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ABSTRACT. We examine certain special features exhibited by various

classes of linear operators acting in a hereditarily indecomposable

Banach space. For instance, we show that the family of all Riesz op-

erators in a H.I. space forms a closed, 2-sided ideal. We also give

further characterizations of the class of scalar-type spectral opera-

tors (to those already given in [16]). The final section discusses some

properties of the spectral maximal spaces of (necessarily decompos-

able) linear operators in such spaces.

1 Introduction

A Banach space X is called hereditarily indecomposable (briefly, H.I.) if,
whenever Y and Z are closed, infinite dimensional subspaces of X and
δ > 0, then there exist unit vectors y ∈ Y and z ∈ Z such that

‖y − z‖ < δ.

This is equivalent to the following property: whenever Y and Z are closed,
infinite dimensional subspaces of X satisfying Y ∩ Z = {0}, then Y + Z
is non-closed. Examples of H.I. spaces were first exhibited by Gowers and
Maurey, [9]. Since then, this class of Banach spaces has been intensively
studied and has had an important influence on the geometry of Banach
spaces; see [5], [6], [7], [8], [9], [10], and the references therein. The space
of linear operators in H.I. spaces is rather special; given any bounded lin-
ear operator T there is a unique point λT in the spectrum σ(T) of T such
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that T − λT I is strictly singular, [9]. See also [5], [14], [15], [16], for further
properties of certain classes of linear operators in H.I. spaces. The aim of
this note is to continue with the investigation begun in [14], [15], [16] con-
cerning certain aspects of operator theory in H.I. spaces. It is known that
the collection of all Riesz operators (even in a Hilbert space) is in general
neither a vector space, nor an ideal, nor a closed set for the operator norm
topology. In Section 2 we show that in any H.I. space the family of all Riesz
operators forms an operator norm closed, 2-sided ideal. Section 3 is con-
cerned with various characterizations of the class of scalar-type spectral
operators in a H.I. space, thereby extending [16; Proposition 2]. It is known
that the infinitesimal generator of a C0-group of linear operators in a H.I.
space is always bounded [14]; this is not the case in general for the gener-
ator A of a C0-semigroup, [14, Example 2.4]. Various sufficient conditions
are presented in [15] which guarantee that A is bounded. In Section 4 we
present two further results in this direction.

2 Riesz operators

Given a Banach space X let L(X) denote the space of all continuous linear
operators of X into itself. The dual space of X is denoted by X′. If X is
a H.I. space and T ∈ L(X), than there exists a unique point λT ∈ C such
that T − λT I is strictly singular. Moreover, T − λT I is a Riesz operator
(defined below) and λT is the unique point of C with this property. In
particular, σ(T) is a finite set or consists of a sequence of eigenvalues
{λn}

∞
n=1 converging to λT . Moreover, every element of σ(T)\{λT} is an

isolated point of σ(T) and has an associated spectral projection of finite
rank; see [9], [14]. Let X be a Banach space. The closed, 2-sided ideal in
L(X) consisting of the compact operators is denoted byK(X). For T ∈ L(X)
define

κ(T) = inf {‖T −A‖ : A ∈ K(X)}.

Since K(X) is operator norm closed in L(X) it is clear that κ(T) = 0 iff T ∈
K(X). An operator T ∈ L(X) is called a Riesz operator if limn→∞[κ(T

n)]1/n

= 0; for the general theory of such operators we refer to [4], for example.
Let R(X) denote the collection of all Riesz operators. Clearly K(X) ⊆ R(X).
At this stage it is instructive to consider an example in order to see how
Riesz operators behave.

Example 2.1 ([4; Example 3.6]). Let X = l2. For each x = (x1, x2, . . . ) in X
define Sx = (0, x1,0, x3, . . . ) and Tx = (x2,0, x4,0, . . . ),in which case both
S, T ∈ L(X). Since S2 = 0 = T 2 ∈ K(X) it is clear that both S, T are Riesz
operators. However, since STx = (0, x2,0, x4, . . . ) for each x ∈ X we see
that ST is a continuous projection of infinite rank and so ST 6∈ K(X). But,
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(ST)n = ST for all n ≥ 1 implies that κ((ST)n) = κ(ST) = α > 0 for all
n ≥ 1, and so limn→∞[κ((ST)

n)]1/n = 1. Accordingly, ST 6∈ R(X). Since
S ∉ K(X)(otherwise ST ∈ K(X)) we see that K(X) is a proper subset of
R(X). Noting that (S + T)2 = I it follows that (S + T)2n = I for all n ≥ 1
and so limn→∞[κ((S+T)

2n)]1/2n = 1. Accordingly, (S+T) ∉ R(X). These
calculations show that R(X) is neither an ideal nor a vector space in L(X).
Moreover, R(X) also fails to be operator norm closed in L(X), [4; Example
3.15].

In view of the above example the following result is somewhat surpris-
ing.

Proposition 2.2 Let X be a H.I. space. Then the family of all Riesz operators

R(X) forms an operator norm closed, 2-sided ideal in L(X) of co-dimension

one.

Proof. Let T ∈ L(X). If T is strictly singular, then T is a Riesz operator
[13; 26.6.5]. Conversely, if T is a Riesz operator, T −λT I is strictly singular
(by [9;§ 4] this is true for all T ∈ L(X)) and hence a Riesz operator. By
[14; Proposition 1.1] λT is the unique element µ of C such that T − µI is a
Riesz operator. Thus λT = 0, i.e. T is strictly singular. Accordingly, R(X)
coincides with the set of all strictly singular operators S(X) which is a 2-
sided ideal, [13; 1.9.4], and has co-dimension one, [9;§ 4]. Letφ : L(X)→ C

be defined by φ(T) = λT . It follows easily from

(αS + βT)− (αλS + βλT )I = α(S − λSI)+ β(T − λT I) ∈ S(X),

TS − λTλSI = T(S − λSI)+ λS(T − λT I) ∈ S(X), and

ST − λSλT I = S(T − λT I)+ λT (S − λSI) ∈ S(X),

that φ is a linear algebraic homomorphism. Moreover, φ ≠ 0 since
φ(I) = 1. Since L(X) is a unital Banach algebra it follows from standard
Banach algebra theory that φ is continuous. Thus

ker(φ) = S(X) = R(X)

is an operator norm closed, 2-sided ideal in L(X) of co-dimension one.

It is interesting to re-examine Example 2.1 in the setting of H.I. spaces with
a Schauder basis. So, for x ∈ X we write x = (x1, x2, . . . ) with respect to
this basis. Define linear subspaces

D(S) = {x ∈ X : (0, x1,0, x3, . . . ) ∈ X}

and

D(T) = {x ∈ X : (x2,0, x4,0, . . . ) ∈ X}
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and linear operators S :D(S)→ X and T :D(T)→ X by Sx = (0, x1,0, x3, . . . )
and Tx = (x2,0, x4,0, . . . ), respectively. Since every x ∈ X with finite
support belongs to both D(S) and D(T) it is clear that D(S) and D(T) are
both dense in X. Using the continuity of the co-ordinate functionals in X
it is routine to verify that S and T are both closed operators. Moreover,
S(D(S)) ⊆ D(S) with S2x = 0 for all x ∈ D(S) and T(D(T)) ⊆ D(T) with
T 2x = 0 for all x ∈ D(T). By definition of the composition of unbounded
operators we have D(ST) = {x ∈ D(T) : Tx ∈ D(S)} and it is easily
calculated that

(ST)x = (0, x2,0, x4, . . . ), x ∈ D(ST).

Hence, ST is a densely defined linear operator in X. The difference between
ST here and that in Example 2.1 is that now ST is unbounded on D(ST).
To see this, assume the contrary. Then ST would have an extension, say
Λ ∈ L(X), given by Λx = (0, x2,0, x4, . . . ) for all x ∈ X. But, Λ2 = Λ and
Λ has infinite dimensional range. Then I −Λ : x 7→ (x1,0, x3,0, . . . ) is also
a continuous projection with infinite dimensional range. Since X is a H.I.
space and X = ΛX ⊕ (I −Λ)X this is possible.

3 Scalar-type spectral operators

Recall that a bounded linear operator in a Banach space X is a scalar-type

spectral operator if there exists a spectral measure E : B(σ(T)) → L(X),
defined on the Borel subsets B(σ(T)) of σ(T), which is σ -additive for the
strong operator topology and satisfies T =

∫

σ(T) zdE(z); see [4] for the
general theory of such operators. Suppose that F is a Banach algebra of
C-valued functions on some set Ω ⊆ C such that en : z 7→ zn, for z ∈ Ω,
belongs to F for each integer n ≥ 0. Then an operator T ∈ L(X) is said to
admit an F -functional calculus if there is a Banach algebra homomorphism
φ : F → L(X) such that φ(e0) = I and φ(e1) = T . The Banach algebra of
all bounded Borel functions on Ω is denoted by B∞(Ω); it is equipped with
the sup-norm ‖ · ‖∞. The closed subalgebra of all bounded continuous
functions is denoted by C(Ω). The following result is an extension of [16;
Proposition 2].

Proposition 3.1 Let X be a H.I. space and T ∈ L(X). Then the following

statements are equivalent.

(i) T is a scalar-type spectral operator.

(ii) There exist finitely many non-zero, pairwise disjoint projections P1, . . . , Pn,

with exactly one having infinite rank and satisfying
∑n
j=1Pj = I, such that

T ∈ span {P1, . . . , Pn}.
(iii) T admits a C(σ(T))-functional calculus.

(iv) T admits a B∞(σ(T))-functional calculus.
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(v) There exists K > 0 such that, for each complex polynomial p,

‖ p(T) ‖≤ K sup{| p(λ) |: λ ∈ σ(T)}.

Proof. Since H.I. spaces cannot contain a copy of the sequence space c0,
the equivalence (i)a (iii) follows from [3; Theorem 3.1]. Similarly, since
H.I. spaces cannot contain a copy of l∞, the equivalence (i)a (iv) follows
from [3; Theorem 3.3]. The equivalence (i)a (ii) is part of [16; Proposition
2].

(iii)a (v). The direction (iii) ⇒ (v) is clear. So, assume that (v) holds.
Since σ(T) is a countable set with at most one limit point, [14; Proposition
1.1], it follows from Mergelyans’s theorem, [17; p. 423], that the polynomi-
als restricted to σ(T) are dense in C(σ(T)). So, given f ∈ C(σ(T)) there
exist polynomials {pn}

∞
n=1 such that pn → f uniformly on σ(T). Then

‖pn − pm‖∞ ≤ ‖pn(T)− pm(T)‖ ≤ K‖pn − pm‖∞, m,n ∈ N,

where the first inequality follows from the spectral mapping theorem and
the fact that the spectral radius of an operator is dominated by the norm
of the operator. So, there exists φ(f) ∈ L(X) such that pn(T) → φ(f)
in operator norm. Since p 7→ φ(p) := p(T) is linear, multiplicative and
continuous, so is its extension f 7→ φ(f) to C(σ(T)).

It follows from Proposition 3.1 that any scalar-type spectral operator in
a H.I. space X has finite spectrum. In particular, if T ∈ L(X) has infinite
spectrum, then there must exist a sequence of polynomials {pn}

∞
n=1 with

‖pn‖∞ := sup{|p(λ)| : λ ∈ σ(T)} ≤ 1, n ∈ N,

such that supn∈N‖pn(T)| = ∞. So, if Z(T) denotes the space of all vectors
x ∈ X for which

|||x||| = sup{‖p(T)x‖ : p a polynomial, ‖p‖∞ ≤ 1} <∞,

(cf. [3; p.165), then it follows that Z(T) ≠ X. For an operator T ∈ L(X)
with σ(T) ⊆ R, R. deLaubenfels defines

‖x‖Z(T) = sup{‖
m
∏

k=1
λ
nk
k (λkI − iT

k)−nkx‖ : λk ∈ R\{0} and

(m− 1),nk ∈ N},

in which case it turns out that Z(T) = {x ∈ X : ‖x‖Z(T) < ∞} and that
‖·‖Z(T) and |||·||| are equivalent norms onZ(T), [3; p.165]. Moreover, (Z(T),
‖·‖Z(T)) is always a Banach space which is continuously imbedded inX; it is
called the semi-simplicity manifold of T and was originally introduced by Sh.
Kantorovitz. For the notion of a well bounded operator T ∈ L(X) we refer
to [4]. For such an operator there exists a family {E(λ)}λ∈R of projections in
L(X′), called a decomposition of the identity for T (with certain properties;
see [1; Theorem 3.2]), such that



144 F. RÄBIGER AND W. J. RICKER

〈Tx,x′〉 = b〈x,x′〉 −
∫ b
a 〈x,E(λ)x

′〉dλ, x ∈ X,x′ ∈ X′.

Here the compact interval [a, b] has the property that σ(T) ⊆ [a, b], [4;
Corollary 15.9]. If the function λ 7→ 〈x,E(λ)x′〉, for λ ∈ R, is of bounded
variation for each x ∈ X and x′ ∈ X′, then the decomposition {E(λ)}λ∈R

is said to be of bounded variation. For scalar-type spectral operators with
real spectrum Proposition 3.1 has a further extension.

Proposition 3.2 Let X be a H.I. space and T ∈ L(X) satisfy σ(T) ⊆ R. Then

the following statements are equivalent.

(i) T is a scalar-type spectral operator.

(ii) Z(T) = X.

(iii) T is well bounded with a decomposition of the identity of bounded

variation.

Proof. (i) ⇒ (ii). By Proposition 3.1 the operator T has a C(σ(T))-
functional calculus, say φ, and so

K = sup{‖φ(f)‖ : f ∈ C(σ(T)),‖f‖∞ ≤ 1} <∞.

In particular, |||x||| <∞ for all x ∈ X and so by earlier remarks Z(T) = X.
(ii) ⇒ (i). The identity function Λ : (X, ||| · |||) → X is continuous (just

put p = e0 in the definition of ||| · ||| to see that ‖x‖ ≤ |||x||| for all x ∈ X).
By the open mapping theorem Λ−1 is continuous and so

sup{‖p(T)‖ : p a polynomial,‖p‖∞ ≤ 1}

= sup
‖y‖≤1

sup
‖p‖∞≤1

‖p(T)y‖ = sup
‖y‖≤1

|||y||| = ‖Λ−1‖

is finite. Then Proposition 3.1 shows that T is a scalar-type spectral
operator.
(i) ⇒ (iii). By [1; Theorem 5.4] the operator T is well bounded of type

(B) and hence, in particular, has a unique decomposition of the identity.
Proposition 3.1 implies that T = Σnj=1zjPj for some set {Pj}

n
j=1 of non-zero,

paiwise disjoint projections with Σnj=1Pj = I, where σ(T) = {zj}
n
j=1 ⊆ R.

Then the (unique) decomposition of the identity {E(λ)}λ∈R ⊆ L(X
′) of T is

given by E(λ) =
∑

zj≤λ P
′
j , for each λ ∈ R. It is then clear that

λ 7→ 〈x,E(λ)x′〉 =
∑

zj≤λ

〈Pjx,x
′〉, λ ∈ R,

is of bounded variation for each x ∈ X and x′ ∈ X′.
(iii)⇒ (i). By [1; Theorem 5.2], with J ⊇ σ(T), there is K > 0 such that

‖p(T)‖ ≤ K‖p‖∞ for every complex polynomial p. Then Proposition 3.1
shows that T is a scalar-type spectral operator.
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4 C0-semigroups

As mentioned before C0-semigroups in H.I. spaces (unlike C0-groups) do not
necessarily have bounded infinitesimal generators. In [15] we presented
some special classes of C0-semigroups which do have bounded infinitesi-
mal generators in a H.I. space. We present here two further results in this
direction. The domain of an unbounded linear operator A is denoted by
D(A). Let Γ = {z ∈ C : |z| = 1}. For the general theory of C0-semigroups
we refer to [12].

Proposition 4.1 Let X be a H.I. space and (T(t))t≥0 to be a C0-semigroup

in X. If there exist t1, t2 ∈ (0,∞) which are rationally independent and

such that T(tj) are scalar-type spectral operators with σ(Tj) ⊆ Γ , for each

j ∈ {1,2}, then the infinitesimal generator A ∈ L(X) and A− λAI is a finite

rank operator.

Proof. By [11; Theorem 4] the semigroup (T(t))t≥0 has an extension to
a C0-group on R and its generator iA (hence A) is a scalar-type spectral
operator. Since no unbounded scalar-type spectral operators exist in H.I
spaces, [16; Proposition 2(v)], it follows that A ∈ L(X). By Proposition 3.1
we haveA = λ0E0+λ1E1+. . .+λnEn; here λ0 = λA with σ(A) = {λj}

n
j=0 and

{Ej}
n
j=0 generates the resolution of the identity of A with dim(E0X) = ∞

and dim (EjX) <∞ for all 1 ≤ j ≤ n. Since A−λAI =
∑n
j=1(λj −λ0)Ej it is

clear that A− λAI is a finite rank operator.

Proposition 4.2 Let X be a H.I. space and (T(t))t≥0 be a C0-semigroup in X
such that its infinitesimal generator A satisfies (0,∞) ⊆ ρ(A) and T(t)X ⊆
D(A), for all t > 0. If

sup{
1

(k− 1)!

∫∞

0
tk−1|〈AkT(t)x,x′〉 | dt : k ∈ N,‖x‖ ≤ 1,‖x′‖ ≤ 1}

is finite, then A ∈ L(X) and A− λAI is a finite rank operator.

Proof. Since X cannot contain a copy of the sequence space c0 it follows
that −A is a scalar-type spectral operator, [19; Theorem 1]. But, as noted
above, unbounded scalar-type spectral operators do not exist in H.I. spaces
and so A ∈ L(X). Arguing as in the proof of Proposition 4.1 it follows that
A− λAI is a finite rank operator.

We recall the fact if (T(t))t≥0 is a C0-semigroup in a H.I. space X con-
sisting of scalar-type spectral operators, then its infinitesimal generator A
satisfies A ∈ L(X); see [15; Proposition 2.4]. The class of well bounded
operators of type (B) is often interpreted as a natural extension of the
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class of scalar-type spectral operators with real spectrum. Indeed, a well
bounded operator S of type (B) also has a certain spectral decomposi-

tion of the kind S =
∫ b
a λdE(λ), where [a, b] ⊆ R is an interval contain-

ing σ(S) and E : R → L(X) is a certain projection valued function (usu-

ally called a spectral family). However the “integral"
∫ b
a λdE(λ) involved

is weaker than that for scalar-type spectral operators; see [4]. So, there
arises quite naturally the question of whether the generator A of a C0-
semigroup (T(t))t≥0 in a H.I. space consisting of well bounded operators
of type (B) also satisfies A ∈ L(X)? It turns out that this need not be the
case, in general. Indeed, let {en}

∞
n=1 be a basic sequence in a H.I. space

Z and let X be the closed linear span of {en}
∞
n=1. Then X is also a H.I.

space. Define A on X by A(
∑∞
n=1αnen) =

∑∞
n=1(−nαn)en with domain

D(A) = {
∑∞
n=1αnen ∈ X :

∑∞
n=1(−nαn)en ∈ X}. It is shown in [14; Exam-

ple 2.4] that A generates a C0-semigroup (T(t))t≥0 ⊆ L(X) given by

T(t)(

∞
∑

n=1

αnen) =
∞
∑

n=1

e−ntαnen,

∞
∑

n=1

αnen ∈ X.

Since λn(t) := −e−nt , for n ∈ N, is an infinite sequence of distinct num-
bers in [−1,0] satisfying λn(t) ↑ 0, for each t > 0, it follows from the
proof of Theorem 3 in [16] that each operator −T(t), for t ≥ 0, is well
bounded of type (B). Accordingly, (T(t))t≥0 is a C0-semigroup consisting
of well bounded operators of type (B), but its generator A is unbounded.

5 Spectral maximal spaces

Every bounded linear operator T in a H.I. space is necessarily a decompos-

able operator, [14; Proposition 1.1] in the sense of C. Foias; for the gen-
eral theory of such operators we refer to [2], [18]. In particular, T has the
single-valued extension property and σ(T) coincides with the approximate
point spectrum of T . Since every point λ ∈ σ(T)\{λT} is an isolated point
of σ(T) it follows that the spectral maximal space XT ({λ}) associated to
the closed set {λ} (cf. [2] for the definition) is precisely the range EλX of
the spectral projection Eλ associated to the spectral set {λ}. In particular,
XT ({λ}) = EλX is a finite dimensional subspace of X. It is also possible to
give a description of the spectral maximal space XT ({λT}). Indeed, since
T − λT I is also decomposable it follows from Lemma 4.4 on p.113 of [2]
that

XT−λT I
({0}) = {x ∈ X : lim

n→∞
‖(T − λT I)

nx‖1/n = 0}.

Then Theorem 1.6 on p.7 of [2] implies that

XT ({λT}) = {x ∈ X : lim
n→∞

‖(T − λT I)
nx‖1/n = 0}.
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By Definition 3.1 on p.18 and Theorem 1.5 on p.31 of [2] we note that
XT ({λT}) is a closed subspace of X. Since XT ({λT}) is invariant for T
(hence, also for T − λT I) it follows that the restriction (T − λT I)|XT ({λT }) is
quasinilpotent in L(XT ({λT})); see the Lemma on p.28 of [2].

It is clear that ker(T−λT I) ⊆ XT ({λT}). Typically this inclusion is strict.

Indeed, if V =

(

0 1
0 0

)

is considered as an operator in any 2-dimensional

subspace Y of X, then V2 = 0 in L(Y). Write X = X1⊕Y in which case X1 is
again a H.I. space. Then T = IX1⊕V is an element of L(X) and satisfies λT =
1 and ker(T − λT I) = X1, which is a proper subspace of XT ({λT}) = X. By
replacing Y with anym-dimensional subspace of X and letting V ∈ L(Y) be
any nilpotent operator of order k ∈ {1,2, . . . ,m} it is clear that there exist
nilpotent operators in L(X) of any given finite order. Of course, since X
is infinite dimensional it must also contain quasinilpotent operators which
are not nilpotent. Indeed, as pointed out by E. Albrecht it is possible (via
the Hahn-Banach Theorem) to construct commuting, nilpotent, finite rank
operators Tn ∈ L(X) such that Tnn ≠ 0, for each n ∈ N. Let A denote the
radical, commutative Banach algebra in L(X) generated by {Tn}

∞
n=1. If all

quasinilpotent operators in X are already nilpotent, then all elements ofA
are nilpotent of some finite order. By a Baire category argument it follows
that all the elements of A must have order less than or equal to some
fixed integer m ∈ N. This contradicts the fact that A contains elements of
arbitrarily high order.

So, let T ∈ L(X) be a quasinilpotent operator which is not nilpotent.
Then σ(T) = 0, that is λT = 0, and XT ({λT}) = X. Moreover, T − λT I = T
and so the basic conjecture in H.I. spaces, which is that every operator
S ∈ L(X) has the property that S − λSI is compact, gives rise to the (pos-
sibly more tractable) question of whether every quasinilpotent operator is
compact?
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