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ABSTRACT. Let X̂ be an algebraic submanifold of complex projective

space PN . Assume that n := dim X̂ ≥ 3 and let L̂ denote the restric-

tion of the hyperplane section bundle OPN (1) to X̂. The meromor-

phic map Φ̂k associated to |k(KX̂ + (n− 2)L̂)| for k ≥ 1 ties together

the pluricanonical maps of the surface sections of X̂. Known results

show that the behavior of Φ̂k is far better than one would expect from

experience with the pluricanonical mappings of algebraic surfaces.

In this article we discuss the known results on the structure of the

mappings Φ̂k and describe the open problems.

Introduction

Let X̂ be an algebraic submanifold of complex projective space PN . As-

sume that n := dim X̂ ≥ 3 and let L̂ denote the restriction of the hyper-

plane section bundle OPN (1) to X̂. The meromorphic map Φ̂k associated to

|k(KX̂ + (n − 2)L̂)| for k ≥ 1 ties together the pluricanonical maps of the

surface sections of (X̂, L̂). Known results show that the behavior of Φ̂k is

far better than one would expect from experience with the pluricanonical

mappings of algebraic surfaces. As we will see below, questions about the

Φ̂k quickly reduce to questions about slightly better behaved maps Φk: the

map Φ̂k is in the same relation to the map Φk as the map associated to |kKŜ|

on a surface Ŝ with a minimal model S is to the map associated to |kKS|.
M. Beltrametti and this author have over the last few years [13, 14, 15,

16, 17] carried out an investigation of the maps Φ̂k. Though many basic

questions remain open, real progress has been made. Since most of this

work has not yet appeared and since what is known is scattered over the

literature, it is a very good time to survey what is known about the sec-

ond adjunction mapping Φ1 and the related mappings Φk for k ≥ 2. The
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question of when the second adjunction mapping Φ1 exists as a morphism

and not only as a meromorphic map is one of the two main open prob-

lems in adjunction theory (the other problem is about spectral values [18,

Conjecture A.5 of the Appendix]).

For most of the results that we discuss, the real work takes place in prov-

ing the three dimensional case. The general situation with n := dim X̂ ≥ 3

usually follows from the case of n = 3 by a straightforward induction. Ex-

cept in the last section of this survey, the reader will not lose much by

setting the dimension n to 3. I have included a few new results, e.g., The-

orems 2.2, 2.4, 3.2, 3.5, 3.7, 3.9, and 3.10; and the Corollaries 2.3 and 3.8

that arose in the process of writing this survey. Background material and

notation are presented in §1. In §1 we also explain the general problem

this article is about and explain how the problem naturally breaks up into

a number of smaller problems. In §2 we discuss known spannedness re-

sults for the line bundles that arise in the study of the maps Φ̂k. In §3

we discuss Φ̂k when κ(KX̂ + (n − 2)L̂) ≤ 2. In §4 we discuss Φ̂k when

κ(KX̂ + (n− 2)L̂) ≥ 3 and dim Φ̂1(X̂) ≤ 3. In §5 we discuss what we know

about Φ̂2 under the condition that κ(KX̂+(n−2)L̂) ≥ 3. Throughout the pa-

per we have listed open problems. I would like to express my deep thanks

to the Rendiconti del Seminario Matematico e Fisico di Milano, the University

of Milan, and especially to Professor Antonio Lanteri and Professor Marino

Palleschi for giving me this opportunity to put my thoughts on this topic

in writing. I would also like to thank Professor Beltrametti and Professor

Lanteri for their very helpful comments about this article.
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1 Background material and the refinement

of the basic problem

Throughout this paper we deal with meromorphic maps γ : V → W between

irreducible projective varieties. By definition, a meromorphic map γ : V →
W between irreducible projective varieties is an irreducible subvariety of

Γ ⊂ V×W whose projection onto V under the product projection V×W → V
is generically one-to-one. Γ is called the graph of γ. If V is normal, then

γ defines (i.e., Γ is the graph of a well defined) morphism off of a set of

codimension at least two in V . We say that γ is surjective (respectively,

birational) if the image of Γ toW under the product projection V×W → W is

onto (respectively, generically one-to-one). Given a surjective meromorphic

mapping γ : V → W between irreducible projective varieties, a general fiber

of γ is defined as the image in V under the product projection of a general

fiber of Γ → W .

Example 1.1 The following is the typical sort of meromorphic map that

occurs in this article. Let K denote a line bundle on a projective variety V .

If h0(K) ≥ 1 we obtain a morphism V − B → Ph
0(K)−1 on the complement

of the base locus B of |K|. We let Γ denote the closure of the graph of this

morphism in V × Ph
0(K)−1.

Many of the usual operations with morphisms extend to meromorphic

maps. For example if α : A → B and β : B → C are surjective meromor-

phic maps with graphs Γα and Γβ, then the composition β ◦ α : A → C is

defined by the image Γβ◦α of Γα × Γβ in A×C under the product projection

A×B×B×C → A×C . It is straightforward to check that in the case α,β are

morphisms, then Γβ◦α agrees with the graph of the composition β◦α. Sim-

ilarly the Remmert-Stein factorization of a meromorphic map γ : V → W
between irreducible projective varieties is easily defined. For simplicity we

assume that V is normal. Let ν : Γ → Γ denote the normalization morphism

of the graph Γ of γ. We let G : Γ → W denote the composition of ν with

the restriction of the product projection to Γ . Thus we can Remmert-Stein

factorize G = s ◦ r as the composition of a morphism r : Γ → Z with con-

nected fibers onto a normal variety Z followed by a finite-to-one morphism

s. We can Remmert-Stein factorize γ = s ◦ r , where r is the meromorphic

map r : V → Z whose graph is the image of the graph of r in V × Z . Note

that the general fiber of r is irreducible and s is a finite morphism. When

dealing with a line bundle or vector bundle V on an algebraic set V , we

often denote the restriction ofV to an algebraic subset A of V byVA. Sim-

ilarly given a map g : V → W between algebraic sets we often denote the

restriction of g to an algebraic subset A of V by gA. Let L̂ be a very am-

ple line bundle on a complex connected n-dimensional projective manifold

X̂. By a curve section (respectively, a surface section; respectively, a t-fold

section) of (X̂, L̂), we mean a curve C ⊂ X̂ (respectively, a surface Ŝ ⊂ X̂;
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respectively, a t-dimensional algebraic subset Z ⊂ X̂) obtained as the inter-

section of X̂ (embedded in projective space PN by |L̂|) with a codimension

n− 1 linear subspace of PN (respectively, a codimension n− 2 linear sub-

space of PN ; respectively, a codimension n−t linear subspace of PN ). More

generally, given a line bundle L on an irreducible n-dimensional variety V ,

by a t-fold section of (V ,L) we will mean a t-dimensional algebraic subset

Z ⊂ V which is equal to the intersection ∩n−ti=1Hi ⊂ V of n − t elements

H1, . . . ,Hn−t ∈ |L|. We will use curve section (surface section) of (V , L) for

1-fold sections (2-fold sections) of (V , L). We say that a line bundle L on a

variety V is spanned if, for each point x ∈ V , there is a global section of L
that does not vanish at x. We need some results about the first adjunction

mapping. Because they are a model for the type of result we would like

to eventually have for the second adjunction mapping, we present them

in some detail. We compromise here in that we restrict ourselves to the

situation when n ≥ 3, even though for the first adjunction mapping the

surface case is the hardest case (with a number of exceptional polarized

surfaces with no higher dimensional analogues). I refer to my book [12]

with Beltrametti for a detailed discussion with the full history of classical

adjunction theory and its generalizations. Besides [12], I refer to Sommese

[31, 32] and Van de Ven [40] for the following result.

Theorem 1.2 Let L̂ be a very ample line bundle on a complex connected n-

dimensional projective manifold X̂ of dimension n ≥ 3. Then either KX̂ +

(n− 1)L̂ is spanned, or (X̂, L̂) is one of the following:

1. (Pn,OPn(1)); or

2. a quadric in Pn+1, i.e., X̂ ∈ |OPn+1(2)| with L̂ � OPn+1(1)X̂ ; or

3. a scroll over a curve, i.e., there exists a morphism with connected fibers

ϕ : X̂ → C from X̂ onto a smooth curve C , and with KX̂ + nL̂ the

pullback of an ample and spanned line bundle on C .

The morphism φ : X̂ → P
h0(KX̂+(n−1)L̂)−1 is called the first adjunction map-

ping. The structure of φ is given by the following theorem. Besides [12], I

refer to Sommese [31, 32, 33, 34, 35].

Theorem 1.3 Let L̂ be a very ample line bundle on a complex connected n-

dimensional projective manifold X̂. Assume that KX̂ + (n− 1)L̂ is spanned.

Let φ = s ◦ r denote the Remmert-Stein factorization of φ with r : X̂ → X

having connected fibers with X normal and s : X → P
h0(KX̂+(n−1)L̂)−1 finite.

Then the following are all the possibilities.

1. −KX̂ := (n − 1)L̂: these are called Del Pezzo manifolds and they are

completely classified, see Fujita [25]; or
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2. if dimX = 1 then (X̂, L̂) is called a quadric fibration: in this case all

fibers are irreducible quadrics, i.e., given a fiber F of r , F is isomorphic

to a quadric in Pn with at most one isolated singularity, and LF is the

restriction of OPn(1) under this embedding; or

3. if dimX = 2 then (X̂, L̂) is a scroll over a surface: in this case r is a

Pn−2-bundle with LF � OPn−2(1) for any fiber F of r ; or

4. r is birational and has a smooth 3-dimensional imageX with r : X̂ → X
the blowing up of X on a finite set F . In this case the bundle L :=
(φ∗L)

∗∗ is ample and L̂ � φ∗L̂ −φ−1(F) (or equivalently KX̂ + (n −

1)L̂ � φ∗(KX + (n− 1)L)).

When r is birational, the pair (X, L) is called the first reduction of (X̂, L̂).

The major fact about the first adjunction mapping in the generic situation,

when r is birational, is the following. Besides [12], I refer to Serrano [29]

and Sommese and Van de Ven [39].

Theorem 1.4 Let L̂ be a very ample line bundle on a complex connected n-

dimensional projective manifold X̂. Assume that KX̂ + (n− 1)L̂ is spanned

with φ = s ◦ r as above. If r is birational then s is an embedding, i.e.,

KX + (n− 1)L is very ample.

The above result shows that the first reduction (X, L) is very simply re-

lated to (X̂, L̂). The first reduction and the first adjunction mapping have

proved very useful in the study of the geometry of the pair (X̂, L̂). They

give a strong relation between the geometry of (X̂, L̂) and the geometry of

the curve sections of (X̂, L̂). This stems from the fact that except for scrolls

over curves, KX̂ + (n− 1)L̂ is the unique line bundle on X̂, which, for each

curve section, restricts to the canonical bundle of the curve section. Since

only a codimension h1(OX) subspace of the sections of the canonical bun-

dle of a curve section of (X̂, L̂) extend to KX̂ + (n − 1)L̂, it is remarkable

that KX̂ + (n− 1)L̂ is so well behaved. In analogy with the first adjunction

map we would like to have a map closely associated to the canonical maps

of the smooth surfaces in |L̂|. The following problem is the central topic of

this survey. It will be gradually refined below (see Problems 1.8 and 1.11).

Problem 1.5 Assume that L̂ is a very ample line bundle on an connected

n-dimensional projective manifold X̂. For each k ≥ 1 decide whether the

mapping

Φ̂k : X̂ → P
h0(k(KX̂+(n−2)L̂))−1

associated to |k(KX̂ + (n−2)L̂))| exists and if it exists work out the structure

of Φ̂k.
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The explicit description above of all the pairs (X̂, L̂) when KX̂+(n−1)L̂ has

no sections shows that, with the exception of scrolls over smooth surfaces,

surface sections Ŝ of (X̂, L̂) are of negative Kodaira dimension and thus

h0(k(KX̂ + (n−2)L̂)) = 0 for any k > 0. In the case of scrolls over surfaces

the bundle k(KX̂+(n−2)L̂) is negative restricted to any fiber, and therefore

in this case h0(k(KX̂ + (n − 2)L̂)) = 0 for any k > 0. Therefore, in the

study of the mappings Φ̂k associated to |k(KX̂ + (n− 2)L̂)|, we can restrict

ourselves without loss of generality to pairs (X̂, L̂) with a first reduction

(X, L). Here a key result is the following, which was proved first by this

author [33, 35] for threefolds with L̂merely ample with one smooth Ŝ ∈ |L̂|
(see also Fania and Sommese [22]), and later generalized under a variety

of assumptions by Fujita [24], Ionescu [26], Sommese [37], Beltrametti and

Sommese [10], and others. For an exposition of the known results in this

direction see [12, Chapter 7].

Theorem 1.6 Assume that L̂ is a very ample line bundle on a smooth projec-

tive n-fold X̂. Assume that (X, L), the first reduction of (X̂, L̂), exists. Then

either:

1. (X, L) � (P3,OP3(3)); or

2. (X, L) � (P4,OP4(2)); or

3. (X, L) � (Q,OQ(2)) where (Q,OQ(1) is a quadric in P4; or

4. X is aP2-bundle f : X → Y over a smooth curve Y with 2KX+3L � f∗H
for an ample line bundle H on Y ; or

5. KX + (n− 2)L is nef, i.e., for all effective curves C ⊂ X we have (KX +
(n− 2)L) · C ≥ 0.

In all the cases of this theorem except the last when KX + (n− 2)L is nef,

the surfaces Ŝ ∈ |L̂| are of negative Kodaira dimension. Thus, up to a very

explicit list of pairs for which k(KX̂ + (n − 2)L̂) has no sections for any

k > 0, we have that KX + (n − 2)L is nef. Therefore in the study of Φ̂k,

we can without loss of generality assume that KX + (n − 2)L is nef. We

often use the notation K for the bundle KX + (n − 2)L. We define the

second adjunction mapping as the meromorphic map Φ1 associated to |K|
when h0(K) > 0. More generally for k > 0 we define the map Φk as the

meromorphic mapping associated to |kK|. Let X̂, L̂, X, L,φ, F be as in part

4 of Theorem 1.3. It is a result of this author [38, Lemma (0.3.1)] that the

biholomorphism of X − F with X̂ −φ−1(F) gives a canonical isomorphism

φ∗ : H0(k(KX̂ + (n − 2)L̂)) → H0(kK) for all k > 0. Thus Φ̂k exists for a

given k > 0 if and only if Φk exists for the same k > 0. Moreover Φ̂k factors

Φk ◦φ.

X̂
φ
-→ X

Φk
-→ P

h0(kK)−1 (1)
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Since the cases when either the first reduction does not exist or the first

reduction (X, L) exists but K is not nef are completely classified, we lose

nothing by working on the first reduction (X, L) withK nef. In all casesK
is the only line bundle onX with the property that the restriction to smooth

surface sections S of (X, L) is the canonical bundle of S. This follows from

the adjunction formula KS � KS , and the first Lefschetz theorem, which

implies that restriction gives an injection Pic(X) → Pic(S). Note that the

above theorems imply that the smooth surface sections of (X̂, L̂) are in

one-to-one correspondence with the smooth surface sections of (X, L) that

contain F . The nefness of K, i.e., KX + (n − 2)L, implies that the surface

sections of (X̂, L̂) are of nonnegative Kodaira dimension andφŜ : Ŝ → S, the

first reduction mapping restricted to a smooth surface section Ŝ of (X̂, L̂),
is the map from Ŝ to its minimal model S. It is worth emphasizing that

it is quite hard for a surface Ŝ of nonnegative Kodaira dimension to be a

surface section of a projective manifold, (X̂, L̂). For example, if the map

from Ŝ to S, the minimal model of Ŝ, is not a simple blowup of a finite

set, then the full result, of which a brief summary is given above, implies

that X̂ is a Pn−2-bundle over a surface with Ŝ a meromorphic section. The

same result holds (see Sommese [36]) if there are more than four irreducible

curves in a connected component of the set of smooth rational curves with

self-intersection −2 on the minimal model of Ŝ.

SinceK is nef, it is a consequence of the Kawamata-Shokurov basepoint

free theorem that all large positive multiples of K are spanned. By con-

sidering the Remmert-Stein factorization of the morphism associated to

the sections of any positive multiple of K that is spanned we obtain the

following structure theorem.

Theorem 1.7 There is a holomorphic map r : X → Y with connected fibers

onto a normal projective variety Y , and an ample line bundle H on Y such

that K � r∗H . The triple (Y ,H , r ) depends only on (X, L), i.e., (Y ,H , r )
is independent of the positive spanned multiple of K used. The dimension

of Y is equal 0,1,2,3, n.

We define di = Ki · Ln−i for i = 0,1, . . . , n. Following tradition we

usually use d instead of d0. Let SinceK is nef and some power is spanned,

we see that

di ≥ 0 with strict inequality if dim r(X) ≥ i. (2)

The di are crucial invariants in the understanding of lower bounds for num-

bers of sections ofK, and the properties of the maps, e.g., of the degrees of

the maps sk and the spaces Zk occurring in the factorization (6) below. M.

Beltrametti and this author have recently made a systematic investigation

of these numbers [16] and as a consequence have been able to show [17]

the sharpened degree bounds for the map sk described later in this paper.

In light of the above we can rephrase Problem 1.5 as follows.
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Problem 1.8 Assume that L̂ is a very ample line bundle on an connected n-

dimensional projective manifold X̂. Assume that either κ(KX̂+(n−2)L̂) ≥ 0

or equivalently that the first reduction (X, L) of (X̂, L̂) exists withK := KX +
(n− 2)L nef. For each k ≥ 1 decide whether the mapping Φk associated to

|kK| exists and if it exists work out the structure of Φk.

In [38, Theorem (2.0)] this author showed that we have a complete and

optimal answer to the existence of the mapping Φk.

Theorem 1.9 Let L̂ be a very ample line bundle on a connected n-dimen-

sional projective manifold X̂. The following are equivalent:

1. h0(KX̂ + (n− 2)L̂) > 0;

2. κ(KX̂ + (n− 2)L̂) ≥ 0, i.e., h0(k(KX̂ + (n− 2)L̂)) > 0 for some k > 0;

3. the first reduction φ : (X̂, L̂)→ (X, L) exists with K nef.

As pointed out earlier H0(k(KX̂ + (n − 2)L̂)) and H0(kK) are canonically

isomorphic for k ≥ 1. This result is in fact true for ample and spanned line

bundles on Gorenstein threefolds with isolated singularities or for smooth

ample divisors on smooth projective threefolds. Theorem 1.9 follows from

equation 2 combined with the following result in this author’s paper [38].

Equation 3 below follows by means of a covering trick from an inequality

of Miyaoka, and equation 4 below follows from a log Chern inequality of

Tsuji.

Theorem 1.10 Let L be an ample line bundle on a Gorenstein projective

threefold. Assume that K is nef. If S ∈ |L| is smooth and L is spanned, then

h0(K) ≥
χ(OS)

2
+
d1

36
. (3)

If L is not necessarily spanned, but X and S ∈ |L| are smooth,

h0(K) ≥
χ(OS)

2
+
d1

24
+
d3

64
. (4)

From here on we make the assumption that the first reduction (X, L) exists

and K := KX + (n− 2)L is nef.

By Theorem 1.7, the mapping Φk factors as Φk = ψk ◦ r giving the fac-

torization Φ̂k = ψk ◦ r ◦φ

X̂
φ
-→ X

r
-→ Y

ψk
-→ P

h0(kK)−1 (5)

whereψk : Y → Ph
0(kH )−1 is the meromorphic mapping associated to |kH|.

We can Remmert-Stein factorizeψk = sk ◦Rk whereRk : Y → Zk is a mero-

morphic map having connected fibers with Rk’s generic fiber irreducible
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and where sk : Zk → sk(Zk) ⊂ Ph
0(kK)−1 is a finite mapping. This gives the

factorization Φ̂k = sk ◦Rk ◦ r ◦φ

X̂
φ
-→ X

r
-→ Y

Rk
-→ Zk

sk
-→ P

h0(kK)−1 (6)

into maps that our results describes. Therefore we can refine the Problem

1.5 as follows.

Problem 1.11 Assume that L̂ is a very ample line bundle on an connected n-

dimensional projective manifold X̂. Assume that either κ(KX̂+(n−2)L̂) ≥ 0

or equivalently that the first reduction (X, L) of (X̂, L̂) exists withK := KX +
(n− 2)L nef.

1. Classify all pairs (X̂, L̂) for which kK is not spanned.

2. For each k ≥ 1 work out the properties of the map Rk, e.g.,

(a) what is the dimension of Zk; and

(b) how far is ψk from being a morphism?

3. For each k ≥ 1 work out the properties of the map sk, e.g.,

(a) what is the degree of sk; and

(b) how far is sk from being birational?

We will see below that:

1. We have that kK is spanned for k ≥ 2 (the hard case when κ(K) ≥ 3

was shown by this author [38]).

2. ψk is an isomorphism for k ≥ 3.

3. In the case of k = 2 we have strong results on the degree of s2, e.g.,

under weak conditions it is birational.

4. We have significant results about R1 under the assumption that

dimZ1 ≤ 3.

5. There are exceptions (Theorem 4.1 below) to the spannedness of K.

The following lemma shows why it is often straightforward to lift results

about KX + (n− 2)L from threefold sections of (X̂, L̂) to X̂.

Lemma 1.12 Let L be an ample line bundle on an n-dimensional projective

manifold X. Assume that n ≥ 4 and that A1, . . . , An−3 are smooth elements

of |L| that meet transversely in a smooth threefoldA. Then the mapH0(KX+
(n− 2)L)→ H0(KA +LA) is onto.
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Proof. For simplicity assume that n = 4. Consider the residue sequence:

0 -→ KX +L -→ KX + 2L -→ KA +LA -→ 0.

The lemma follows from Kodaira’s vanishing theorem. Q.E.D.

Remark 1.13 The above result is often used in conjunction with the fact

that through any two points or through a tangent direction at a point we

can always find a smooth threefold section of (X̂, L̂)where L̂ is a very ample

line bundle on a smooth projective manifold of dimension n ≥ 4.

Remark 1.14 Let (X̂, L̂) as in Problem 1.11. Let A be a general threefold

section of (X̂, L̂). If Φ̂1 has an image of dimension ≤ 3 then Φ̂1(X̂) = Φ̂(A).
Moreover if Φ̂1 has an image of dimension = 3 then the degree of the map

associated to |KA + L̂A| is a positive multiple of the degree of s1. If Φ̂1 has

an image of dimension≤ 2 and is not holomorphic then the map associated

to |KA + L̂A| is not holomorphic. Also in this case since a general fiber of

R1 is at least two dimensional and since A meets a general fiber of R1 in

an irreducible set, it follows that the degree of the finite map arising from

the Remmert-Stein factorization of the map associated to |KA+ L̂A| equals

the degree of s1.

2 Spannedness results

In this section we discuss what we know about the spannedness of K.

I know few general conditions guaranteeing the spannedness ofK. Here

is one result in this direction based on the generalization of Reider’s theo-

rem due to Ein and Lazarsfeld [20].

Theorem 2.1 (Beltrametti, Schneider, and Sommese [7]) Let L be a very

ample line bundle on a connected n-dimensional projective manifoldX with

n ≥ 3. Assume that the first reduction (X′,L′) exists, that L′n ≥ 850, and

that there are no nontrivial maps of P1 to threefold sections A of (X′,L′),
e.g., either T∗A is nef or thatA is hyperbolic. Then it follows thatK′X+(n−2)L′

is spanned.

I refer also to [7, 8] for a number of results on the spannedness of KX ⊗
detV where V is a vector bundle on X satisfying appropriate ampleness

conditions. It is a result of Beltrametti and this author (combine Lemma

2.2 and Proposition 3.1 of [11]) that given a line bundle L on a connected

n-dimensional projective manifold X that is 3-jet ample in the sense of

[11], then KX + (n−2)L is spanned for n ≥ 3 unless (X,L) = (P3,OP3(3)).
A generalization of this result follows easily from some results of Lanteri,

Palleschi, and this author [27]. For a point x of a variety V , let mx denote

the subsheaf of OV which is equal to OV away from x and is equal to the

maximal ideal of OV at x ∈ V .
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Theorem 2.2 (Lanteri, Palleschi, and Sommese) Assume that L is a line

bundle on a connected n-dimensional projective manifold X. Assume that

for some k > 0 and each x ∈ X, x is an isolated point in the basepoint locus

of |L⊗mkx|. If t is an integer satisfying Ln ≥
nn + 1

tn
and t ≥

n

k
then KX+tL

is spanned.

Note that the condition that for each x ∈ X, x is an isolated point in the

basepoint locus of |L ⊗ mkx|, implies the nefness of L. Note also that the

above conditions apply to the case of L = g∗H where g : X → Y is a finite-

to-one morphism from a projective manifold onto a variety Y, and H is

(k−1)-jet ample unless g is an isomorphism to Pn with tL � OPn(n). The

most interesting cases of this result for this article occur when (n, k, t) =
(3,3,1) and (n, k, t) = (4,2,2). For example, here is the three-dimensional

case.

Corollary 2.3 (Lanteri, Palleschi, and Sommese) Assume that L is a line

bundle on a connected three-dimensional projective manifold X with Ln ≥
28. If, for some k ≥ 3 and each x ∈ X, x is an isolated point in the basepoint

locus of |L ⊗mkx|, then KX +L is spanned.

Here is another variant of the above. Recall [5] that L is said to be k-

spanned if given any zero dimensional curvilinear scheme Z on X of length

≤ k+ 1 it follows that the map H0(L)→ H0(L⊗OZ) is onto.

Theorem 2.4 Let L be a 3-spanned line bundle on a connected n-dimensio-

nal projective manifold X with n ≥ 3. Assume that Ln ≥ 850. Then KX +
(n− 2)L is spanned by global sections.

Proof. Using Lemma 1.12 and Remark 1.13 we see that we are reduced to

the case of n = 3. By [20, Theorem 1∗], it suffices to show that given

any irreducible curve C ⊂ X and any irreducible divisor D ⊂ X, we have

L · C ≥ 3 and L2 ·D ≥ 5. Note that by the 3-spannedness of LC it follows

that we can separate any four points of C , which implies that L · C ≥ 3.

Let C ⊂ D denote a general element of |LD|. We know that C is irreducible

since D is irreducible and L is very ample. Since we can separate up to

at least four points of C, we see that |LC| embeds C in PN with N ≥ 3.

By Castelnuovo’s bound on the genus of an irreducible curve we see that

δ := L2·D ≤ 4 implies that the arithmetic genus of C is at most 1. Choosing

a set F of δ − 1 ≤ 3 distinct smooth points of C, we have the result that

LC −F is spanned. If the genus of C is 1, then we have the absurdity that

the degree of LC −F is 1. Thus we can assume without loss of generality

that C is genus 0 and hence smooth. This implies that C did not meet the

singularities of D and thus D has at most isolated singularities. Since D
is a divisor on a smooth threefold, it follows that D is normal. Using the

classification of normal surfaces with a rational curve as ample divisor, we

see that either



60 A. J. SOMMESE

1. (D,LD) � (P2,OP2(k)) with k = 1,2; or

2. D is a P1-bundle p : D → P1 over P1 with Lf � OP1(1) for a fiber f of

p; or

3. (D,LD) is a cone over P1, i.e., D is D̂ := P(OP1 ⊕OP1(k)) for some

k ≥ 1 with the exceptional section corresponding to the surjection

OP1 ⊕OP1(k)→ OP1 blown down and with LD the unique line bundle

that pulls back to the tautological line bundle on D̂.

In any of these cases D contains curves E with L · E ≤ 2, contradicting the

fact that L · C ≥ 3 for all curves on X. Q.E.D.

3 The second adjunction mapping: the case when κ(K) ≤ 2

We assume throughout this section that L̂ is a very ample line bundle on an

n-dimensional projective manifold X̂ with n ≥ 3. We assume further that

the second reduction φ : (X̂, L̂) → (X, L) exists with K := KX + (n − 2)L
nef. We use the notation occurring in factorization (6).

There are four cases, κ(KX̂ + (n− 2)L̂) = κ(K) = dimY = 0,1,2. Since

under these assumptions any threefold section of (X, L) surjects onto the

Y , we can by using Lemma 1.12 reduce to the case of n = 3. In the case

when dimY = 0 we see from Theorem 1.7 that kK is trivial for all k > 0,

and in particular kK is spanned for all k > 0.

3.1 The case of κ(K) = 1

The first interesting case is when dimY = 1. In this case Y is a smooth

curve. Since H is ample, we have spannedness of K (and very ampleness

of H ) if Y � P1. Further we see that for the general fiber F of r we have

KF +LF � OF . Thus (F, LF) is a so-called Del Pezzo surface. These rational

surfaces are completely classified, e.g., we have L2
F ≤ 9. From the rela-

tive Kodaira vanishing theorem we conclude that r(1)OX , the first derived

functor of the direct image of OX with respect to r , is 0. From this we con-

clude that the genus of Y equals the irregularity q := h1(OX) of X, which

equals h1(OS) for a surface section S of (X.L) by the first Lefschetz theo-

rem. Moreover rS : S → Y is an elliptic surface of Kodaira dimension 1. The

key to analyzing the structure of (X, L) in this case is to use the canonical

bundle formula on S (see [1, Theorem (12.1)]). This was done in [33, 38]

and the conclusions are that rS has no multiple fibers and, by using the

injection of Pic(X)→ Pic(S), that degH = 2q−2+χ(OS). It is well known

that a line bundle E on a Riemann surface of positive genus q is spanned

if degE ≥ 2q, and is very ample if degE ≥ 2q + 1. Thus we conclude that

K is spanned if χ(OS) ≥ 2 and H is very ample if χ(OS) ≥ 3. We need a

Theorem, which seems to be new in the case χ(OS) = 0. The argument we
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give works without change for merely ample line bundles with at least one

smooth divisor in the linear system of the line bundle. We will need a very

useful result from my first paper on hyperplane sections [30, 33].

Theorem 3.1 LetH be an ample line bundle on a connected projective man-

ifold, V . Let A be a k-fold section of (V ,H). If k ≥ 2, then the universal cover

of A is not contractible, i.e., A is not a K(π,1). In particular if A is a smooth

general type surface, then K2
A ≤ 9χ(OA)− 1.

The last statement of the result follows since equality in Miyaoka’s inequal-

ity for general type surfaces implies that the universal cover of the surface

is biholomorphic to the unit ball in C2.

Theorem 3.2 If L̂ is a very ample line bundle on a smooth projective three-

fold X̂ and if χ(OŜ) ≤ 0 for a smooth Ŝ ∈ |L̂|, then κ(KX̂ + L̂) = −∞.

Proof. If κ(KX̂ + L̂) ≥ 0 then we are in the situation of Theorem 1.7. Thus

K is nef and hence KS is nef for smooth S ∈ |L|. Since κ(Ŝ) = −∞ if

χ(OŜ) < 0, we can assume without loss of generality that χ(OŜ) = 0. In

case dim r(X) = 0 it follows from the residue sequence

0 → KX →K → KS → 0

that χ(OS) = χ(K) + χ(OX). Since KX + L � OX we conclude from the

Kodaira vanishing theorem that χ(OS) = 2 (in fact, S is a K3 surface). So

χ(OŜ) 6= 0 in this case. If dim r(X) ≥ 2 then K2
S = K

2 · L ≥ 1 and thus we

conclude that S is of general type. This implies that χ(OS) > 0. Thus we

have dim r(X) = 1. Since χ(OS) = 0, we conclude from 2q − 2 + χ(OS) =
degH > 0 that q ≥ 2. Since χ(OS) = 0 and since K2

S = K2 · L = 0, it

follows from Noether’s formula that the Euler characteristic of S is 0. Since

r : S → Y has no multiple fibers, we conclude from Corollary (11.6) and

Remark (11.5) of [1] that r has no singular fibers and thus that r is a C∞

fiber bundle over a positive genus curve. Thus the universal cover of S is

contractible. This is not possible by Theorem 3.1. Q.E.D.

Note that this result contains a nonexistence result as corollary.

Corollary 3.3 Let L be a very ample line bundle on a smooth n-dimensional

projective manifoldX withn ≥ 3. If h0(KS) = 0 for a smooth surface section

S of (X,L), and S has nonnegative Kodaira dimension, then it follows that

X is a Pn−2-bundle over a smooth surface Y with S a meromorphic section

over Y.

The very ampleness can be relaxed to the assumption that L is ample and

there are n − 2 elements of |L| meeting transversely in a smooth surface

S. Using Theorem 3.2 we see that H and (hence) K are spanned except

possibly if χ(OS) = 1, andH is very ample except possibly if χ(OS) = 1,2.
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For k ≥ 2, kK is spanned. For k ≥ 2, kH is very ample, with the possible

exception if k = 2 and h1(OS) = χ(OS) = 1. If k = 2 and h1(OS) = χ(OS) =
1, then the degree of the mapping s2 is two. Thus the following is all that

remains unanswered when κ(KX̂ + (n− 2)L̂) = 1.

Problem 3.4 Let L̂ be a very ample line bundle on an n-dimensional con-

nected projective manifold X̂ with n ≥ 3. Assume that κ(KX̂ + (n− 2)L̂) =

1. Let (X, L) be the first reduction of (X̂, L̂) with K nef, and H , Y , and

q = h1(OX̂) as above.

1. Enumerate the exceptions (if there are any) to K being spanned when

χ(OS) = 1 ≤ h1(OS).

2. Enumerate the exceptions (if there are any) to H being very ample

when χ(OS) = 1,2; h1(OS) ≥ 1 and to 2H being very ample when

h1(OS) = χ(OS) = 1.

3.2 The case of κ(K) = 2

In this case the general fiber of r : X → Y is a smooth quadric. Beltrametti

and this author [9] showed that whenn ≥ 4 the fibers of the map r are all of

pure dimension n− 2 and when n = 3 they classified the two-dimensional

fibers of such morphisms. Besana [19] showed that Y was a smooth surface

and that H = KY + E for an ample line bundle E on Y . Using this and

Reider’s theorem Besana showed spannedness of K except if E2 ≤ 4 (in

fact Besana shows the more precise result that K is spanned except if

E2 ≤ 4−u, where u is the number of divisorial fibers of the map r ). Since

the branch locus of a map r : S → Y for smooth S ∈ |L| is in |2E|, this is

seen to be a very restrictive condition. In [3], Beltrametti, Besana, and this

author showed that h0(K) ≥ 2 with a few possible exceptions. It was noted

[15, Remark 1.5] that an argument using Reider’s theorem shows that 2K
is always spanned. Here is a similar argument showing that 3H is very

ample on Y .

Theorem 3.5 3H is very ample on Y .

Proof. By the result of Besana mentioned above, we know thatH = KY +E
where Y is smooth and E is ample. Write 3H = KY +L with L := 2H +E.

Note that L2 ≥ 13. Indeed since H and E are ample we have H · E ≥ 1.

Further we have that H ·E = (KY +E) ·E is even. Thus L2 = 4H 2+4H ·
E+E2 ≥ 13. By Reider’s theorem we know that if KY +L is not very ample

there is an effective curve C on Y satisfying L · C − 2 ≤ C2 ≤ L · C/2 < 2.
Noting that 3 ≥ L·C = (2H +E) ·C ≥ 3, we see that L·C = 3 and C2 = 1,

which by the Hodge index theorem gives the contradiction that L2 ≤ 9.

Q.E.D.
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The following lemma summarizes what we know about the degree of

the mapping associated to |2H|.

Lemma 3.6 The degree of the morphism associated to |2H| is at most four,

with equality implying that χ(OS) = h0(H ) = 1 and that d2 := K2
S = 2,4.

Proof. Note that

h0(2H ) = h0(KY +E +H ) = χ(2H ) =H
2 +

(KY +E) · E

2
+h0(H ). (7)

Since both E and H are ample we know that
(KY +E) · E

2
≥ 1. Thus

equation 7 combined with h0(H ) ≥ 1 lets us conclude that h0(2H ) ≥
H 2 + 2. Let t equal the degree of the morphism associated to |2H|. We

know that (2H )2 = 4H 2 = tδ where δ denotes the degree of the image

of Y under |2H|. Since δ ≥ h0(2H ) − 2, we conclude that t ≤ 4 with

equality implying that H ·E = (KY +E) · E = 2 and h0(H ) = 1. Using [3,

Proposition (1.1) and Theorem (2.1)] we conclude that χ(OS) = 1 and that

d2 := K2
S = 2,4. Q.E.D.

Theorem 3.7 If d2 ≥ 10 and if s2 is not birational then there is a morphism

g : Y → R of Y to a smooth curve R with all fibers irreducible curves of

arithmetic genus 1. Moreover the morphism g has a section.

Proof. Note that we have 2H = KY +E +H and

(E +H )2 = E2 + 2E ·H +H 2 = E2 + 2E · (KY +E)+
d2

2
≥ 1+ 4+ 5.

Therefore given a general point x ∈ Y and any other different point y ∈ Y ,

we have that either the map associated to |2H| separates x,y or there is

a curve C ⊂ Y that contains x,y and such that

(E +H ) · C − 2 ≤ C · C <
(E +H ) · C

2
< 2.

Thus we conclude that (E +H ) ·C = 2,3. In case (E +H ) ·C = 3, we get

that C · C = 1 which gives the contradiction

9 = ((E +H ) · C)2 ≥
(
(E +H )2

)(
C2
)
≥ 10.

Therefore we conclude that E · C = 1, H · C = 1, C2 = 0. From E · C = 1,

we conclude that C is irreducible. From

(KY + C) · C = (H −E + C) · C = 0

we conclude that the arithmetic genus of C is 1. Finally note that since

E · C = 1 there are a finite number of projective varieties parameterizing
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curves C satisfying E · C = 1, H · C = 1, C2 = 0. Since there is at least

one of these families with a curve passing through a general point of Y and

since C2 = 0 we conclude by standard arguments that we have a morphism

g : Y → R to a smooth curve R with the general fiber one of these curves.

Since H is ample and since H · f = 1 for one and hence every fiber of

g we conclude that all fibers of g are irreducible. Finally note that since

h0(H ) ≥ 1 and H · f = 1, there is an irreducible component of a curve in

|H| which is a section of g. Q.E.D.

Corollary 3.8 Let L̂ be a very ample line bundle on an n-dimensional pro-

jective manifold X̂. Assume that κ(KX̂ + (n − 2)L̂) = 2. If d2 ≥ 10 and ψ2

is not birational, then given a smooth surface section S of (X, L), there is a

fibration of S onto a curve R with general fiber a genus two curve which is

a double cover of an elliptic curve.

Proof. Lemma 1.12 lets us reduce to the case of n = 3. Let h : S → R be

the composition of r with the morphism g of Theorem 3.7. Let E be as

in Theorem 3.7. Note that S is the desingularization of a branched cover

of Y with branch locus B ∈ |2E|. Thus since E · f = 1 for a fiber of g we

conclude that a general fiber of h is a double cover of an elliptic curve with

branch locus of degree two, and thus a genus two curve. Q.E.D.

We know less about the degree of ψ1, the mapping associated to H .

Theorem 3.9 Let L̂ be a very ample line bundle on an n-dimensional pro-

jective manifold X̂. Assume that κ(KX̂ + (n − 2)L̂) = 2. If dim Φ̂1(X) = 2

then the degree of ψ1 is at most 13.

Proof. Let h := h0(H ). We know that h = h0(K), and since the image of Y
under the meromorphic map associated toH is two-dimensional, we know

that h ≥ 3. Moreover we know that d2 := K · K · L = 2H 2. Thus if the

degree of the mapping associated to |H| is greater than 13, then we have

d2 = 2H 2 ≥ 28(h− 2). (8)

Using Theorem 3.1 we know that d2 ≤ 9χ(OS) − 1 Thus we conclude that

χ(OS) ≥ 3h− 5. Thus by Theorem 1.10 we conclude that

h ≥
χ(OS)

2
+
d1

12
≥

3h− 5

2
+
d1

24
.

This gives that 5 ≥ h +
d1

6
. Since d1 > 0 we conclude that h ≤ 4. We

claim that h 6= 3. To see this note that if h = 3 then by equation 8 we have

that d2 ≥ 28. Therefore by Miyaoka’s inequality for general type surface

we conclude that χ(OS) ≥ 4 for a smooth S ∈ |L|. Thus by Theorem 1.10

we conclude that d1 ≤ 12. Therefore by the Hodge inequality we conclude
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that d ≤
d2

1

d2
≤

144

28
, i.e., that d ≤ 5. But this implies by Castelnuovo’s

inequality implies that g(C) ≤ 2 for a curve section C of (X̂, L̂). Since

general type surfaces do not contain pencils of curves of genus ≤ 1 we

conclude that g(C) = 2 and d = 5. From this we conclude the absurdity

that d1 = 2g(C) − 2 − d < 0. If h = 4 then d2 ≥ 56 and by Miyaoka’s

inequality for general type surface we conclude that χ(OS) ≥ 7. Thus by

Theorem 1.10 we conclude that d1 ≤ 12. Therefore by the Hodge inequality

we conclude that d ≤
d2

1

d2
≤

144

56
, i.e., that d ≤ 2. This easily contradicts S

being a general type surface. Q.E.D.

Theorem 3.10 Let L̂ be a very ample line bundle on an n-dimensional pro-

jective manifold X̂. Assume that κ(KX̂ + (n− 2)L̂) = 2. If dim Φ̂1(X) = 2. If

d := Ln ≥ 72, then the degree of ψ1 is at most eight.

Proof. Let h := h0(H ). We know that h = h0(K), and since the image of Y
under the meromorphic map associated toH is two-dimensional, we know

that h ≥ 3. Moreover we know that d2 := K · K · L = 2H 2. Thus if the

degree of the mapping associated to |H| is greater than 9, then we have

d2 = 2H 2 ≥ 18(h− 2).

Since d2 ≤ 9χ(OS)−1 we conclude that χ(OS) ≥ 2h−3. Thus by Theorem

1.10 we conclude that

h ≥
χ(OS)

2
+
d1

12
≥

2h− 3

2
+
d1

24
.

This gives that d1 ≤ 36. Since d2 ≥ 18, we conclude from the Hodge

index theorem that d ≤ 72 with equality implying that 2KS ∼ L. Thus

either d ≥ 73 and we are done or d = 72 and we conclude that 2KS ∼ L.

Using the consequence of the first Lefschetz theorem that the restriction

map Pic(X) → Pic(S) is injective for any smooth S ∈ |L|, we conclude that

2K ∼ L and therefore thatK is ample. Thus (X, L) can’t be a conic fibration

over a surface in this case. Q.E.D.

Example 3.11 Let (Y ,H) be the unique example of a smooth surface po-

larized by a very ample line bundle H such that the morphism associated

to |KY + H| has degree three. Let X̂ := Y × P1 and let a : X̂ → Y and

b : X̂ → P1 denote the product projections. Let L̂ denote the very ample

line bundle, a∗H ⊗ b∗OP1(2). Then KX̂ + L̂ is spanned and the second ad-

junction mapping of (X̂, L̂), i.e., in this case the map associated to |KX̂ + L̂|,

has the Remmert-Stein factorization a : X̂ → Y composed with the three-

to-one branched cover associated to |KY +H|. I know no examples with s1
having higher degree that three.
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The following is what remains unanswered when κ(KX̂ + (n− 2)L̂) = 2.

Problem 3.12 (cf. [3]) Let L̂ be a very ample line bundle on an n-dimensio-

nal projective manifold X̂. Assume that κ(KX̂ + (n− 2)L̂) = 2. Let (X, L) be

the first reduction of (X̂, L̂) with K nef, and with H , Y as above.

1. Enumerate the exceptions (if there are any) to H being spanned when

(H −KY )2 ≤ 4.

2. Enumerate the exceptions (if there are any) to H and 2H being very

ample.

3. Find the optimal degree bounds for the maps s1, s2.

4 The second adjunction mapping: the case when κ(K) ≥ 3

and dimΦ1(X) ≤ 3

Throughout this section we assume the hypotheses and notation of Prob-

lem 1.11. We recall the notation di := Ki · Ln−i for i = 0, . . . , n with

K := KX + (n− 2)L. We usually denote d0 by d.

4.1 Lower bounds on the number of independent sections

An important result is that K does not have to be spanned.

Theorem 4.1 (Lanteri, Palleschi, and Sommese [28, §1]) LetX be a smooth

connected projective threefold with −KX = 2M for an ample line bundle M
and with M3 = 1. Then L := 3M is very ample, but KX +L is ample and not

spanned.

Note that KX + L = M is spanned except at one point, and the image of

|KX + L| is P2 with fibers curves of arithmetic genus 1. This is the only

known example with K nef but not spanned. As Theorem 5.2 makes clear

this example is exceptional in that s2 has degree greater than one. The

above result and the difficulty of showing that K is spanned prompted

Beltrametti and this author to see what they could discover about the pos-

sibly meromorphic map ψ1 : X → Ph
0(K)−1 associated to |K|. The starting

point of our investigations was an analysis of best possible lower bounds

for h0(K). In trying to find lower bounds for h0(K), low degree pairs,

i.e., pairs (X̂, L̂) with L̂n small, cause serious difficulties. In [38] this author

dealt with these cases by showing that the double point inequality

d(d− 10)+ 12χ(OS) ≥ 2d2 + 5d1,

is true for L̂n ≥ 7, and then used this to show that h0(K) ≥ 3 when

κ(X̂) ≥ 0. The above inequality is a surface inequality, and it suggests
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trying to use a threefold double point inequality. The problem that arises

with this is that the Euler characteristic of the threefold, which is not di-

rectly tied to projective invariants of the pair (X̂, L̂), comes into the for-

mula. Very fortuitously, the hard Lefschetz theorem allows the formula to

be transformed into the following very useful estimate.

Theorem 4.2 (Beltrametti and Sommese [13]) Let (X̂, L̂) be a smooth pro-

jective threefold, polarized with a very ample line bundle, L̂. Let (X, L) and

φ : X̂ → X be the first reduction and first reduction map, respectively. Let

d̂ := L̂3. Let γ be the number of points blown up by φ. Let S be a smooth

element in |L|. Then

44h0(K)+ 60χ(OS)+ 2h0(KX)− 2 ≥ 13d2 + 17d1 + d3 + (20− d̂)d̂+ 5γ.

If κ(KX̂ + (n− 2)L̂) ≥ 2 then

44h0(K)+ 58χ(OS)+ 2h0(KX)+ 4 ≥ 12d2 + 17d1 + d3 + (20− d̂)d̂+ 5γ.

To use these inequalities, note that if h0(KX) > 0 then h0(K) ≥ h0(L) ≥
h0(L̂). Thus in this case we are going to get h0(K) ≥ 6 unless (X̂, L̂) arises

as a hypersurface in PN with N ≤ 4. Thus, if h0(K) ≤ 5 or if Φ̂1 is not bi-

rational, we can reduce to the case when h0(KX) = 0. Combining Theorem

4.2 with Theorem 1.10 and many special adjunction theoretic arguments,

the following results were deduced.

Theorem 4.3 (Beltrametti and Sommese [13]) Let (X̂, L̂) be ann-dimensio-

nal projective manifold polarized with a very ample line bundle, L̂. If κ(KX̂+

(n − 2)L̂) = 3 then h0(KX̂ + (n − 2)L̂) ≥ 2. If κ(KX̂ + (n − 3)L̂) ≥ 0 then

h0(KX̂ + (n − 2)L̂) ≥ 5 with equality only if n = 3 and (X̂, L̂) is a quintic

hypersurface in P4.

The next step was to analyze the meromorphic map ψ1 associated to |H|.

1. Is ψ1 and hence also Φ1 a morphism? Note this can happen even

though K is not spanned and even though the mapping ψ1 : Y →
Ph

0(K)−1 has lower dimensional image than κ(K).

2. If dimZ1 < 3, what can we say about the invariants of the fibers of

R1 and of Z1?

3. What can we say about the degree of s1?

We break our analysis of the second adjunction mapping up in terms

of the dimension of the image of the meromorphic map ψ1 : Y → Ph
0(K)−1

associated to |K|. From Theorem 4.3 we see that this map cannot have an

image of dimension 0.
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4.2 The case when dimΦ1(X) = 1

It is a classical result of Beauville [2] that given a smooth general type sur-

face S, then if the meromorphic mapping associated to |KS| has a one-

dimensional image, it ‘usually’ is a morphism with the genus of fibers

‘small’. Beauville’s theorem raised the hope that if the meromorphic map

Φ1 has a one-dimensional image, then Φ1 might be a morphism. Beauville’s

result cannot be used in our situation because the restriction mapH0(KX+
(n − 2)L) → H0(KS) is not onto, i.e., it does not follow from KS being

spanned and |KS| having a two-dimensional image, that the map associ-

ated to |K| has a two-dimensional image. By an involved analysis of the

numerical properties of the fibers of the meromorphic map R1 : Y → Z1,

the following results are deduced in [14].

Theorem 4.4 Let (X̂, L̂) be a connected n-dimensional projective manifold

polarized by a very ample line bundle L̂. Assume that κ(KX̂ + (n−2)L̂) ≥ 3.

Further assume that Φ1 has a one-dimensional image. If either h0(K) ≥ 7

or κ(KX̂ + (n− 3)L̂) ≥ 0 or h1(OZ1) > 0, then Φ1 is a morphism.

Theorem 4.5 Let (X̂, L̂) be a connected n-dimensional projective manifold

polarized by a very ample line bundle L̂. Assume thatn ≥ 3 and κ(KX̂+(n−

3)L̂) ≥ 0. Let (X, L) be the first reduction of (X̂, L̂). Further assume that Φ1

has a one-dimensional image. Let f = F ∩ S be the transverse intersection

of a general fiber F of R1 with a general surface section S of (X, L). Then

Φ1 is a morphism and g(f), the genus of f , is ≤ 6. For h0(K) ≥ 21 we have

g(f) ≤ 5, and the intersection of F with a general threefold section of (X, L)
is either a K3 surface or the blowing up at one point of a K3 surface, and

Z1 := R1(Y) is a curve of genus g(Z1) ≤ 1.

In the case when g(f) ≤ 5 in the preceding theorem, the complete list

of possible pairs, (A ∩ F, LA∩F), where A is a general threefold section of

(X, L), is worked out in [14]. The map s1 is almost always birational.

Theorem 4.6 Let (X̂, L̂) be a connected n-dimensional projective manifold

polarized by a very ample line bundle L̂. Assume that κ(KX̂ + (n−2)L̂) ≥ 3.

Further assume that the meromorphic mapΦ1 has a one-dimensional image.

The map s1 is an embedding if h1(OZ1) = 0. If h1(OZ1) > 0, then the degree

of s1 is at most 2. If the degree is 2, then χ(OS) ≤ 2 for a general surface

section S of (X, L), h0(K) = 2, and 3 ≤ g(f) ≤ 4, where f = F ∩ S is the

transverse intersection of a general fiber F of R1 with S.

4.3 The case when dimΦ1(X) = 2

In the case of a two-dimensional image we have been unable to show that

the second adjunction mapping is usually a morphism. The following re-

sults of [15] summarize what we know.



WHAT WE KNOW ABOUT THE SECOND ADJUNCTION MAPPING 69

Theorem 4.7 Let (X̂, L̂) be a connected n-dimensional projective manifold

polarized by a very ample line bundle L̂. Assume that κ(KX̂ + (n−2)L̂) ≥ 3.

Further assume that Φ1 has a two-dimensional image. Let F be a general

fiber of Φ1. If h0(K) ≥ 6, e.g., if κ(KX̂ + (n− 3)L̂) ≥ 0, then Ln−2 · F ≤ 13.

In [15] an analysis is also made for smaller values of h := h0(K), e.g., it is

shown that if h = 5, then Ln−2 · F ≤ 14; if h = 4, then Ln−2 · F ≤ 17; and if

h = 3 then Ln−2 · F ≤ 24.

Theorem 4.8 Let (X̂, L̂) be a connected n-dimensional projective manifold

polarized by a very ample line bundle L̂. Assume that κ(KX̂ + (n−2)L̂) ≥ 3.

Further assume that Φ1 has a two-dimensional image. Let F be a general

fiber of R1. Let B be the base locus of |H|. Then Ln−2 · F ≥ 3. Further if

either κ(KX̂ + (n − 3)L̂) ≥ 3 or κ(KX̂ + (n − 3)L̂) ≥ 0 and dimB ≤ n − 3,

then Ln−2 · F ≥ 4. If h := h0(K) ≥ 6 then the genus g of a curve section of

(F, LF) is ≤ 66.

In [15] an analysis is also made for smaller values of h := h0(K), e.g., it is

shown that if h = 5 then g ≤ 78; if h = 4 then g ≤ 120; and if h = 3 then

g ≤ 253. Moreover if ψ1 is a morphism and h0(K) ≥ 77 then g ≤ 26.

Theorem 4.9 Let (X̂, L̂) be a connected n-dimensional projective manifold

polarized by a very ample line bundle L̂. Assume that κ(KX̂ + (n−2)L̂) ≥ 3.

Further assume thatΦ1 has a two-dimensional image. LetB be the base locus

of |K|. Let F be a general fiber of R1. Then deg s1 ≤
13

Ln−2 · F
(and hence

deg s1 ≤ 4) if h0(K) ≥ 6, e.g., if κ(X) ≥ 0. If either κ(KX̂ + (n− 3)L̂) ≥ 3 or

κ(KX̂ + (n− 3)L̂) ≥ 0 and dimB ≤ n− 3, then deg s1 ≤ 3.

4.4 The case when dimΦ1(X) = 3

We summarize results from [15] on what we know when dimφ1(X) = 3.

Theorem 4.10 Let L̂ be a connected n-dimensional projective manifold po-

larized by a very ample line bundle L̂. Assume that n ≥ 3 and κ(KX̂ +

(n − 2)L̂) ≥ 3. Assume further that Φ1 has a 3-dimensional image. Then

deg s1 ≤ 53 and if further h1(OX) = 0 then deg s1 ≤ 31.

Finally we turn to higher multiples ofK. Consider the morphism r : X → Y
where Y is the normal projective variety of dimension 3 or n with an ample

line bundle H such that K � r∗H . Y is very well behaved: it has at

worst isolated rational singularities (they are terminal of index at most two).

When r is birational, Y with an appropriate polarization is called the second

reduction. This author worked out the structure of Y in [36]. See [12] for

a careful development including the higher dimensional contributions of

Beltrametti and this author, Fania, and Fujita. Here is what Beltrametti and

this author show in [15].
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Theorem 4.11 Let (X̂, L̂) be a connected n-dimensional projective manifold

X̂ polarized by a very ample line bundle L̂. Assume that κ(KX̂+(n−2)L̂) ≥ 3.

Then 3H is very ample.

Problem 4.12 Let (X̂, L̂) be a smooth threefold polarized by a very ample

line bundle L̂. Assume that κ(KX̂ + (n − 2)L̂) = 3 (and thus in particular

that 2K and 2H are spanned). Work out the structure of the morphism s2.

The following bounds on the degree of the map s2 of the last problem are

taken from [16, 17]. The best general unrestricted result for threefolds is

the following. We give the argument since it as a sample of the type of

reasoning used.

Theorem 4.13 Let (X̂, L̂) be a smooth threefold polarized by a very ample

line bundle L̂. Assume that κ(KX̂+(n−2)L̂) = 3 (and thus in particular that

2K and 2H is spanned). Then the morphism s2 has degree at most seven.

Proof. Let (X, L) denote the first reduction of (X̂, L̂). Since the result is

trivial for h0(L̂) ≤ 5, we can assume that h0(L̂) ≥ 6. Using Castelnuovo’s

inequality for the genus of a curve section combined with the positivity of

d,d1, d2, d3, the Hodge inequalities dd2 ≤ d
2
1, d1d3 ≤ d

2
2, and the fact that

d+ d1, d2 + d3 are even, we conclude that d ≥ 8. If h0(KX +K) > 0, then

|2K| = |(KX +K)+L| would give a birational map. Therefore we conclude

that h0(KX+K) = χ(KX+K) = 0. By Riemann-Roch applied to χ(KX+K)
we conclude that

4χ(OS)+ d2 = 6h+ d3 (9)

where h := h0(K). If the theorem is false we conclude that

(
2K′

)3
= 8d3 ≥ 8(h0(2K)− 3) = 8(d2 + χ(OS)− 3)

where S is a smooth element of |L|. Combining this inequality d3 ≥ d2 +
χ(OS)− 3 with equation 9, we conclude that χ(OS) ≥ 2h− 1. Since h ≥ 2,

this implies that χ(OS) ≥ 3 and therefore by the inequality d3 ≥ d2 +
χ(OS) − 3 that d3 ≥ d2. Since the result is trivial for h0(L̂) ≤ 5, we can

assume that h0(L̂) ≥ 6. Using the list in [6] we conclude that if d ≤ 10 then

h0(L̂) ≥ 7. Using this, Castelnuovo’s inequality for the genus of a curve

section combined with the positivity of d,d1, d2, d3, the Hodge inequalities

dd2 ≤ d
2
1, d1d3 ≤ d

2
2, and the fact that d+d1, d2+d3 are even, we conclude

that d ≥ 10, d1 ≥ 10, d2 ≥ 10, d3 ≥ 10. Using χ(OS) ≥ 2h−1 Theorem 1.10

implies that

1 ≥
d1

12
+
d3

32
.

This gives the contradiction 1 ≥
55

48
. Q.E.D.
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5 The map Φ̂2 when κ(K) ≥ 3

We continue to use the notation of Problem 1.11 We have poor knowledge

about Φ1 when κ(K) > 3. For Φ2 we are in much better shape, though

results on degree bounds for the maps associated to |2K| (or |K|) when

the map has an equal dimensional image do not directly lift from threefolds

to n-folds with n ≥ 4. The best general unrestricted result for n-folds is

the following.

Theorem 5.1 Let (X̂, L̂) be an n-dimensional projective manifold X̂ polar-

ized by a very ample line bundle L̂. Assume that κ(KX̂ + (n− 2)L̂) = n ≥ 3.

If either κ(KX̂ + (n− 3)L̂) ≥ 0 or n ≥ 6 then Φ̂2 is birational.

We refer the reader to [17] for some weaker forms of the above result that

hold in dimensions four and five, e.g., if κ(KX̂ + (n − 2)L̂) = n = 5 and

χ(OŜ) ≥ 100 for a surface section of (X̂, L̂), then Φ̂2 is birational.

Theorem 5.2 Let (X̂, L̂) be an n-dimensional projective manifold polarized

by a very ample line bundle L̂. Assume that κ(KX̂ + (n − 2)L̂) = n ≥ 3. If

|K| has a smooth element, e.g., if K is spanned by global sections, then the

map Φ2 is birational unless n = 3, d3 = 1, d2 = 3, d1 = 9, and H � −2KY .

In this last case the degree is two.

Remark 5.3 Note that the example of Lanteri, Palleschi, and this author

described in Theorem 4.1 satisfies the conditions required to be an excep-

tion to the theorem. It is in fact not hard to show that in this case the map

associated to |2K| has degree two. This is the only known example where

K is nef and big and s2 is not birational. Since we expect K to usually be

spanned, there is the obvious hope that this is the only example where s2
is not birational.
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