long time a very diffi-

cult one. On the other hand, looking at the equation (2.2) one would

rather expect to be able to write the solution as a superposition of

periodic motions. This raises two classical problems, namely:

(i) to write the general solution of eq. (2.1) (or, more generally, of

the equations for the n–body problem) as a power series in ε

that is uniformly convergent for all times;

(ii) to write the coefficients of the power series in ε as trigonomet-

ric functions of t, still keeping the property of uniform conver-

gence as in (i).

The problem (i), referred to the case of the planetary system, was

proposed as a prize question sponsored by the king of Sweden. The

prize was awarded to Poincaré, who did not actually solve the prob-

lem, but presented a memoir containing a wealth of new ideas. A

revised version of the memoir was later published in [41].

The problem (ii) is partially solved via the method of Lindstedt[27,

28, 29]. We look for a single solution which is a perturbation of an

harmonic oscillation with a given frequencyω = 1+ εδ (recall that 1

is the proper frequency of the unperturbed oscillator). To this end,

let us rewrite eq. (2.2) as

ẍ +ω2x = ε
(
cos(νt)+ x3 − δx

)
. (3.3)
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We look again for a solution as a power series in ε of the form (3.1).

This gives for x0(t) the equation

ẍ0 +ω2x0 = 0 ,

with solution (still forgetting an unessential initial phase)

x0(t) = a0 cos(ωt) ,

where a0 is left arbitrary. By substitution in (3.3) we get for x1 the

equation

ẍ1 +ω2x1 = cos(νt)+ a
3
0

8
cos(3ωt)+ 3a3

0

8
cos(ωt)− δa0 cos(ωt) .

Now, the terms cos(ωt) would produce again secular terms in the

solution. We avoid them by determining the amplitude a0 so that

these terms do disappear, i.e., as the (positive) solution of the equa-

tion
3a2

0

8
− δ = 0 .

This means that having fixed the frequency ω we are forced to se-

lect a single solution with amplitude a0 depending on the frequency.

Having so determined a0, the solution of the equation for x1 is

x1(t) =
1

ω2 − ν2
cos(νt)− a3

0

32ω2
cos(3ωt)+ a1 cos(ωt +ϕ1) ,

where a1 and ϕ1 are left arbitrary; these constants will be deter-

mined so as to remove all secular terms from the equation for x2.

However, the denominatorω2−ν2 forces us to exclude the frequency

ω = ±ν . A moment’s thought will allow us to realize that the term xs
of the solution will be determined as a sum of trigonometric terms in

(jω+kν)t, with divisors of the form jω+kν , where j, k are arbitrary

integers. Thus, the following problems arise:

(i) even disregarding the convergence of the series so produced,

we must exclude all values of ω such that ω/ν is a rational

number;
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(ii) the denominators jω+kν , although non vanishing by the con-

dition above, may become arbitrarily small; this raises serious

doubts on the convergence of the series.

The latter is actually the simplest aspect of the so called problem of

small denominators.

It should be mentioned that the problem of the convergence of

Lindstedt’s series has been accurately investigated by Poincaré ([42],

tome II, chap. XIII, § 148–149). However, he was unable to decide this

question (here, n1, n2 play the role of our frequencies ω,ν):

. . . les séries ne pourraient–elles pas, par example, con-

verger quand . . . le rapport n1/n2 soit incommensurable,

et que son carré soit au contraire commensurable (ou qua-

nd le rapport n1/n2 est assujetti à une autre condition

analogue à celle que je viens d’ énoncer un peu au hasard)?

Les raisonnements de ce chapitre ne me permettent

pas d’ affirmer que ce fait ne se présentera pas. Tout ce

qu’ il m’est permis de dire, c’est qu’ il est fort invraisem-

blable.

The story of Lindstedt’s series does not end here. The challenging

question of the convergence was indirectly solved in 1954 by Kol-

mogorov [25]. His theorem implies that the series of Lindstedt are

uniformly convergent in time provided the frequencies ω,ν satisfy

some condition of strong non–resonance that include the case sug-

gested “un peu au hasard” by Poincaré. Kolmogorov’s method is

based on a scheme of fast convergence (called by Kolmogorov gener-

alized Newton’s method, and often referred to as quadratic method)

that avoids the classical expansions in a perturbation parameter. It is

often said that Kolmogorov announced his theorem without publish-

ing the proof; as a matter of fact, his short communication contains a

sketch of the proof where all critical elements are clearly pointed out.

Detailed proofs were published later by Moser [37] and Arnold [1];

the theorem become thus known as KAM theorem. The indirect proof

of convergence of Lindstedt’s series via Kolmogorov’s method is dis-

cussed in a paper by Moser [38]; however, he failed to obtain a direct

proof based, e.g., on Cauchy’s classical method of majorants applied
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to Lindstedt’s expansions in powers of ε. As discovered by Elias-

son [11], this is due to the presence in Lindstedt’s classical series of

terms that grow too fast, due precisely to the small denominators,

but are canceled out by internal compensations (this was written in a

report of 1988, but was published only in 1996). Explicit constructive

algorithms taking compensations into account have been recently

produced by Gallavotti, Chierchia, Falcolini, Gentile and Mastropietro

(see, e.g., [12, 9, 13] and the references therein). An explicit algorithm

that avoids the need of compensations has been recently introduced

by Locatelli and the author [21, 22].

It is not my purpose here to go further into the KAM theory: the

number of papers is so big that an exhaustive report could not fit

into the present note. I just recalled a few works that have some

direct relation with Lindstedt’s series. However, let me emphasize

that the beautiful results of KAM theory do not represent a complete

solution of the problem (ii) above. Indeed, Lindstedt’s series can not

be constructed for arbitrary initial data, but only for a set of initial

data of large measure corresponding to invariant tori filled up by

quasiperiodic motions; the resonant frequencies have been excluded,

according to the point (i) above; moreover, frequencies that are too

close to resonance must be excluded, too.

In order to illustrate this matter at least at a phenomenological

level let me consider the simple case of a Hamiltonian system of the

form (2.4), namely

H = ω1

2
(x2

1 +y2
1 )−

ω2

2
(x2

2 +y2
2)+ x2

1x2 −
1

3
x3

2 , (3.4)

with ω1 = 1 and ω2 = (
√

5 − 1)/2 (the golden number). Figure 1

represents the Poincaré section of different orbits with the surface

x1 = 0. All orbits lie on the energy surface H(x,y) = 0.015, and the

points are represented in the plane (x2, y2).
† The central point in the

†Having fixed the value E of the energy and the surface of section x1 = 0, a

point (x2, y2) determines the unique initial point (0, x2, y1, y2) in phase space,

where y1 > 0 is the positive solution of the equation H(0, x2, y1, y2) = E. The

orbit is integrated numerically until it intersects again the surface x1 = 0 with

the condition y1 > 0. Thus, a one to one map of the plane (x2, y2) into itself is

generated, which is named the Poincaré section. Figure 1 represents several orbits
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Figure 1: Poincaré section for the Hamiltonian system (3.4) withω1= 1

and ω2 = (
√

5 − 1)/2 on the energy surface H(x,y) = 0.015. The

surface of section is x1 = 0, and the figure represents the projection

of the energy surface on the plane (x2, y2). The complexity of the

orbits is illustrated by the successive enlargements of parts of the first

figure.

first figure (upper left corner) represents a periodic orbit that inter-

sects the surface of section always at the same point, thus appearing

as a fixed point in the Poincaré section. The points that appear to lie

generated by the map, corresponding to different initial points. Remark that the

figure is actually a projection of the energy surface on the plane (x2, y2). For

more details, including a thorough illustration of the phenomenology, an excellent

reference is the celebrated paper of Hénon and Heiles [24].
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on circle–shaped curves close to the central point represent orbits

that in the approximation of the figure look as quasiperiodic orbits

lying on invariant tori, with frequencies depending on the torus.‡

The invariant curves appear to be broken by the perturbation when

the frequencies approach a resonant value. In our case the strongest

resonance corresponds to ω2/ω1 ∼ 2/3, which is a low order ap-

proximation of the golden number. The main effect of this resonance

is the creation of the three regions with closed invariant curves that

are separated from the central region. At the center of the three re-

gions there are three points that represent the section of a periodic

orbit of period 3 (that is, the orbit comes back to the initial point af-

ter three intersections with the surface x1 = 0). The points scattered

at random belong to a single chaotic orbit that eventually escapes to

infinity. The remaining three figures are successive enlargements of

small zones of the first figure that give a rough idea of the compli-

cated global behaviour of the orbits, due to resonances: the creation

of periodic orbits surrounded by invariant closed curves appears re-

peatedly as the resolution increases. As a matter of fact only a few

periodic orbits with their accompanying invariant curves may be ev-

idenced in the figure. For, the size of the region influenced by a

resonance becomes exceedingly small as the order of the resonance

increases.

4 Formal construction of first integrals

Let us now consider the general Hamiltonian system (2.6), writing

more explicitly the expansion of the perturbation f(p, q, ε) in pow-

ers of ε as

H(p,q) = h(p)+ εf1(p, q)+ ε2f2(p, q)+ · · · ; (4.1)

‡Consider for a moment only the quadratic part of the Hamiltonian. Then the

system is trivially integrable, and the orbits lie on invariant tori that are the Carte-

sian product of circles in the planes (x1, y1) and (x2, y2), respectively. The mo-

tion on these tori is quasiperiodic with frequencies that coincide with the unper-

turbed frequencies ω1,ω2. The cubic terms in the Hamiltonian introduce a non-

linearity that makes the frequencies to depend on the initial data, thus breaking

the simple behaviour of the unperturbed system.
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recall that all functions are assumed to be analytic. In view of Liou-

ville’s theorem, we may try to find n independent first integrals that

are in involution. Precisely, we look for first integrals of the form

Φ(p, q) = Φ0(p, q)+ εΦ1(p, q)+ ε2Φ2(p, q)+ · · · (4.2)

by trying to solve the equation {H,Φ} = 0, where {·, ·} denotes the

Poisson bracket. By substituting the expansions of H and Φ above

and comparing the coefficients of the same power of ε we get the

infinite system

∂ωΦ0 = 0

∂ωΦ1 = −
{
f1,Φ0

}
(4.3)

∂ωΦ2 = −
{
f1,Φ1

}
−
{
f2,Φ0

}

. . .

where ∂ω· = {h(p), ·} =
∑
lωl(p)

∂·
∂ql

. The equation for Φ0 is a trivial

one, since it is certainly satisfied by any of the action variables pj . As

Poincaré proves, if the unperturbed Hamiltonian is non degenerate,

i.e., if

det

(
∂2h

∂pi∂pj

)
6= 0 , (4.4)

then Φ0 needs to be independent of the angles q. At higher orders in

ε we must solve an equation of the form

∂ωΦ = Ψ , (4.5)

where Ψ(p, q) is a known function that is supposed to be periodic in

the angles q and Φ is to be determined with the same periodicity con-

dition. The problem of solving an equation of this type is a common

one in perturbation theory. Using the Fourier expansion

Ψ(p, q) =
∑

k∈Zn
ck(p) exp

(〈
k,q

〉)

with known coefficients ck(p), the formal solution for Φ is

Φ(p, q) = −i
∑

k∈Zn

ck(p)〈
k,ω(p)

〉 exp
(〈
k,q

〉)
; (4.6)

however, such a solution may be accepted only if ck(p) = 0 whenever〈
k,ω(p)

〉
= 0. This raises two further problems:
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(i) for k = 0 we must have ck(p) = 0, i.e., the average of Ψ(p, q)
over the angles must vanish;

(ii) for k 6= 0 and under the non degeneracy condition (4.4) the

set of points p where some denominator
〈
k,ω(p)

〉
vanishes is

dense in the action domain.

Let us skip (i) for a moment (it is satisfied in the equation for Φ1).

Condition (ii) is quite delicate, since it imposes very strong con-

straints on the coefficients ck(p). Poincaré’s conclusion is the fol-

lowing

Theorem 4.1 Generically, a Hamiltonian of the form (4.1) satisfying

the non degeneracy condition (4.4) does not possess any first integral

of the form (4.2) independent of H.

For a proof, see [42], tome I, chap. V; the same proof is reported

in [49], chap. XIV, § 165.

It was soon realized by Whittaker that the difficulty of construct-

ing formal first integrals is by far less acute if one considers the case

of an elliptic equilibrium point, where the Hamiltonian may be given

the form (2.3) (or (2.5) in action–angle variables). Indeed, the unper-

turbed Hamiltonian h(p) =∑lωlpl is degenerate, so that one of the

hypotheses of Poincaré’s theorem is not fulfilled, and moreover the

frequencies ω are independent of the actions p. Therefore, the de-

nominators in the solution (4.6) of the equation for a first integral

do not vanish provided the frequencies ω satisfy the non resonance

condition

〈k,ω〉 6= 0 for 0 6= k ∈ Zn . (4.7)

Hence, the construction is formally consistent provided the condi-

tion (i) above is fulfilled, namely if the r.h.s. of the equations (4.3) for

the first integrals has zero average over the angles. This looks as a

trivial problem, the solution of which has revealed to be surprisingly

difficult.§ Up to my knowledge, the most general direct proof of the

consistency of the formal construction is the following

§As an historical remark, it is curious that Whittaker in the very exhaustive

paper [48] did not mention the problem. A few years later Cherry wrote two
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Theorem 4.2 Let the Hamiltonian (2.3) be even in the momenta y ,

i.e., H(x,y) = H(x,−y), and let the frequencies satisfy the non res-

onance condition (4.7). Then the system possesses n formal first inte-

grals

Φ(l)(x,y) = x
2
l +y2

l

2
+ Φ3(x,y)+ Φ4(x,y)+ · · · , l = 1, . . . , n ,

(4.8)

that are independent and in involution, the functions Φs(x,y) for s ≥
3 being homogeneous polynomials of degree s.

The condition H(x,y) = H(x,−y) means that the system is re-

versible.¶ The surprisingly simple argument is that, due to the parity

conditions, the r.h.s. of the equations (4.3) turn out to be odd func-

tions of y . On the other hand, the average depends only on the

action variables p, and so it is an even function of y ; hence it must

vanish. For a complete proof see [10].

The theorem above implies that the system is formally integrable

by quadratures; moreover, there are action–angle variables so that

the solutions may be written as series that are trigonometric in t.‖

This looks as a complete answer to the classical problem of finding

papers [7, 8] where a lot of work is devoted to this problem, but without reaching a

definite conclusion. An indirect solution was found by Birkhoff, using the method

of normal form that goes usually under his name ([4], chap. III, § 8). As a matter

of fact, this problem of consistency is strictly related to a similar problem that

shows up in Lindstedt’s method (and that I did not mention before). The latter

problem is solved by Poincaré precisely by going through a transformation of the

Hamiltonian into Birkhoff’s normal form ([42], tome II, chap.VIII, § 123–125).
¶If one removes the parity condition then the consistency of the construction

follows quite easily from the existence of Birkhoff’s normal form, but no direct

argument has been found, up to my knowledge. Things are even worse if one

allows the frequencies to be resonant. For a discussion of this problem see [14].

In the case of Lindstedt’s series a similar argument based on parity has been used

by Gallavotti [12].
‖See [49], chap. XVI, § 199, in particular the last sentence. It is worth noting

that the procedure outlined by Whittaker is actually the construction of action

variables described, e.g., in Born’s book [5]. Precisely, the invariant surfaces de-

fined by the first integrals are diffeomorphic to n–dimensional tori, and the action

variables are determined by calculating the action integrals
∫
γ pdq along n inde-

pendent cycles on those tori.
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the complete solution of the system. However, recall that we are

considering only the formal aspect. The problem of the convergence

of the series is still open.

5 The problem of convergence

The question about the convergence of series containing small de-

nominators is certainly the most challenging one in perturbation the-

ory. Whittaker and Cherry based their hope that the series could be

convergent on an example due to Bruns (see [49], chap. XVI, § 198).

Whittaker was even more convinced in view of an example invented

by himself: he could construct a two degrees of freedom Hamilto-

nian of the form (2.3) possessing a first integral independent of the

Hamiltonian; the integral is given in closed form, and he checked that

the first few terms of the expansion of the integral in power series

do actually coincide with the expansion calculated with the method

discussed in the previous section (see [49], chap. XVI, § 202). It was

only in 1941 that Siegel [45] proved that the series so produced are

generically non convergent.

Let me clarify the problem a bit more. Let me first show that

the solution of a single eq. (4.5) for a first integral is harmless; the

argument that follows is more general than Brun’s example used by

Whittaker and Cherry. If the known function Ψ(p, q) is analytic, then

the coefficients ck(p) of its Fourier expansion decay exponentially

with the order |k| = |k1| + · · · + |kn| of the Fourier mode, i.e., one

has
∣∣ck(p)

∣∣ ≤ Fe−|k|σ for some positive constants F and σ . Assume

now that the frequencies ω are constant, and recall the form (4.6) of

the solution. It is a well known result of the Diophantine theory that

the inequality

∣∣〈k,ω〉
∣∣ ≥ γ|k|−τ for 0 6= k ∈ Zn (5.1)

for some positive γ and some τ > n − 1 is satisfied by a set of

real vectors ω of large relative measure, the complement of this set

having Lebesgue measure O(γ).∗∗ Therefore the coefficients of the

∗∗For τ = n−1 the set of real vectorsω satisfying (5.1) is non empty, but it has

zero measure; for τ < n− 1 it is empty in view of an approximation theorem by

Dirichlet.
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function Φ(p, q) in (4.6) are bounded by

∣∣∣∣
ck(p)

〈k,ω〉

∣∣∣∣ ≤
F

γ
|k|τe−|k|σ ,

i.e., they still decay exponentially. This assures that the Fourier series

for Φ(p, q) is absolutely and uniformly convergent, so that Φ(p, q) is

analytic. An argument of this type has been used by Poincaré ([42],

tome II, chap. XIII, § 147). With a slightly more quantitative formula-

tion it is one of the main tools for many recent results in perturbation

theory, including, e.g., the proof of Kolmogorov’s theorem.

However, the argument above is not sufficient in order to answer

the question of convergence for the whole process of constructing a

first integral. Indeed, the problem is that the system (4.3) must be

solved recursively; hence at every step a new small denominator is

added to the existing ones. The problem is that the accumulation of

small denominators may cause the whole process to diverge. This is

indeed what generically happens.††

In order to illustrate the process of accumulation let me consider

the simple case of the Hamiltonian

H(x,y) = 1

2

n∑

l=1

ωl
(
x2
l +y2

l )+H3(x,y) , (5.2)

where H3(x,y) is a homogeneous polynomial of degree 3. Recall

that the transformation to action–angle variables x =
√

2p cosq,

y =
√

2p sinq gives the Hamiltonian the form H(p,q) = ∑
lωlpl +

H3(p
1/2, q). Remark also that a homogeneous polynomial of degree

s in x,y is transformed to a trigonometric polynomial of degree s in

q, and that solving the equation (4.3) for Φs when Ψs is a trigonomet-

ric polynomial of degree s generates only small denominators 〈k,ω〉
with |k| ≤ s; this is evident from the form (4.6) of the solution. Hence

the worst possible denominator is

αs = min
0<|k|≤s

∣∣〈k,ω〉
∣∣ . (5.3)

††The accumulation of small denominators turns out to be quite fair if one uses

a good algorithm for constructing a quasiperiodic solution as described by Lind-

stedt’s series. This point is discussed, e.g., in [22].
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The accumulation of small denominators is illustrated by the follow-

ing table:

equation degree denominator

∂ωΦ3 = −{H3,Φ2} 3 α3

∂ωΦ4 = −{H3,Φ3} 4 α3α4

∂ωΦ5 = −{H3,Φ4} 5 α3α4α5

...
...

...

∂ωΦr = −{H3,Φr−1} r α3 · . . . ·αr
We choose Φ2 = (x2

l + y2
l )/2 = pl, one of the action variables. The

first column is the equation for Φs , which is a homogeneous poly-

nomial of degree s in (x,y) or a trigonometric polynomial in q in

action–angle variables. By the way, we use the fact that the solution

of the equation for Φs is a homogeneous polynomial of degree s; this

is easily checked. The third column gives the worst accumulation

of small denominators: the Poisson bracket in the equation simply

propagates the existing denominators, and the process of solving the

equation adds the denominator of the corresponding order. Consid-

ering a neighbourhood ∆% of the origin of radius %, we find for a

generic term Φr of degree r an estimate

∣∣Φr (x,y)
∣∣ ∼ %r

α3 · . . . ·αr
for (x,y) ∈ ∆% .

If, according to the Diophantine estimate (5.3), we set αs ∼ γ|s|−τ
then we get ∣∣Φr (x,y)

∣∣ ∼ %r (r !)τ . (5.4)

Of course, this is not a proof that the series are not convergent: it is

just an heuristic consideration suggesting that divergence should be

the typical case (which has been proven by Siegel [45]).

The behaviour of the series may be investigated numerically by

performing an explicit expansion with the help of a computer. In-

deed, all functions involved in such a calculation are homogeneous

polynomials, that may be easily represented in machine format by

just storing the coefficients in an appropriate order. Moreover, all

the process of construction of formal first integral reduces to simple

algebraic manipulations of the coefficients of the polynomials (for a

description of a program of this kind see, e.g., [15]).
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Suppose that we have constructed a formal first integral

Φ(x,y) = (x2
2 +y2

2 )/2+ Φ3(x,y)+ · · · +Φr (x,y)
up to some order r . Suppose for a moment that this is an exact first

integral; then the orbit with initial point (x(0), y(0)) must lie on the

intersection of the surfaces H(x,y) = H(x(0), y(0)) and Φ(x,y) =
Φ(x(0), y(0)), that is a two dimensional surface in the four dimen-

sional phase space (remark that the functions H and Φ are clearly

independent). The intersection of this surface with the plane x1 = 0

gives a family of curves that may be projected in the plane (x2, y2).

The explicit construction of the curves is not difficult. Having fixed

the value of the energy, say H(x1, x2, y1, y2) = E we set x1 = 0 and

calculate y1 = ψ(x2, y2) by solving the equation H(0, x2, y1, y2) =
E. Then we just draw on the plane (x2, y2) the level lines of the

function Φ(0, x2, y1, y2)
∣∣
y1=ψ(x2,y2)

.

We are now going to compare the Poincaré section obtained by

numerical integration with the curves constructed using the first in-

tegrals. Having fixed the energy and the initial point (x
(0)
2 , y

(0)
2 ) of an

orbit we calculate on the one hand the Poincaré sections for that orbit

and, on the other hand, the level lines Φ(0, x2, y1, y2)
∣∣
y1=ψ(x2,y2)

=
Φ(0, x(0)2 , y1, y

(0)
2 )

∣∣
y1=ψ(x(0)2 ,y

(0)
2 )

. We expect that the points obtained

by Poincaré section lie on the curves constructed via the first integral.

Hence, a rough comparison may be made by simple inspection of the

figures.

The results are presented in fig. 2. The energy value has been

set to H(x,y) = 0.0025, and the first figure represents the Poincaré

section for some orbits that surround the central periodic orbit. We

forget the regions of chaotic orbits and of orbits that surround the

2/3 resonance. The behaviour of the first integral is illustrated by

drawing the level lines for different truncations of the series, from

order 5 to order 70. One will notice that the best correspondence be-

tween Poincaré section and level lines is obtained by truncating the

expansion of the first integral at order 9. Successive truncations to

higher orders give raise to a sort of progressive destruction of the

inner curves. Such a behaviour is reminiscent of that of asymptotic

series. A more detailed phenomenological investigation of these phe-

nomena may be found in [43] or [44].
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Figure 2: Comparison between the portrait of the Poincaré section and

the level lines of a formal first integral. The first figure is the Poincaré

section on the energy surface H = 0.0025. The remaining figures

(se also the figure on next page) are the level lines of the formal first

integral truncated at orders 5, 9, 12, 24, 33, 38, 45, 60 and 70. The

levels drawn correspond to the values of the truncated integral at the

initial points of the orbits represented in the Poincaré section.
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Figure 2: (continued.)



40 A. GIORGILLI

6 Exponential stability

In spite of their divergence, the formal first integrals constructed in

the previous section are not useless. As a matter of fact, it is well

known to astronomers since a long time that the series produced by

perturbation methods are very useful in order to predict the plan-

etary motions. We could even say that the big amount of work de-

voted by Poincaré to proving that divergence is the typical case for

the series of perturbation theory has been essentially removed by the

astronomers of this century. The best description of the situation,

in my opinion, is still given by Poincaré in [42], tome II, chap. VIII.

Having realized that the perturbation series present an asymptotic

character, Poincaré’s suggestion is to try to do the best use of the se-

ries so constructed. To this end he introduces the concept of formal

expansion, namely a truncation of the perturbation expansions at a

finite order. The exponential stability that I’m going to discuss here

may be seen as a quantitative reformulation of Poincaré’s program.

Following Poincaré, we simply truncate the construction of the

formal integrals at a finite order r , thus constructing functions Φ(x,
y) such that Φ̇ = {H,Φ} is at least of degree r +1 in (x,y). Then we

try to extract as much information as we can from those truncated

first integrals.

Let me first give the heuristic argument of the previous section on

the accumulation of small denominators a more precise formulation.

This is just a (tedious) technical matter. Consider the polydisk with

center at the origin and radius % defined as

∆% =
{
(x,y) ∈ Rn : x2

l +y2
l < %

2 , l = 1, . . . , n
}
. (6.1)

Proposition 6.1 Let the frequencies ω satisfy the Diophantine con-

dition (5.3). Then there is a constant C such that the following holds

true: for every r > 2 there exist n truncated first integrals

Φ(l,r ) = pl + Φ(l)3 + · · · + Φ(l)r , pl =
x2
l +y2

l

2
(6.2)

(l = 1, . . . , n) such that for any (x,y) ∈ ∆% one has
∣∣Φ̇(l,r )

∣∣ < Cr%r+1(r !)τ+1

For a proof see, e.g., [16].
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Figure 3: Illustrating the concept of stability over a finite time. An

orbit starting at a distance %0 from the center may evolve by steadily

increasing its distance, until it eventually escapes the disk of radius %.

The problem of stability over a finite time may be formulated as

follows (see fig. 3). Consider all orbits
(
x(t),y(t)

)
with initial point(

x(0),y(0)
)
∈ ∆%0 for some positive %0. Choose % > %0, e.g., let

% = 2%0, and prove that
(
x(t),y(t)

)
∈ ∆% for |t| ≤ T(%0) with some

“large” T(%0), e.g., increasing to infinity as %0 → 0. I will refer to

T(%0) as the estimated stability time. This seems to be a senseless

question, since everybody who is familiar with the elementary theory

of differential equation will immediately remark that this is just a

property of continuity of the solutions with respect to initial data.

The point, however, concerns the meaning of “large T(%0)”.

The request above may be meaningful if we take into consider-

ation some characteristics of the dynamical system that is (more

or less accurately) described by our equations. In this case “large”

should be interpreted as large with respect to some characteristic

time of the physical system, or comparable with the lifetime of it. For
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instance, for the nowadays accelerators a characteristic time is the

period of revolution of a particle of the beam and the typical lifetime

of the beam during an experiment may be a few days, which may cor-

respond to some 1010 revolutions; for the solar system the lifetime

is the estimated age of the universe, which corresponds to some 1010

revolutions of Jupiter; for a galaxy, we should consider that the stars

may perform a few hundred revolutions during a time as long as the

age of the universe, which means that a galaxy does not really need

to be much stable in order to exist.

From a mathematical viewpoint the word “large” is more difficult

to explain, since there is no typical lifetime associated to a differen-

tial equation. Hence, in order to give the word “stability” a meaning

in the sense above it is essential to consider the dependence of T

on %0. In this respect the continuity with respect to initial data does

not help too much. For instance, if we consider the trivial exam-

ple of the differential equation ẋ = x one will immediately see that

if x(0) = x0 > 0 is the initial point, then we have x(t) > 2x0 for

t > T = ln 2 no matter how small is x0; hence T may hardly be con-

sidered to be “large”, since it remains constant as x0 decreases to

0. Conversely, if for a particular system we could prove , e.g., that

T(%0) = O(1/%0) then our result would perhaps be meaningful; this

is indeed the typical goal of the theory of adiabatic invariants.

Coming back to our problem we may proceed as follows. The

condition (x,y) ∈ ∆% is equivalent to pl < %
2/2 for l = 1, . . . , n

(remark that pl ≥ 0 by definition). Let us now use the elementary

inequality
∣∣p(t)−p(0)

∣∣ ≤
∣∣p(t)−Φ(r ,l)(t)

∣∣+
∣∣Φ(r ,l)(t)−Φ(r ,l)(0)

∣∣+
+
∣∣Φ(r ,l)(0)−p(0)

∣∣ . (6.3)

Let me define

δr (%) = max
l

sup
(x,y)∈∆%

∣∣Φ(r ,l)(x,y)−pl(x,y)
∣∣ ; (6.4)

then we have
(
x(t),y(t)

)
∈ ∆% provided

∣∣Φ(l,r )(t)− Φ(l,r )(0)
∣∣ < Dr (%0, %) := %

2 − %2
0

2
− δr (%0)− δr (%) .

(6.5)
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In view of (6.2) we have δr (%) = O(%3). On the other hand, by the

theorem above we have
∣∣Φ̇(r ,l)

∣∣ < Br%r+1, with some constant Br .

Let us choose % > %0 such that Dr (%0, %) = O(%3); then we conclude

that
(
x(t),y(t)

)
∈ ∆% for |t| < T(%0) = O(1/%r−2

0 ). For instance, for

r = 3 we have T(%0) = O(1/%0), namely the typical estimate of the

theory of the adiabatic invariants. The more general estimate for an

arbitrary r was used by Birkhoff as a basis for his theory of complete

stability (see [4], chap. IV, § 2 and § 4). By the way, Birkhoff could

not do better because he did not try to evaluate the constant Br .
‡‡

The exponential stability follows by exploiting the asymptotic

character of the series representing the first integrals. Let % be fixed

and small enough, and recall again that, by the theorem above, we

have
∣∣Φ̇(r ,l)

∣∣ = O
(
%r+1(r !)τ+1

)
. If we let r to increase the quantity

%r (r !)a will first decrease until r ≤ 1/%1/a and then it will start to

increase. Therefore we just stop when our estimate has reached the

minimum. This means that we determine an optimal value ropt of r

as a function of %, namely ropt = 1/%1/a. The exponential estimate

follows by a straightforward use of Stirling’s formula, since

%ropt(ropt!)
a ∼ %ropt

(
ropt

e

)aropt

= exp


−a

(
1

%

)1/a

 .

A more precise formulation is the following

Theorem 6.1 Consider the Hamiltonian (2.3), and assume that the

frequencies ω satisfy the Diophantine condition (5.1). Then there ex-

ist positive constants A, C and %∗ such that for every % < %∗ the

following holds true: there are n independent functions Φ(1), . . . ,Φ(n)

‡‡As we have seen, the estimate Br = O(r !) follows from the hypothesis that

the frequencies satisfy a Diophantine condition (5.3). The relevance of conditions

of this kind for problems with small denominators was first pointed out in 1942

by Siegel [46] in connection with the problem of convergence of the so called

Schröder series for the center problem. After Siegel, conditions of Diophantine

type have become a standard tool of KAM theory.
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such that for every (x,y) ∈ ∆% we have

∣∣Φ(l)(x,y)−pl(x,y)
∣∣ < C

(
%

%∗

)3

,

∣∣Φ̇(l)(x,y)
∣∣ ≤ A exp


−(τ + 1)

(
%∗
%

)1/(τ+1)

 .

For a proof see [16]. The exponential estimate for the stability time

T(%0) follows by repeating almost word by word the argument above

leading to T(%0) = O(1/%r−2
0 ).∗

I emphasize that the good choice of the order r of truncation

of the series is the key of all the results of exponential stability

in the light of Nekhoroshev’s theory. The present discussion con-

cerns only the case of the equilibrium point, which is the simplest

one. Nekhoroshev’s theorem however applies to the more general

system (2.6) with some extra conditions on the unperturbed Hamil-

tonian h(p). For complete proofs of Nekhoroshev’s theorem see,

e.g., [39, 40, 2, 3, 32] and [18]. For a general discussion of the prob-

lem of stability in Hamiltonian systems see [23]. For a stronger stabil-

ity result and the relations between Nekhoroshev’s theory and KAM

theory see [33, 34] and [20].

7 A numerical application

The application to physical systems of the results above on exponen-

tial stability is not straightforward. As stated by the theorem, there

is a threshold %∗ above which the theory may not be applied; on the

∗A comparison with Littlewood’s estimate reported at the beginning of sect. 1

shows that we get an exponential law of the form exp(%−1/(τ+1)), while Little-

wood finds exp(%−1/2| ln%|−3/4) (recall that % is the actual perturbation parame-

ter, named ε by Littlewood). Our exponent 1/(τ + 1) in place of Littlewood’s 1/2

is due to the higher generality of our estimate, which applies to any finite number

n of degrees of freedom. In the best case we may set τ = n − 1, which gives an

exponent 1/n; the case investigated by Littlewood corresponds to n = 2, so that

agreement is found. The factor | ln%|−3/2 is found by Littlewood because he does

not use the Diophantine inequality. His argument is based on a property of the

continuous fraction representation of the ratio between the frequencies. However,

his method may hardly be extended to more than 2 frequencies (i.e., to n > 2).
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other hand, the existence of a threshold is typical of all results of

perturbation theory. Now, the problem is whether or not the pertur-

bation acting on a real physical system is smaller than the threshold.

The answer to such a question is not trivial. When the KAM the-

orem was established it was quite common to believe that this was

the proof that the solar system is stable in probabilistic sense, since

the set of initial data leading to quasiperiodic motions on invariant

tori has relative measure close to one. But the best analytical esti-

mates available at that time could only prove, rigorously speaking,

that KAM stability is assured provided the mass of Jupiter is less

than 108 times the mass of a proton. Things were even worse for

Nekhoroshev’s theorem; for, according to the available estimates, the

mass of Jupiter should be several order of magnitude less than the

mass of a proton. Of course, everybody was well aware that the an-

alytical estimates are very crude: trusting the applicability of KAM

theory to the solar system was just matter of being optimist.

Recent developments of our knowledge on this matter have sho-

wn that things are much more complicated than it was expected —

as usual. According to a numerical integration of the orbits of all

planets over 1010 years made by Laskar [26], only the motion of the

major planets (Jupiter, Saturn, Uranus and Neptune) may be confi-

dently considered to be quasiperiodic on an invariant torus. The

orbits of all minor planets (including the earth) present instead a sig-

nificant chaotic component. The role of resonances in producing sta-

ble states or chaotic dynamics is even more evident if one considers

the orbits of the asteroids. According to Guzzo and Morbidelli in-

terpreting such a complicated dynamics in terms of Nekhoroshev’s

theory is a major challenge [35].

A possible method for improving the estimates of the thresholds

for applicability of our theories on exponential stability is to perform

explicitly the series expansions required by perturbation theory. It

is not recommended to do it by hand, of course. However, it should

be remarked that most of perturbation theory relies on simple alge-

braic operations that may be effectively programmed on computers.

The development of packages of algebraic manipulation especially

devoted to the needs of perturbation theory has been started quite

soon. Concerning the particular problem of first integrals for the
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case of the elliptic equilibrium the first program – up to may knowl-

edge – has been implemented by Contopoulos around 1960.

In order to check the effectiveness of exponential stability in a

simple but interesting case let me consider the triangular Lagrangian

equilibria of the restricted problem of three bodies in the planar

case, i.e., the Littlewood’s problem mentioned at the beginning of

this note. The goal is to evaluate the size of the region of stability

in the case Sun–Jupiter. This case is particularly interesting for two

reasons. Firstly, it is simple enough to allow us to expand the pertur-

bations series up to a reasonably high order, thanks to the compu-

tational power of the computers available nowadays.† Secondly, in

the neighbourhood of the Lagrangian points there are several aster-

oids, called Trojan, that have been observed, so that a comparison of

the theoretical results with reality is possible — inasmuch the planar

restricted problem of three bodies may be considered as an appro-

priate model of the real world.

The construction of formal integrals may be be performed via ei-

ther method, constructing the direct expansion of the series with the

algorithm discussed in sect. 5 or going through the process of con-

structing the normal form of Birkhoff (that I just mentioned above,

without entering the details). This requires a preliminary expansion

of the Hamiltonian in the neighbourhood of the equilibrium point,

and a transformation to coordinates that give the quadratic part of

the Hamiltonian a diagonal form
∑
lωl (x

2
l + y2

l )/2. In the case of

the triangular Lagrangian point L4 for the Sun–Jupiter system the fre-

quencies turn out to be ω1 ∼ 0.99676 and ω2 ∼ −0.80464× 10−1.‡

†In order to give a concrete idea of the advantages offered by the nowadays

computers, let me mention that at the beginning of the sixties Contopoulos com-

puted the formal expansions of first integrals up to order 6 or 7; in 1966 Gus-

tavson could reach the order 8. In 1978, when I implemented the small package

used in the calculations of the present paper, I could reach the order 15 on a CDC

7600, the most powerful (and expensive) computer available at that time. The

calculation of the series up to order 70 that has produced the results illustrated

in sect. 5 has been made on a PC computer with a Pentium 200 processor and

with 64 Mbytes of RAM. It should be remarked that the most severe limitation in

this kind of calculation is due to memory, since the number of coefficients to be

stored grows quite fast with the order.
‡For the Hamiltonian (2.3) the problem of stability is a simple one in case the

frequencies have all the same sign, e.g., they are all positive. For, in this case
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In the present calculation the construction of Birkhoff’s normal

form up to a finite arbitrary order r has been used; this gives some

advantages that I briefly illustrate.

The procedure consists in constructing a near to identity canoni-

cal transformation as a polynomial of degree r − 1, e.g.,

x = x′ +ϕ2(x
′, y ′)+ · · · +ϕr−1(x

′, y ′)

y = y ′ +ψ2(x
′, y ′)+ · · · +ψr−1(x

′, y ′) ,

such that the transformed Hamiltonian is given the form, called Birk-

hoff’s normal form,

H′(x′, y ′) =
∑

l

ωlp
′
l + Z(r)(p′l)+R(r)(x′, y ′) ,

p′l = 1

2

(
x′l

2 +y ′l
2)
, (7.1)

where Z(r)(p′) is a (non homogeneous) polynomial of degree r in

(x′, y ′) starting with terms of degree 4 that is actually a function

only of the new action variables p′, and R(r)(x′, y ′) is a remainder

that is still unnormalized, and is in fact a power series starting with

terms of degree r + 1 in (x,y). The new action variables p′1, . . . , p
′
n

are the truncated first integrals§ that we are going to use. Remark

that we have ṗ′ =
{
H,p′

}
= {R(r), p′}.

the Hamiltonian has a minimum at the equilibrium, and so it may be used as a

Lyapounov function. However, this theory may not be used if the frequencies

have different signs, as in our case. For this reason the problem of stability of

the triangular Lagrangian points is essentially still open. Full conclusions may be

drawn only in the planar case of two degrees of freedom using the KAM theory.

However, the argument may not be extended to the spatial case with three degrees

of freedom. Moreover, there are no explicit estimates of the size of the region

where KAM theory may be applied. In a sense, the present study of stability

over finite but large times is useless, since it is limited to the planar case. But I

emphasize that there is no difficulty in extending the same method to the spatial

case or even to take into account the ellipticity of Jupiter’s orbit. The choice

of studying the planar case was just dictated by the possibility of pushing the

expansions to a higher order, which may give a more precise idea of the limits of

the method. For a study in the spatial case see, e.g., [47] or [6].
§The first integrals obtained with the direct construction of sect. 5 do not co-

incide with the functions p′1, . . . , p
′
n obtained via the transformation to Birkhoff’s

normal form, but are functions of them.
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All quantities mentioned here may be explicitly constructed by al-

gebraic manipulation up to some (not too low) order. Therefore the

analysis of stability may be performed in the new variables (x′, y ′)
making reference to the Hamiltonian (7.1); this simplifies a lot the

estimates of stability, because we avoid evaluating the difference

|p′ − p| required by (6.3) and (6.4). Moreover, we may forget the

exponential law for the stability time, and use our complete knowl-

edge of all functions in order to perform an optimization “by hand”

of our estimates.

Let the domain ∆%0 of the initial data be defined as a polydisk in

the new variables (x′, y ′). By the same argument used in sect. 6 we

know that an orbit with initial point in ∆%0 can not escape from ∆%
for |t| < τ(%0, %, r), where

τ(%0, %, r) =
%2 − %2

0

2F(%, r)
, F(%, r) = max

l
sup

(x′,y′)∈∆%

∣∣{R(r), p′l}
∣∣ .

(7.2)

The quantity F(%, r) may be evaluated by using the first term of the

expansion of the remainder R(r), that in turn may be explicitly cal-

culated. This produces an estimate depending on the arbitrary quan-

tities % and r .

Let now %0 and r be fixed; then, in view of F(%, r) = O(%r+1),

the function τ(%0, %, r), considered as function of % only, has a max-

imum for some value %r . This looks quite odd, because one would

expect τ to be an increasing function of %. However, recall that (7.2)

is just an estimate; looking for the maximum means only that we

are trying to do the best use of our poor estimate. Let us now

keep %0 constant, and calculate τ(%0, %r , r) for increasing values of

r = 1,2, . . . , with %r as above. Since F(%, r) is expected to grow quite

fast with r we expect to find a maximum of τ(%0, %r , r) for some op-

timal value ropt. Thus, we are authorized to conclude that for every

%0 we can explicitly evaluate the positive constants %(%0) = %ropt and

T(%0) = τ(%0, %(%0), ropt) such that an orbit with initial point in the

polydisk ∆%0 will not escape from ∆% for |t| < T(%0).

Let me summarize the results obtained for the Lagrangian point

L4 in the Sun–Jupiter case (for a full discussion see [19]). All series

have been computed up to order rmax = 34. The graph of the optimal
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Figure 4: Upper figure: estimated stability time as a function of the

size %0 of the domain containing the initial data. Lower figure: the

optimal order ropt as a function of %0.

order ropt and of the estimated stability time T as functions of %0

are reported in fig. 4. The time unit is the period of revolution of

Jupiter divided by 2π ; the estimated age of the universe is about

1010 time units. I emphasize that a small change of %0 may change

significantly the estimate of the stability time. Moreover, it should

be stressed that in our calculation the optimal order may not exceed

the value rmax = 34; thus the estimates could be further improved, in

principle. The value %0 for which the estimated stability time is the

age of the universe corresponds roughly to 0.127 times the distance

L4–Jupiter. Hence the result is clearly realistic.
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Table 1: Estimated stability region for the known asteroids.

The first column gives the catalog number. The second

column gives the value of % which ensures stability over

the age of the universe; the asteroid is inside if % > 1 (see

text). The table is sorted in decreasing order with respect to

the stability parameter %.

88181612 1.487790 4827 2.868400× 10−1

89211605 1.135130 4722 2.755600× 10−1

41790004 1.100990 1173 2.721800× 10−1

1870 1.048060 10240002 2.434500× 10−1

2357 8.470200× 10−1 2594 2.360100× 10−1

5257 7.504500× 10−1 4829 2.358500× 10−1

88181912 6.597200× 10−1 88180812 2.247200× 10−1

5233 6.495000× 10−1 4754 2.157600× 10−1

4708 6.275300× 10−1 4707 2.138800× 10−1

88181311 6.063800× 10−1 43170004 2.106900× 10−1

1871 6.000700× 10−1 89210305 2.032200× 10−1

31080004 5.956600× 10−1 88182012 1.989500× 10−1

94031908 5.928600× 10−1 4805 1.974600× 10−1

2674 5.894200× 10−1 5511 1.908600× 10−1

88180412 5.876200× 10−1 89211505 1.890100× 10−1

88180710 5.425600× 10−1 20350004 1.838900× 10−1

88191102 4.979700× 10−1 884 1.820300× 10−1

88182510 4.658500× 10−1 2893 1.758800× 10−1

2207 4.487900× 10−1 1872 1.723100× 10−1

89201902 4.163900× 10−1 88181213 1.673900× 10−1

94031500 4.075300× 10−1 51910004 1.644500× 10−1

89212405 4.005000× 10−1 4828 1.637500× 10−1

89211705 3.826400× 10−1 5130 1.629200× 10−1

5907 3.790100× 10−1 5476 1.483600× 10−1

88181411 3.757900× 10−1 88181410 1.362000× 10−1

4792 3.617700× 10−1 88191602 1.333500× 10−1

88180811 3.519900× 10−1 2223 1.278500× 10−1

3240 3.359200× 10−1 40350004 1.272900× 10−1

5638 3.162000× 10−1 88180813 1.255000× 10−1

43690004 3.061600× 10−1 2241 1.239700× 10−1

31630002 3.046700× 10−1 6002 1.230000× 10−1

4348 2.977800× 10−1 88192301 1.214500× 10−1
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3708 1.171100× 10−1 88181510 7.132770× 10−2

88190103 1.162400× 10−1 88182511 6.839150× 10−2

88181810 1.144900× 10−1 5648 6.776230× 10−2

87171400 1.106500× 10−1 88191203 6.354580× 10−2

88191003 1.089100× 10−1 5637 6.081990× 10−2

5119 1.086700× 10−1 90202212 5.963150× 10−2

88180512 1.079300× 10−1 2895 5.746530× 10−2

88190703 1.078800× 10−1 5120 5.713580× 10−2

1172 1.046900× 10−1 3451 5.705220× 10−2

31040004 9.614220× 10−2 4791 5.332690× 10−2

4715 9.453910× 10−2 4709 5.294080× 10−2

4832 9.399910× 10−2 3317 4.989590× 10−2

90221206 8.377690× 10−2 4867 4.901550× 10−2

1873 8.205510× 10−2 1867 4.773260× 10−2

88180701 7.394110× 10−2 88172500 4.017310× 10−2

41010004 7.333020× 10−2 1208 3.597040× 10−2

617 7.324830× 10−2 2363 3.573360× 10−2

Now, it is natural to ask if the theory above may be effectively

applied to the Trojan asteroids that are known to exist in the vicinity

of the triangular Lagrangian points of the Sun–Jupiter system. That

is, if their stability may be assured, if not forever, at least for a suffi-

ciently long time.

I have to say that the application of the method above to the

existing asteroids is a bit disappointing. Using the data for from

Marsden’s catalog of 1990 we investigate if some asteroid is inside a

region that assures stability for the age of the universe. The results

are summarized in table 1. The catalog contains 98 asteroids that

are in the region of libration around the Lagrangian point L4. The

orbital elements of the asteroid at a given epoch have been used as

initial datum; having performed all necessary transformations the

distance (in phase space) of the initial point from the equilibrium

L4 has been calculated in the coordinates of the normal form; let us

denote that distance by %. Then we imagine that we can move the

initial datum along the line (still in phase space) joining its current

position to the equilibrium; acting so, we calculate the distance %0

such that stability is assured for a time as long as the age of the

universe. The ratio %0/% is reported in the second column of the
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table; thus, a value bigger than 1 means that the asteroid is inside

the estimated stability region.

It is seen that (only) 4 asteroids are inside. About 40 percent of

the asteroids could be taken inside the stability region if we could

improve our estimates by a factor 5, that is not too big. The worst

case requires a factor 30. However, it should be remarked that im-

proving the estimates by a factor bigger than 8 will be impossible,

because Jupiter would fall inside the region of stability. This appar-

ent nonsense is mainly due to the fact that the asteroids can not

get too close to Jupiter, but can move quite far from the point L4

in the direction opposite to Jupiter. Indeed, a numerical exploration

shows that the orbits of the stable asteroids fill a banana–shaped re-

gion that extends along the circle passing through the point L4 and

having its center on the Sun. The asteroid may eventually reach an

angular position that is very far from Jupiter. On the other hand,

the coordinates used in the calculation described here are symmet-

ric. This causes a significant cut off that excludes many asteroids.

It is reasonable to expect that introducing suitable coordinates that

take into account the lack of symmetry of the true region of stability

would significantly improve the result.

8 Conclusions

The theory of exponential stability initiated by Moser an Littlewood

more than 40 years ago, and fully stated by Nekhoroshev, appears

as the most natural outcome of a careful analysis of the asymptotic

behaviour of the series produced by perturbation theory. It also ap-

pears as the only method available for proving the stability of a re-

alistic physical system — like the solar system or some parts of it

— for a set of initial conditions compatible with our experimental

knowledge of the initial data and of the parameters of the system.

The problem of investigating if the phenomenon of exponential sta-

bility is effective for a real system, where the perturbations are not

arbitrarily small, is still open, and is a challenging one. However, at

least in the simple case of the Trojan asteroids we have found that

stability for the age of the solar system is likely to occur.
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Simó, Effective stability for a Hamiltonian system near an ellip-

tic equilibrium point, with an application to the restricted three

body problem. J. Diff. Eqs., 20 (1989).

[18] A. Giorgilli and E. Zehnder, Exponential stability for time de-

pendent potentials, ZAMP (1992).

[19] A. Giorgilli and Ch. Skokos, On the stability of the Trojan

asteroids, Astron. Astroph. 317, (1997) 254–261.

[20] A. Giorgilli and A. Morbidelli, Invariant KAM tori and global

stability for Hamiltonian systems, ZAMP 48, (1997) 102–134.



SMALL DENOMINATORS AND EXPONENTIAL STABILITY 55

[21] A. Giorgilli and U. Locatelli, Kolmogorov theorem and clas-

sical perturbation theory, ZAMP 48 (1997) 220–261.

[22] A. Giorgilli and U. Locatelli, On classical series expansions

for quasi–periodic motions, MPEJ 3 N. 5 (1997).

[23] A. Giorgilli, On the problem of stability for near to integrable

Hamiltonian systems, Documenta Mathematica, extra volume

ICM 1998 (1998).
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[43] J. Roels and M. Hénon, Bull. Astr. Soc. 2, (1967) 267.

[44] G. Servizi, G. Turchetti, G. Benettin, and A. Giorgilli, Res-

onances and asymptotic behaviour of Birkhoff series, Phys. Lett.

A 95 (1983) 11–14.



SMALL DENOMINATORS AND EXPONENTIAL STABILITY 57

[45] C.L. Siegel, On the integrals of canonical systems, Ann. Math. 42

(1941) 806–822.

[46] Siegel, C. L., Iterations of analytic functions, Annals of Math. 43

(1942) 607–612.
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