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ABSTRACT. We consider the Boltzmann equation for inelastic parti-

cles on the line and prove some preliminary results on existence and

uniqueness of the solutions. We also discuss some connections with

another kinetic equation investigated by the same authors.

1 The model

In recent times particle systems interacting via inelastic collisions have pro-
voked an increasing interest due to the fact that they constitute a simple
mathematical model for granular media, see e.g. Ref.s [5,7,10,11,12,13,14,
15,17] for preliminary physical considerations on the behavior of such sys-
tems. Unfortunately very few rigorous results are known. In this paper we
attempt a mathematical study in the simple one dimensional case.

Let us consider a system of N particles in R. Let xi, vi ∈ R be the
position and the velocity of the i-th particle and

ZN = (XN , VN) = (x1, v1, ...xN , vN)

a state of the system. The dynamics is the following. The particles move
freely up to the first instant in which two of them are in the same point.
They collide according to the following rule:

v′ = v − ε(v − v1)

v′1 = v1 + ε(v − v1),

v′, v′1 and v,v1 are the outgoing and ingoing velocity respectively, and ε ∈
[0,1/2] is a parameter measuring the degree of inelasticity of the collision.
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Note that the collision preserves the total momentum and dissipates
the kinetic energy. Moreover for ε = 0 we have the free particle system,
while for ε = 1/2 we have the so called sticky particle model in which the
particle pair remains attached after the collision.

A relevant qualitative feature of the systems is the possibility of deliv-
ering collapses in a finite time (for a suitable values of ε). Indeed it can
be shown that, if λ = εN is sufficiently large, all the particles can reach
the same position and have the same momentum after a finite time and an
infinite number of collisions. See Ref. [9] for the case N = 3 and Ref.[2] for
general N .

The dynamics of the system is certainly complex so that, in analogy
with the standard theory of rarefied gases, it is natural to derive a reduced
description given in terms of a Boltzmann equation. Obviously such a de-
scription will have a limited range of validity but, for the moment, we shall
disregard this fundamental aspect.

Standard arguments of kinetic theory will lead us to consider the follow-
ing equation for the unknown f = f(x,v, t) that is the probability density
of a single particle:

∂tf(x,v, t)+ ∂xf(x,v, t) =

= l

∫

dv1|v − v1|

(

f(x,v∗, t)f (x,v∗1 , t)

(1− 2ε)2
− f(x,v, t)f (x,v1, t)

)

,
(1)

where v∗ = v+ ε
1−2ε (v−v1), v

∗
1 = v1−

ε
1−2ε (v−v1), are the pre-collisional

velocity and l > 0 is the mean free time inverse.
How to justify the introduction of this equation on the basis of logically

well founded arguments? One can say that Eq. (1) is a simplified model
of the more difficult two and three dimensional Boltzmann equation for
rarefied gas of inelastic balls in the so called Boltzmann-Grad limit (see e.g.
Ref. [8]). One the other hand, as we shall see in the following, Eq. (1) can
be directly derived in terms of a stochastic systems of inelastic particles.

We also note that in Ref.[4] we have obtained another kinetic equation
describing the particle system in a mean field limit. This equation read as:

(∂t + v∂x)f (x,v, t) = −λ∂v(Ff)(x,v, t), (2)

where:

F(x,v, t) =

∫

dv(v − v)|v − v|f(x,v, t). (3)

It is not difficult to show, formally, that Eq. (1) tends to Eq.s (2) - (3) in
the limit ε -→ 0, l -→∞, lε → λ

We notice that the homogeneous Eq. (2) with a Fokker-Plank term sim-
ulating a reservoir at a constant temperature, has also been studied in a
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forthcoming paper [3]. The most remarkable fact is that the asymptotic
in time can be carried out rigorously and that the unique invariant state
is not Maxwellian. This shows that granular media exhibit an anomalous
thermodynamical behavior. We also mention that in Ref. [16] the authors
propose a numerical study of the thermodynamical behavior of the particle
system in a thermal reservoir.

The plan of the paper is the following. In Sect. 2 we formally derive Eq.s
(1) and Eq. (2-3) under suitable scaling limits.

In Sect. 3 we deal with the simple homogeneous case and prove that the
solutions to the initial value problem associated to Eq. (1) converge to the
corresponding (i.e. with the same initial datum) solutions to problem (2-3)
when ε -→ 0, l -→∞, lε -→ λ.

In Sect. 4 we tackle the initial value problem for Eq. (1) for general L1

data and show existence and uniqueness of the solutions for small l. We
also discuss the difficulty of dealing with a large l and show that a total
collapse cannot occur in a finite time. However we cannot exclude other
kind of singularities.

2 Formal derivation of the kinetic equations

from particle systems

The ordinary differential equation governing the time evolution of the par-
ticle system introduced in Sect. 1 is:

·
xi= vi,

·
vi= ε

N
∑

j=1

δ(xi − xj)(vj − vi)|vj − vi|. (4)

Notice that ε(vj − vi) is the jump performed by the particle i after a
collision with the particle j, while δ(xi − xj)|vj − vi| = δ(t − ti, j), being
ti, j the instant of the impact between the particle i with the particle j.

Let µN = µN(x1, v1, . . . , xN , vN) be a probability density for the system.
The Liouville equation describing its time evolution is:

(∂t +
N
∑

i=1
vi∂xi)µ

N(x1, v1, . . . , xN , vN) =

−ε
∑

i≠j

δ(xi − xj)∂viµ[φ(x1, v1, . . . , xN , vN)] (5)

where φ(v − v) = (v − v)|v − v|.
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Proceeding as in the derivation of the BBKGY hierarchy for Hamiltonian
systems, we introduce the j-particle distribution functions:

fNj (x1, v1, . . . , xj , vj) =

∫

dxj+1dvj+1 . . . dxNdvNµ
N(x1, v1, . . . , xN , vN)

(6)

and integrating over the last variables Eq. (2), we obtain the following hier-
archy of equations:

(∂t +
j
∑

i=1
vi∂xi)f

N
j (x1, v1, . . . , xj , vj) =

−ε
j
∑

i≠k

δ(xi − xk)∂vi[φ(vk − vi)f
N
j (x1, v1, . . . , xj , vj)]+

−ε(N − j)

j
∑

i=1

∂vi

∫

dvj + 1φ(vj+1 − vi)f
N
j+1(x1, v1, . . . , xi, vj+1) (7)

An inspection of Eq. (7) suggest the scaling limit ε -→ 0, N -→ ∞ in
such a way that Nε -→ λ, where λ is a positive parameter. If fNj have a

limit (say fj) they are expected to satisfy the following (infinite) hierarchy
of equations:

(∂t +
N
∑

i=1
vi∂xi)fj(x1, v1, . . . , xj , vj) =

−λ

j
∑

i=1

∂vi

∫

dvj+1φ(vj+1 − vi)fj+1(x1, v1, . . . , xi, vj+1). (8)

Finally, if the initial state is chaotic, namely of initially:

fj(x1, v1, . . . , xj , vj) =
j
∏

i=1
f0(xi, vi, t),

then we expect that the limiting dynamics does not creates correlations
(propagation of chaos) so that:

fj(x1, v1, . . . , xj , vj ; t) =
j
∏

i=1
f(xi, vi, t)

by which we obtain, for the one particle distribution function, the kinetic
equation:
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(∂t + v∂x)f (x,v) = −λ∂v(Ff), (9)

where F is given by Eq. (3) In facts products of solutions of Eq. (2) are
solutions of the hierarchy (7) as follows by a simple algebraic computation.

Consider now the stochastic particle systems defined in the following
way. The particle move freely up to the first impact time. Then they collide
with the usual rule with probabilityα and go ahead with probability 1 -→ α.

Suppose now that the N-particles system is described at time 0 by a
symmetric probability density µN0 defined on R2N . The probability den-
sity at time t, denoted by µN(ZN , t), solves the following linear differential
equations:

∂tµ
N(ZN , t)+

N
∑

i=1
vi∂x, µ

N(ZN , t) =

α
∑

i≠j

δ(xi − xj)|vi − vj|(µ
N(Z′N(i, j))− µ

N(ZN)), (10)

where Z′N(i, j) is the configuration after the collision between the parti-
cles i and j. By using the same procedure as before we can derive a
BBGKY hierarchy for the j-particle distributions fNj . By taking the limit
N → ∞, α → 0, Nα → l, (note that here ε is assumed fixed), we obtain the
Boltzmann hierarchy for the family fj the j-particle distribution. In the
hypothesis of propagation of chaos (i.e. the factorization of fj) we obtain
the Boltzmann equation (1) introduced in Sect. 1.

3 The homogeneous case

In the following, we suppose, for sake of simplicity, that for t = 0 the
velocity support of f is bounded, i.e.

f(v,0) = 0 if |v| > v0.

As follows by the collision rule, this property is preserved by the dynamics.
In the homogeneous case, Eq. (1) becomes:

∂tf(v, t) = l

∫

dv1|v − v1|

(

f(v∗, t)f (v∗1 , t)

(1− 2ε)2
− f(v, t)f (v1, t)

)

. (11)

By neglecting the loss term:

∂tf(v, t) = l
∫

dv1|v − v1|
(

f(v∗,t)f (v∗1 ,t)

(1−2ε)2

)
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=
l

1− ε

∫

dv∗1
∣

∣v∗ − v∗1 )
∣

∣f(v∗, t)f (v∗1 , t) (12)

Then

d

dt

∥

∥f(·, t)
∥

∥

∞ ≤ 4lv0

∥

∥f(·, t)
∥

∥

∞ (13)

and

∥

∥f(·, t)
∥

∥

∞ ≤
∥

∥f (·,0)
∥

∥

∞ e
4lv0t (14)

By the global estimate (13) it is possible to obtain an existence and unique-
ness result for Eq. (11) in L∞ by standard methods.

Now we consider the limit l → ∞, ε → 0, lε = λ, and we prove that the
solutions of (11) converge weakly, in the sense of the weak convergence of
the measures, to the homogeneous solutions of Eq. (3) which verify:

∂tf(v, t) = −λ∂v(fF)(v, t) (15)

where:

F(v, t) =

∫

dv(v − v)|v − v|f(v, t). (16)

Eq. (15-16) has been studied in [4], where, in particular, it is proved
an existence and uniqueness of the solutions in the space of positive and
bounded measures.

Let φ ∈ C∞0 (R) a test function, λ = lε and fε the solution of Eq. (11):
∫

φ(v)fε(v, t)dv =
∫

φ(v)f(v,0)+

+λ

∫ t

0
ds

∫

dvdv1|v − v1|fε(v, S)fε(v1, S)
φ(v′)−φ(v)

ε
, (17)

where v′ = v − ε(v − v1). Then

∫

φ(v)fε(v, t)dv =
∫

φ(v)f(v,0)+

−λ
t
∫

0
ds
∫

dvdv1(v − v1)|v − v1|fε(v, s)fε(v1, s)∂vφ(v)+

+O(εv3
0‖∂

2
vφ‖∞)

(18)

At this point one can use standard compactness argument to prove:

Theorem 3.1 Let f(v,0) ∈ L∞(R) with compact support and fε(v, t) be

the solution of (11) with initial condition f(v,0), where lλε . Then fε(v, t)
converges weakly, as ε → 0, to the unique solution of (15-16) with the same

initial condition.
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4 The Cauchy problem for the inhomogeneous

Boltzmann Equation

We shall now prove a global existence and uniqueness result for the solution
of Eq. (1) for small values of l compared with the L1 norm of the initial
datum.

Theorem 4.1 Let f0 ∈ L∞(R
2), f0 ≥ 0,‖f0‖1 = 1, f0(x,v) = 0 if |v| ≥ v0.

Then, for l < 1/8, there exist an unique mild, bounded solution in L∞ of (1)

with initial datum given by f0.

Proof. Let f #(x,v, t) = f(x+vt, v, t). It is easy to realize that f # satisfies

d

dt
f #(x,v, t) = Q#(f , f ), (19)

where Q#(f , f ) = Q(f , f )(x + vt, v) according to the previous notation
and

Q(f , f ) = l

∫

dv1|v − v1|

(

f(x,v∗, t)f (x,v∗1 , t)

1− 2ε
− f(x,v, t)f (x,v1, t)

)

(20)

By integrating in the time:

f #(x,v, t) = f(x,v,0)+ l

∫ t

0
dsQ(f , f )(x,v, s). (21)

Let

F(x,v) = sup
t≥0

f #(x,v, t). (22)

From (21):

f #(x,v, t) ≤ f(x,v,0)+

l

∫ t

0
ds

∫

dv1
|v − v1|

(1− 2ε)2
f(x + vs,v∗, s)f (x,vs, v∗1 , s). (23)

By considering that:

f(x + vs,v∗, s) = f #(x + (v − v∗)s,≤ F(x + (v − v∗)s, v∗)

f (x + vs,v∗1 , s) = f
#(x + (v − v∗1 )s,≤ F(x + (v − v

∗
1 )s, v

∗
1 ) (24)
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From (23) we have:

F(x,v) ≤ f(x,v,0)+

l

∫∞

0
ds

∫

dv1
|v − v1|

(1− 2ε)2
F(x + (v − v∗)s, v∗)F(x + (v − v∗1 )s, v

∗
1 ),

(25)

and
∫

dxdvF(x,v) ≤ 1+ l

∫∞

0
ds

∫

dxdvdv1
|v − v1|

(1− 2ε)2

= 1+ l

∫

dzdy
dvdv1

1− 2ε
F(y,v∗)F(z, v∗1 )

(26)

Putting y = x + (v − v∗)s and z = y + (v∗ − v∗1 )s, by elementary
computations we obtain:

∫

dxdvF(x,v) ≤ 1+ l

∫

dzdy
dvdv1

(1− 2ε)

|v − v1|,

|v∗ − v∗1 |
F(y,v∗1 )F(z, v

∗) =

= 1+ l

∫

dzdy
dvdv1

1− 2ε
F(y,v∗)F(z, v∗1 ).

(27)

Then

‖F‖1 ≤ 1+ l

∫

dzdydv∗dv∗1 F(y,v
∗
1 )F(z, v

∗) = 1+ l‖F‖2
1, (28)

and therefore F ≤ 2 if l < 1
4 .

Now we are able to prove an L∞ a priori estimate on f(x,v, t).
Let

G = sup
x,v,t≥0

f(x,v, t).

From (23):

G ≤ ‖f0‖∞ + lG sup
x,v

∫∞

0
ds

∫

dv1
|v − v1|

(1− 2ε)2
FG ≤ ‖f0‖∞ + 8lG. (29)

then, with the change of variable y = x + (v − v∗1 )s, by integrating in

dydv∗1 = |v − v1|
(

1−ε
1−2ε

)2
ds dv1:

G ≤ ‖f0‖∞ +
l

(1− ε)2
FG ≤ ‖f0‖∞ + 8lG. (30)

Therefore

G ≤
‖f0‖∞

1− 8l
.
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With this a priori bound the construction of the solutions is standard.

Theorem 4.1 follows a strategy proposed by L. Arkeryd in [1] for one di-
mensional non dissipative systems. The main difficulty in extending this
result to arbitrary l is the lack of an entropy control, which, in the non dis-
sipative case, allows us to extend this kind of results to arbitrary l by using
a classical argument. Unfortunately in the present context we do not have
an H-Theorem.

It is not worthless to mention that also Bony’s approach (see [6]) to one-
dimensional kinetic models which do not make use the entropy functional,
does not prevent, in our case, a blow up in a finite time. However we can ex-
clude a total concentration of the solution in a finite time. Namely suppose
that there exists a critical time t∗ such that:

f(v,v, t)→ δ(v)δ(x − x0) (31)

where we are assuming that
∫

f0(x,v)dxdv = 1 and the above conver-
gence is understood in the sense of the weak convergence of the probability
measures, We denote by Q+(f , f ) and by fQ−(f ) the gain and loss term
respectively in Eq. (1). By Eq. (19) we have:

Q+(f , f ) =

∫

dv1|v − v1|
f(x,v∗, t)f (x,v∗1 , t)

(1− 2ε)2
(32)

Q−(f ) =

∫

dv1|v − v1|f(x,v1, t). (33)

from which

f(x,v, t) ≥ exp(−

∫ t

0
ds

∫

dv1|v − v1|f(x − v(t − s), v1, s)f0(x,v) (34)

Denoting by dm0 = f0dxdv , taking any measurable set A and using
the Jensen inequality:
∫

A f(x,v, t)dxdv ≥m0(A)·

· exp( 1
m0(A)

∫ t
0 ds

∫

dx
∫

dv
∫

dv1|v − v1|f(x − v(t − s), v1, s)f0(x,v)

≥ exp( −ct
m0(A)

‖f0‖∞)

(35)

The above inequality can be used to exclude the occurrence of a total
concentration (31). Indeed first notice that a mild solution can be con-
structed under the same hypotheses of Theorem 4.1 for a large l but for
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a short time. Suppose now that there exists a critical time t∗ for which
(31) holds. Then choose A an open set not containing x0 and such that
m0(A) > 0. By condition (31) we have:

∫

A
f(x,v, t)→ 0 (36)

as t → t∗ which contradicts (35).
Unfortunately we are not able to show the absence of the occurrence of

other singularities but we believe that the solutions of Eq. (1) have a much
more regular behavior than those of Eq. (2-3).
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