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ABSTRACT. In an earlier work, the author extended the Andreev-
Koebe-Thurston circle packing theorem. Additionally, a polynomial
time algorithm for constructing primal-dual circle packings of arbi-
trary (essentially) 3-connected maps was found. In this note, addi-
tional details concerning surfaces of constant curvature 0 (with spe-
cial emphasis on planar graphs where a slightly different treatment
is necessary) are presented.

1 Introduction

Let Σ be a surface. A map on Σ is a pair (G,Σ) where G is a connected graph
that is 2-cell embedded in Σ. Given a mapM = (G,Σ), a circle packing ofM
is a set of closed balls (called circles) Cv , v ∈ V(G), in a Riemannian surface
Σ′ of constant curvature +1, 0, or −1 that is homeomorphic to Σ such that
the following conditions are fulfilled:

(i) Each circle Cv is a ball of radius rv with respect to the geodesic dis-
tance in Σ′, and the interiors of these circles are pairwise disjoint open
disks.

(ii) For each edge uv ∈ E(G), the circles Cu and Cv touch.

(iii) By putting a vertex v◦ in the center of each circle Cv and joining v◦

by geodesics with all points on the boundary of Cv where the other
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circles touch Cv (or where Cv touches itself), we get a map on Σ′ which
is isomorphic to M .

Because of (iii) we also say to have a circle packing representation of M .
Simultaneous circle packing representations of a map M and its dual map
M∗ are called a primal-dual circle packing representation of M if

(iv) For any two edges e = uv ∈ E(M) and e∗ = u∗v∗ ∈ E(M∗) which
are dual to each other, the circles Cu, Cv corresponding to e touch at
the same point as the circles Cu∗ , Cv∗ of e∗, and Cu, Cu∗ cross each
other at that point at the right angle.

Having a primal-dual circle packing representation, each pair of dual edges
intersects at the right angle.

It was proved by Koebe [7], Andreev [1, 2], and Thurston [13] that if M
is a triangulation of the sphere, then it admits a circle packing represen-
tation. The proofs of Andreev and Thurston are existential (using a fixed
point theorem) but Colin de Verdière [4, 5] found a constructive proof by
means of a convergent process (also for more general surfaces). Pulley-
blank and Rote (private communication) and Brightwell and Scheinerman
[3] proved existence of primal-dual circle packings of 3-connected planar
graphs. The author [10] extended these results by characterizing maps on
general surfaces that admit primal-dual circle packing representation. In
particular, every map (on an arbitrary closed surface) with a 3-connected
graph has a primal-dual circle packing representation.

The presentation in [10] focused on the hyperbolic case, the constant
negative curvature. The proofs for the Euclidean case (curvature 0) were
omitted, and in this note related to the Colloquium talk of the author, we
give more detailed presentation of the Euclidean case. In fact, we concen-
trate on the case of primal-dual circle packing representation of planar
graphs in the Euclidean plane since that case needs slightly different treat-
ment than circle packings on closed surfaces. We present a polynomial time
algorithm which gets as the input an essentially 3-connected map M on a
flat surface (the torus, the Klein bottle, or the plane) and a rational number
ε > 0, and finds an ε-approximation for a circle packing ofM into a surface
of constant curvature 0. The time used by this algorithm is polynomial in
the size of the input (which is defined as |E(M)| +max{1, dlog(1/ε)e}).

The proofs establishing existence and uniqueness of primal-dual circle
packings are elementary. The basic idea relies on the interpretation (due to
Lovász) of Thurston’s proof, a version of which was also used by Brightwell
and Scheinerman [3]. It is the details in the algorithm that require more
work in order to show that the worst case running time is polynomial. A
new result in this note is the extension of the primal-dual circle packing
theorem to a more general class of plane graphs if we do not insist to have
the circle corresponding to the unbounded face; see Theorem 3.9.
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There are many applications of circle packing representations in com-
putational geometry, graph drawing, computer graphics (cf., e.g., [6, 8, 9]),
as well as in complex analysis (cf., e.g., [12]).

2 Primal-dual circle packings

Let Σ be a surface of constant curvature 0 which is isomorphic to the torus,
the Klein bottle, or the Euclidean plane. Let M0 = (G0,Σ) be a map on
Σ. Define a new map M = (G,Σ) whose vertices are the vertices of G0

together with the faces of M0, and whose edges correspond to the vertex-
face incidence in M0. The embedding of G is obtained simply by putting a
vertex in each face F ofM0 and joining it to all the vertices on the boundary
of F . If a vertex of G0 appears more than once on the boundary of the face,
then we get multiple edges at F but their order around F is determined by
the order of the vertices on the boundary of F . The map M and the graph
G are called the vertex-face map and the vertex-face graph, respectively.
(Sometimes also the name angle map and angle graph is used.) Note that
G is bipartite and that every face of M is bounded by precisely four edges
of G.

From now on we assume that M0 is a given map on Σ and that M and
G are its vertex-face map and vertex-face graph, respectively. We will use
the notation V = V(G), and will denote by n andm the number of vertices
and edges of G, respectively. If Σ is the torus or the Klein bottle, then by
Euler’s formula

m = 2n. (1)

Similarly, if Σ is the plane, then

m = 2n− 4. (2)

If S, T ⊆ V(G), then E(S) denotes the set of edges with both endpoints in
S, and E(S, T) is the set of edges with one endpoint in S and the other in
T . Although E(S, T) = E(T , S), we emphasize that, in order to simplify the
notation, uv ∈ E(S, T) will not only mean the membership but will also
implicitly assume that u ∈ S, v ∈ T .

If Σ is the plane, then one of the vertices of the vertex-face graph corre-
sponds to the unbounded face, and we refer to it as the vertex at infinity. It
is convenient to consider circle packings in the extended plane (the plane
together with a point ∞ which we call infinity). Then we allow that one of
the circles of a circle packing, denoted by Cω, behaves differently. Instead
of (i), we require that none of the circles intersects the exterior of Cω. We
call Cω a circle centered at infinity . To get the corresponding circle packing
representation in (iii), each edge from a vertex v to the vertex of Cω is rep-
resented by the half-line from the center of Cv through Cv ∩ Cω (towards
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Figure 1: A CP with a circle centered at infinity

infinity). See Figure 1 for an example of a CP representation with a circle
centered at infinity.

Similarly we extend the notion of primal-dual circle packings in the
plane to allow the circle at infinity, and we assume that the vertex at infinity
is the vertex of G corresponding to the unbounded face of G0. Lemma 2.1
below shows that the last assumption may as well be omitted.

Let us view R
2 as the complex plane C, and the extended plane as C∗ =

C ∪ {∞}. Consider transformations w : C∗ → C
∗ of the following form:

w(z) = az + b
cz + d , ad− bc 6= 0,

where w(∞) = a/c if c 6= 0 and w(∞) = ∞ if c = 0. Also, w(−d/c) = ∞.
These maps are called fractional linear transformations or Möbius trans-

formations. They map circles and lines to circles and lines in C∗ (lines
in C∗ correspond to usual lines in the plane together with the point ∞).
In particular, they map (primal-dual) circle packings to (primal-dual) circle
packings. Now, it is easy to see the following:

Lemma 2.1 If a graph G has a circle packing in the plane and v is a vertex

of G, then there is a circle packing representation of G such that the circle

corresponding to v is centered at infinity.

Let us now return to the general case. Having a primal-dual circle pack-
ing representation of M0 in Σ, we have a circle for each vertex v of G. Let
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Figure 2: A basic quadrangle

rv be the radius of that circle. Clearly, the primal-dual circle packing repre-
sentation in Σ gives rise to a straight-line representation of M . Consider a
vertex v ofM . It is surrounded by quadrilaterals (called basic quadrangles).
If vuv′u′ is one of them (cf. Figure 2), then its diagonals are perpendicular
and have length rv + rv′ and ru + ru′ , respectively. The angle α shown in
Figure 2 is equal to:

α = arctg(ru/rv). (3)

Since the total sum of the angles around a vertex is 2π , we have a necessary
condition for a set of radii r = (rv | v ∈ V(G)) to be the radii of a primal-
dual circle packing:

∑

vu∈E(G)
arctg(ru/rv) = π , v ∈ V(G) (4)

where the sum is taken over all edges vu that are incident to v inG. It is im-
portant that (4) is also sufficient, as shown by Brightwell and Scheinerman
[3] in the planar case and by Mohar [10] in the closed surface case.

Proposition 2.2 Let M be the vertex-face map of a map M0 on a surface Σ

of constant curvature 0. Let G be the vertex-face graph ofM . Then r = (rv |
v ∈ V(G)) are the radii of a primal-dual circle packing representation of M
if and only if rv > 0, v ∈ V(G), and the angle condition (4) is satisfied.

3 Planar graphs

Let G0 be a given 2-connected plane graph. In this section we let G be the
graph which is obtained from the vertex-face graph of G0 by deleting the
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vertex corresponding to the unbounded face of G0. Suppose that the un-
bounded face of G0 contains k vertices v1, . . . , vk on its boundary. Denote
by n,m,f the number of vertices, edges, and faces ofG, respectively. Then
(2) implies

m = 2n− k− 2 and f = n− k .
(Observe that (2) refers to the vertex face graph G +ω which has n + 1
vertices andm+k edges in the current notation.) Note that G is a bipartite
plane graph and that G is simple (since G0 is 2-connected), although we do
not require G0 be a simple graph.

Given a function r = (rv | v ∈ V), where each rv > 0, we define

ϕv =
∑
u∼v

arctg
ru

rv

where the sum is taken over all vertices u that are adjacent to v in G.
Clearly, ϕv is equal to one half of the total angle of basic quadrangles
around v . To measure the difference from the expected value π (or k−2

2k π
if v = vi), we introduce

ϑv =
{
ϕv −π, if v 6∈ {v1, . . . , vk}
ϕv − k−2

2k π, if v ∈ {v1, . . . , vk} . (5)

Denote by Θ(r) = (ϑv ; v ∈ V).

Lemma 3.1
∑
v∈V ϑv = 0.

Proof. We will use here and in later proofs the well known identity

arctg(x)+ arctg(
1

x
) = π

2
.

It follows easily:

∑

v∈V
ϑv =

∑

v∈V
ϕv −π(n− k)− k

k− 2

2k
π

= π

2
e− (2n− 2k+ k− 2)

π

2
= 0 .

The following lemma is obvious.

Lemma 3.2 The functions ϑv = ϑv(r) are continuous and differentiable.

Moreover, ∂ϑv/∂rv < 0, ∂ϑv/∂ru > 0, if u is adjacent to v in G, and

∂ϑv/∂ru = 0, otherwise.
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Lemma 3.3 Let S ⊆ V , S 6= ∅, S 6= {vi} (1 ≤ i ≤ k), and let t = |S ∩
{v1 . . . , vk}|. If E(S) denotes the set of edges of G with both ends in S, then

2|S| − |E(S)| ≥ t + 2 . (6)

If t = k and either the graph GS = (S, E(S)) induced on S is disconnected,

or at least one bounded face of GS is not a quadrilateral, or the unbounded

face of GS is not of size 2k, then

2|S| − |E(S)| ≥ t + 3 . (7)

Proof. Let us first assume that GS is connected. Then we obviously have
the following. If t = 0 and |S| = 1 then

2|S| − |E(S)| = 2 = t + 2 . (8)

If t = 1 and |S| = 1 then

2|S| − |E(S)| = 2 . (9)

If |S| = 2, then t ≤ 1. Hence

2|S| − |E(S)| ≥ 3 ≥ t + 2 . (10)

If |S| ≥ 3 then consider GS as the plane graph. Since GS is bipartite and
simple, all its faces are of size 4 or more. Moreover, the unbounded face
contains the t vertices of S ∩ {v1, . . . , vk}, and is therefore of size at least
2t. (We do not insist that the unbounded face is simple!) Consequently,
counting the number of edges on the boundaries of faces of GS yields:

4(|F(GS)| − 1)+ 2t ≤ 2|E(S)| (11)

where F(GS) denotes the set of faces of GS . By Euler’s formula for GS and
(11), we get (6). In the case when GS is connected, t = k, and at least one
of the bounded faces of GS is not a quadrilateral, or the unbounded face is
of size greater than 2k, (11) can easily be improved to (7).

It follows by (8)–(10) that in the case when GS is not connected the
inequality (7) holds. Clearly, this implies (6).

Lemma 3.4 Let r = (rv ; v ∈ V), S ⊂ V , S 6= ∅, and α > 0 be given. Define

r ′ by r ′v = αrv if v ∈ S, and r ′v = rv otherwise. Let (ϑ′v ; v ∈ V) = Θ(r ′),
and let f(α) =∑v∈S(ϑv − ϑ′v). Then

(a) If α ≥ 1 then ϑ′v ≤ ϑv if v ∈ S, and ϑ′v ≥ ϑv if v 6∈ S.

(b)

f(α) =
∑

v∈S

∑

u∉S,vu∈E
(arctg

ru

rv
− arctg

ru

αrv
) .

In particular, f(α) is monotone increasing.
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(c) If M = limα→∞ f(α) then

∑

v∈S
ϑv ≤ M <

π

2
|E(S, V\S)|.

(d) If α ≥ 2+maxu∉S ru/minv∈S rv , then

f(α) ≥ M

2
.

Proof. The assertion (a) is obvious. By (a) it is clear that the limit M is well
defined and that it is equal to

M =
∑

vu∈E(S,V\S)
arctg

ru

rv
≤ π

2
|E(S, V\S)| . (12)

To get the lower bound on M , we use the fact that ϑv = ϕv − π , or ϑv =
ϕv − k−2

2k π > ϕv −π , but the latter happens only for the t ≤ k vertices of
S ∩ {v1, . . . , vk}. We will write s = |S| and eS = |E(S)|. Then

∑

v∈S
ϑv =

∑

v∈S
ϕv −π(s − t)− t

k− 2

2k
π

=
∑

v∈S

∑

vu∈E
arctg

ru

rv
−
(
s − t + t k− 2

2k

)
π

= π

2
eS +M −

(
s − t + t k− 2

2k

)
π

= M − (2s − eS − t −
2t

k
)π . (13)

By applying (6) in the above inequality we get the required bound. There is
the case when t = 1 and s = 1 which is not covered by (6). But in this case
2s − eS − t − 2t/k = 1− 2/k ≥ 0 which yields the same conclusion.

To prove (c) we use (a) and (12). It suffices to see that

arctg
ru

rv
− arctg

ru

αrv
≥ 1

2
arctg

ru

rv
(14)

for every v ∈ S,u ∉ S. Let x = ru/rv and y = x/α. Then (14) is equivalent
to arctgx ≥ 2 arctgy . Since 0 < y < 1, we have 2 arctgy = arctg 2y

1−y2 , and

the previous inequality reduces to x ≥ 2y/(1 − y2). This is equivalent to
α ≥

√
x2 + 1+ 1. But this is true since α ≥ x + 2 by assumption.

Given r , define
µ(r) =

∑

v∈V
ϑ2
v .
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Order the vertices of G such that ϑu1 ≥ ϑu2 ≥ · · · ≥ ϑun . Let

σ(r) = max
1≤i<n

(ϑui − ϑui+1) , (15)

and let t be the smallest index i where the maximum in (15) is attained. Set
S = S(r) = {u1, . . . , ut}, and let r ′ be defined by r ′v = αrv if v ∈ S, and
r ′v = rv otherwise. Let (ϑ′v ; v ∈ V) = Θ(r ′), and let f(α) =∑v∈S(ϑv−ϑ′v).
Call α suitable if

(a) ϑ′v ≥ ϑ′u for all v ∈ S and u ∉ S, and

(b) f(α) ≥ 1
3 min

{
σ(r),

∑
v∈S ϑv

}
.

Lemma 3.4(c) shows that a suitable α always exists.
Next we describe an algorithm for the following problem:

Instance: A 2-connected plane graph G0, ε > 0.

Task: Find positive numbers r = (rv ; v ∈ V) for the corresponding graph
G such that µ(r) ≤ ε.

ALGORITHM A:

1. Construct the vertex-face graph and remove its vertex at infinity
to form the graph G.

2. Set rv = 1, v ∈ V .

3. while µ(r) > ε do

3.1 Determine σ = σ(r) and the set S ⊂ V .

3.2 Find a suitable α by bisection. Since all the computations are
only approximative (p binary digits), we perform the bisec-
tion as follows:

α0 := 1, α1 := 2(maxu∉S ru + 2)

Comment: Note that minv∈V rv = 1.

repeat

α := α0+α1
2

Compute r ′, Θ(r ′) = (ϑ′v | v ∈ V).
if ϑ′v < ϑ

′
u + 1

7σ for some v ∈ S,u ∉ S
then α1 := α else α0 := α

until α is suitable.

3.3 ρ := minv∈V r ′v and rv := r ′v/ρ, v ∈ V .

4. Output r and Θ(r).

This algorithm needs some comments:
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• All the arithmetic in Algorithm A should be performed with “large”
precision. Lemma 3.8 below can be used to show thatp = 10n log2n+
dlog(1/ε)e significant binary digits will suffice for that purpose. How-
ever, for most practical issues and applications, the built-in computer
arithmetic should suffice.

• Instead of the bisection in Step 3 of Algorithm A, one can use Newton’s
iteration. It is clear that this change would improve the performance.
We have not used it in Step 3 since the formal proof needs an addi-
tional argument in that case.

• The computation of ϑv and ϑ′v (to the required precision p) is also
polynomial since the Taylor series of arctg(x) converge fast enough.

The following two lemmas show that the number of repetitions of Step
3 in Algorithm A is bounded by a polynomial in n and dlog(1/ε)e.

Lemma 3.5 If rv = 1 for each v ∈ V and G has no vertices of degree 0 or

1, then

µ(r) < π2n2.

Proof. In this case we have ϕv = deg(v)π4 ≥ π
2 . It follows that |ϑv | ≤

π
4 deg(v). Finally:

µ(r) ≤ π2

16

∑

v∈V
deg(v)2 <

π2

16


 ∑

v∈V
deg(v)




2

= π2

4
|E(G)|2 .

Now (2) completes the proof.

Lemma 3.6 If r ′ is the new value for the function r obtained by the algo-

rithm, then

µ(r ′) ≤
(
1− 1

6n3

)
µ(r) .

Proof. Using the notation of the Algorithm, let t1 = minv∈S ϑv , t2 =
maxv∉S ϑv . Then t1 − t2 ≥ σ . Since α is suitable, there is a number t3
between t2 and t1, such that for every v ∈ S,u ∉ S, ϑ′v ≥ t3 ≥ ϑ′u. Since
α > 1 we have ϑv ≥ ϑ′v for v ∈ S, and ϑu ≤ ϑ′u for u ∉ S. Finally,

µ(r)− µ(r ′) =
∑

v∈V
(ϑ2

v − ϑ′2v )

=
∑

v∈S
(ϑv + ϑ′v)(ϑv − ϑ′v)+

∑

u∉S

(ϑu + ϑ′u)(ϑu − ϑ′u)

≥
∑

v∈S
(t1 + t3)(ϑv − ϑ′v)+

∑

u∉S

(t2 + t3)(ϑu − ϑ′u)



CIRCLE PACKINGS OF MAPS – THE EUCLIDEAN CASE 201

=
∑

v∈S
(t1 − t2)(ϑv − ϑ′v) (by Lemma 3.1)

≥ σ
∑

v∈S
(ϑv − ϑ′v) = σf(α)

≥ σ

3
min

{
σ,
∑

v∈S
ϑv
}
≥ σ 2

6
.

In the last inequality we used the fact that
∑
v∈S ϑv ≥ σ/2 which is left to

be verified by the reader as an exercise.
To prove the inequality of the lemma we combine the above bound with

the following one:

σ ≥ 1

n− 1

(
max
v∈V

ϑv −min
v∈V

ϑv
)

>
1

n

√
ϑ2
u1 + ϑ2

un ≥
1

n

√√√√ 1

n

∑

v∈V
ϑ2
v = n−3/2

√
µ(r) .

Suppose that G satisfies the following property. If S is a proper subset
of vertices of G, which contains all vertices {v1, . . . , vk}, then the graph GS
induced on S is either disconnected, or contains a bounded face which is
not a quadrilateral, or the unbounded face contains more than 2k edges
on its boundary (counted twice if an edge appears twice on its boundary).
Then G is said to be almost 3-connected. It is easy to see that if G0 is
3-connected then G is almost 3-connected. But there are other examples
of graphs G0 which give rise to almost 3-connected G. For example, 2-
connected outerplanar graphs. Their combinatorial characterization is as
follows. Let G̃ be a 3-connected plane graph, and let C be a cycle of G̃. If
G0 is the plane subgraph of G̃ which consists of C and and all edges in the
interior of the disk bounded by C , then we say that G0 is a cycle graph.

Proposition 3.7 Let G0 be a 2-connected plane graph, and let G be the sub-

graph of the vertex-face graph of G0 obtained by removing the vertex at the

infinity. Then the following are equivalent:

(a) G0 is a cycle graph.

(b) The graph G̃ obtained from G0 by adding a new vertex joined to all

vertices on the outer face of G0 is 3-connected.

(c) G is almost 3-connected.

Proof. Equivalence of (a) and (b) is easy to see and is left to the reader. Let
w be the vertex that was added to G0, and let G′ be the vertex-face graph of
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G̃. If S ⊂ V(G), we denote by S′ the set of vertices of G′ consisting of S, w,
and all faces of G̃ containing w. If G is not almost 3-connected, then there
is a set S ⊂ V(G) such that v1, . . . , vk ∈ S, and the corresponding subgraph
G′S′ of G′ is a quadrangulation. It was proved in [3] that this implies that G̃
is not 3-connected. This shows that (b) implies (c).
To show the converse, suppose that verticesx,y form a vertex 2-separation
of G̃. Then, clearly, w ∉ {x,y}. There are distinct faces ν, τ of G̃ which
contain edges in distinct components of G̃−x−y . Then xνyτ is a 4-cycle
of G such that the set T of vertices of G inside this 4-cycle is nonempty.
Let S = V(G)\T . This set shows that G is not almost 3-connected. This
proves that (c) implies (b).

For our purpose the following lemma is important.

Lemma 3.8 Let G be an almost 3-connected graph. Suppose that µ(r) ≤
ε ≤ π2

4n3 and that minv∈V rv = 1. Then

max
v∈V

rv ≤ (2n2)n−1 .

Proof. It suffices to show that for an arbitrary nonempty proper subset
S ⊂ V of vertices we have

min
v∈S

rv ≤ 2n2 max
u∉S

ru . (16)

Assume that (16) does not hold for S. Let a = minv∈S rv and let b =
maxu∉S ru. Also denote by s = |S| and t = |S ∩ {v1, . . . , vk}|. By (13) we
have:

∑

v∈S
ϑv =

∑

vu∈E(S,V\S)
arctg

ru

rv
−
(
2s − |E(S)| − t − 2t

k

)
π

≤ |E(S, V\S)| b
a
− τπ ≤ 2n

b

a
− τπ

where τ = 2s − |E(S)| − t − 2t
k . If t ≤ 1 and s ≤ 2, then we have

τ ≥ 1

3
(17)

since k ≥ 3 holds by the almost 3-connectedness of G. If t ≤ k − 1, then
Lemma 3.3 and (6) yield:

τ ≥ 2

n
. (18)

(Note that (18) could be improved to τ ≥ 1 if G0 is 3-connected.) If t = k
then almost 3-connectivity allows us to use the inequality (7) of lemma 3.3,
which implies that in this case

τ ≥ 1 . (19)
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Finally, (17)–(19) together with n ≥ 3 yield:

2n
b

a
≥
∑

v∈S
ϑv +

1

n
π ≥ 1

n
π +

∣∣∣
∑

v∈S
ϑv

∣∣∣ . (20)

By the Cauchy-Schwarz inequality and the assumptions of the lemma we
get:

∣∣∣
∑

v∈S
ϑv

∣∣∣ ≤
∑

v∈S
|ϑv | ≤

√
s
∑

v∈S
ϑ2
v <

√
nµ(r) ≤ √nε ≤ 1

2n
π . (21)

From (20) and (21) we easily get a ≤ 4n2

π b which implies (16).

The last lemma shows that our algorithm works for arbitrary almost
3-connected graphs, and hence proves existence (cf. [10]) of a primal-dual
circle packing (except for the circle at infinity) for a more general class of
graphs than the 3-connected ones. Although we fixed the angles at the
outer facial cycle C = v1v2 . . . vk to be all equal to k−2

k π , we may choose
for these angles any values αi, 0 < αi < π , whose total sum is (k − 2)π ;
cf. [11, Chapter 2].

Theorem 3.9 A plane graph G0 admits a primal-dual circle packing repre-

sentation in the plane with the circle corresponding to the unbounded face

missing if and only if G0 is a cycle graph. The angles αi, 0 < αi < π , whose

total sum is (k−2)π , at the vertices vi (i = 1, . . . , k) of the outer face of the

cycle graph G0 can be chosen arbitrarily, and then the corresponding circle

packing is unique up to a multiplicative factor and isometries of the plane.

At the end, let us summarize the entire algorithm. We are given a 3-
connected plane graph G0 and the admissible error ε > 0. Construct the
vertex-face graph G̃. Let ω be a vertex of degree 3 in G̃, and let G = G̃−ω.
(It is a simple consequence of Euler’s formula that such a vertex always
exists.) Then k = 3 and our goal is to find the radii r = (rv | v ∈ V(G))
for the graph G such that there is a primal-dual circle packing of G0 with
radii r ◦ = (r ◦v | v ∈ V) and for each vertex v of G we have |r ◦v − rv | ≤ ε.
For this purpose we use Algorithm A described above. After computing the
radii, one can determine coordinates of the centers of the circles in R2 as
described below. Since k = 3, (5) implies that the angles at the three vertices
of the vertex-face graph adjacent to ω are equal to π/3, and this implies
that the radii at these vertices are all equal to each other. This shows that
one can define also the circle corresponding to the vertex ω at infinity.
Finally, Lemma 2.1 can be used to transform the obtained circle packing
into a primal-dual circle packing where the circle at infinity corresponds to
the unbounded face of G0.

The centers Pv of circles Cv in a primal-dual circle packing with given
radii rv (v ∈ V(G)) can be computed as follows. Choose an arbitrary vertex
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v0 ∈ V and put it in the origin of the plane. By using elementary geometry
we can calculate the coordinates Pv for all vertices v that are adjacent to
v0 in G. We may think of this as tiling the neighborhood of v0 by the basic
quadrangles (cf. Figure 2) containing v0. For each neighbor v of v0 in G
we repeat the process. Since one of the basic quadrangles containing v
is already placed in the plane, other basic quadrangles have precisely one
possibility to be placed around v . By repeating the procedure we exhaust
the entire graph and obtain a primal-dual circle packing representation.
The angle condition (4) and simple connectivity of the plane can be used to
show that different ways of reaching the same basic quadrilateral Q yield
the same position of Q in the plane. The reader is referred to [3, 10, 11]
for additional details omitted in the above presentation.

4 The torus and the Klein bottle

In the case of closed surfaces of constant curvature 0, we may undertake
the same way as described for the plane except that we do not need to
treat a special vertex at the infinity. Now G is the whole vertex-face graph,
and we use the same iteration procedure as described in Section 3 which
finds appropriate radii satisfying (4). (The same procedure in the case of
constant negative curvature is presented in details in [10].)

Vertices x,y ∈ V(G0) (with the possibility x = y) are said to be a planar

2-separation if there are internally disjoint simple paths π1, π2 from x to
y on Σ such that:

(i) π1, π2 meet G0 ⊂ Σ only at their endpoints x,y .

(ii) The closed walk π1π
−1
2 bounds an open disk D ⊂ Σ.

(iii) D contains a vertex or a face of M0.

The mapM0 is reduced if it contains no planar 2-separations. Maps with 3-
connected graphs are reduced but we can have a reduced map whose graph
is not 3-connected, or even not simple.

Theorem 4.1 (Mohar [10]) A map on the torus or the Klein bottle admits a

primal-dual circle packing representation if and only if it is reduced. The

radii of such a representation are uniquely determined if we require that

the minimum radius is equal to 1.

A simple but interesting consequence of Theorem 4.1 is a characteriza-
tion of maps that admit circle packings.

Corollary 4.2 For a map M on the torus or the Klein bottle the following

conditions are equivalent:

(a) M admits a circle packing representation.
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(b) M admits a straight-line representation on a surface with constant cur-

vature 0.

(c) M does not contain contractible loops or pairs of edges (possibly loops)

with the same endpoint(s) that are homotopic relative their endpoint(s).

To show equivalence of (a)–(c), one should note that by properly trian-
gulating every face of a map satisfying (c), a reduced map is obtained. On
the other hand, if a map does not satisfy (c), then it has no straight-line rep-
resentation on a surface with constant curvature 0 by an easy application
of the Gauss-Bonnet Theorem.

Theorem 4.1 shows the important role played by reduced maps. They
have other characterizations as shown by the next result.

Proposition 4.3 ([10]) Let M0 = (G0,Σ) be a map on the torus or the Klein

bottle. Then the following conditions are equivalent:

(a) The map M0 is reduced.

(b) The graph of the universal cover of M0 is 3-connected.

(c) The graph G0 has no vertices of degree less than 3, no faces of size less

than 3 and does not contain vertices x,y and two internally disjoint

paths P1, P2 from x to y such that the closed walk P1P
−1
2 bounds a disk

D on Σ and the only vertices on P1 ∪ P2 that have a neighbor out of D
are x and y .

(d) If there is a closed walk of length at most 4 in the vertex-face graph G
that bounds a disk D in Σ, then D is a face of M .

(e) For every proper non-empty subset S ⊂ V(G) of vertices of G we have:

2|S| − |E(S)| ≥ 1. (22)

Since the property (d) of Proposition 4.3 is the same for M0 as for its
dual map M∗

0 , equivalence of (a) and (d) shows:

Corollary 4.4 The dual mapM∗
0 ofM0 is reduced if and only ifM0 is reduced.
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