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ABSTRACT. We give a summary of Auslander’s theory of coherent
functors and its application to the study of flat families in projective
three-space. This is joint work with M. Martin-Deschamps and D.
Perrin. Full details will appear in the paper [3], [4], [5], [6].

1 Functors on A-modules

Let A be a commutative noetherian ring. Let Mod(A) be the category of all
A-modules, and let M = Mody, (A) be the category of finitely generated
A-modules.

One often has to deal with an A-linear functor F from ‘M to M. Such a
functor associates to each module M € ‘M another module F(M) € M, to
a morphism f : M — M’ it associates a morphism F(f) : F(M) — F(M’);
and to say that F is A-linear means that the induced map

Homyu (M, M’)— Homu (F(M)),F(M'))

is A-linear.

Here are a few examples of A-linear functors.

1) For a fixed M € M, we define the functor hy; by hy (N) = Homy
(M,N) forall N € M.

2) For a fixed M € M, the tensor product functor N+— M ® 4 N, which
we denote by M ® -.

3) If A is an integral domain, we can define a functor T by T(M) = the
torsion submodule of M. _

4) The derived functors of 1) and 2), which are Ext', (M, -) and Torf (M, -).

5) An example from algebraic geometry which is important in the sequel,
is as follows. Let Y = Spec A, and left f : X — Y be a proper morphism of
schemes. Let F be a coherent sheaf on X. Then we consider the functor T¢,
for any i > 0, defined by
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TiI(N) = H{(X, F ®4 N).

Note that the cohomology groups of a sheaf on X have a natural struc-
ture of A-module, and these will be finitely generated over A because X is
proper over Y and ¥ is coherent.

If F is an A-linear functor form M to M, and if

0—N—-N—-N'—-0

is a short exact sequence of A-modules, then we obtain a sequence of A-
modules

0— F(N')— F(N)— F(N")— 0.

If it exact in the middle, we say F is half exact. If it is exact in the middle
and on the left, F is left exact. Similarly right exact. If exact everywhere,
then F is exact.

For example, in the list above, 1) and 3) are left exact; 2) is right exact;
the functors in 4) are all half exact; and if /F is flat over Y, then the functors
in 5) will also be exact.

2 Coherent functors

Let us denote by Funct (M) the set of all A-linear functors form M to M.
A morphism of functors F — G is a collection of maps F(M) — G(M) for
each M € ‘M which commute with the induced maps F(M) — F(M’') and
G(M)— G(M’) for any morphism of modules M — M’. Given a morphism
of functors f : F— G, we can define new functors ker f, im f, coker f by

(kerf) (M) = ker(F(M)— G(M))

and similarly for im and coker. In this way Funct (M) becomes an abelian
category.

Among all these functors, some are better than others. Following Aus-
lander [1], we define a functor F to be coherent if there are modules M,N e
M and an exact sequence of functors

hy— hy— F— 0.

Then one can show that the set of all coherent functors C forms an
abelian subcategory of Funct (M). In particular, if f : F— G is a morphism
of coherent functors, then ker f, im f, and coker f are also coherent. Also
an extension of coherent functors is coherent.

In the examples above, the functors hy; are coherent by definition. To
see that the tensor product functor M ® - is coherent, let P, — Pp— M — 0
be a projective resolution of M. Then we get an exact sequence of functors
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P —Pp® -— M- -— 0.

For a finitely generated projective A-module P, let P¥ = Hom4 (P, A) be
its dual. Then the functor P ® - is isomorphic to hpv. Thus we see that
M ® - is coherent. Note at this point it is essential that we are working with
finitely generated modules over a noetherian ring A.

This argument shows more generally that if P. is a complex of finitely
generated projective A-modules, then the functors h;(P.® -) will be coher-
ent. Thus we see that the functors Ext!(M, -) and Tor!(M, -) are coherent,
by using a projective resolution of M .

On the other hand, if A is an integral domain which is not a field, the
torsion-submodule functor T is not coherent. In fact it is not even finitely
generated, meaning there is no M € M admitting a surjective morphism
I’lM — 17— 0.

With regard to the cohomology functors T in example 5) above, if we
assume that X is projective over Y, and the sheaf ¥ is flat over Y, then
there exists a complex L- of free finitely generated A-modules such that

TYUN) = hi(L- ®4 N)

for each N € M [2, 111.12.3]. Thus as above we see that the functors T? are
coherent. But if F is not flat, the functors T* need not be coherent [3, 2.11].

3 Duality

For a finite dimensional vector space V over a field k, we are familiar with
the dual vector space V* = Homy (V, k). The operation of taking the dual
vector space is an exact, contravariant functor * from the category of vector
spaces to itself, with a natural isomorphism * %= id.

For finitely generated projective modules P over a ring, the operation
of taking the dual module P¥ = Hom (P, A) has similar properties, but this
operation does not extend to the category of all A-modules. However if
we consider the larger category C of coherent functors (here I am thinking
of M as being embedded in C by associating to the module M the functor
M ® -) there is a good notion of duality.

Given a coherent functor F € C, represent it as a cokernel

hy— hy— F— 0.

The map of functors hy; — hy arises from a map of modules f : N— M,
so we can define the dual functor F* by

F¥f=ker(IN® -— M ® -).
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Then one shows that this is well-defined (i.e. independent of the choice
of the representation hy; — hy — F), and that * is a contravariant exact
functor from C to C with % % = id¢. In particular, the functors hy and M ® -
are dual to each other. One can also see easily that Ext' (M, -) and Tor; (M, -)
are dual coherent functors. The duality interchanges left exact and right
exact functors, and sends half exact functors into half exact functors. The
exact functors are all of the form P ® -, where P is a finitely generated
projective A-module. The dual of P ® - is hp = PV ® -, so the duality * on
C extends the duality v on projective A-modules.

Using this notion of dual coherent functors, one can express Grothendieck’s
duality theorem (which generalizes Serre duality over a field) in a particu-
larly nice way.

Theorem 3.1 [3, 7.4] Let Y = SpecA , let X be a smooth projective scheme
over Y of relative dimension n, and let w = QY ,y be the relative dualizing
sheaf. Then for any coherent sheaf T on X, flat over Y, the functors

Exty ((F,w @4 ) and H(X, F @4 -)
are dual coherent functors.

The value of this result is that while there is no simple relationship
between the individual A-modules Ext} ' (/F, w) and H' (X, F), the theorem
gives a duality between the corresponding functors.

4 Space curves

Let X be the projective space [P’,3< over an algebraically closed field k. A curve
in X is a closed subscheme C of pure dimension one with no embedded
points. To the curve C we associate its Rao module

Mc = @ H'(X,1c(n)),

nez

where 7¢ is the sheaf of ideals of the curve C. This module is a finite length
graded module over the polynomial ring R = k[x, v, z, w].
An N-type resolution of the curve C is an exact sequence

0—-P—-N—-1c—0

on X, where P is dissocié, meaning isomorphic toa direct sum ®Ox(—n;),
and 2V is locally free with H2 (') = 0. Here HL (N') means

SnezH (X, N (n)).

Two curves C and C’ are linked if there exists a complete intersection
curve D containing C and C’ and such that
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Iep = Hom(O¢, Op)
and
Ic'p = Hom(O¢', Op)

Two curves C and C’ are equivalent up to biliason if they can be con-
nected by a chain of an even number of such linkages.
Now we can state the classical Rao theorem as follows.

Theorem 4.1 [8],/9] Let X = P}. Then there are one-to-one correspondences
between the following three sets:

i) the set of curves C < X,up to biliaison equivalence

ii) the set of locally free sheaves N on X satisfying H3(N') = 0, up to
stable equivalence (adding dissocié sheaves) and twists

iii) the set of finite length graded R-modules, modulo isomorphism, up to
shift in degrees.

The correspondences are given by associating to a curve C its Rao mod-
ule M¢, and the sheaf /N° coming from an N-type resolution.

Furthermore, each biliaison equivalence class of curves (except for the
class of ACM curves, which corresponds to the 0 module over R) satisfies
the Lazarsfeld-Rao property: in each biliaison equivalence class there is
a minimal curve Cy, and any other curve C in the biliaison class can be
obtained from Cy by a finite number of elementary biliaisons, followed
by a deformation with constant cohomology (see [7] for a more detailed
statement).

5 Families of space curves

Our purpose here is to find the analogue of the results of § 4 for families
of space curves.

Let A be a noetherian local ring, let Y = Spec A, and let X = IP§. A
curve in X is a closed subscheme C c X, flat over Y, with the property that
for each t € Y, the fibre C; ¢ X; = [P’?(m is a curve in the previous sense,
namely pure dimension 1 with no embedded points.

Liaison and biliaison are defined as before.

For the N-type resolution, we require only that there be an exact se-
quence

0—-P—-N—-1c—0

with P dissocié and /N locally free on X.
If N and N’ are two locally free sheaves on X, we say that a morphism
f N — N’ is a pseudo-isomorphism (psi for short) if it induces
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1) an isomorphism of functors HL (N ®4 ) — HL(N' ® -) and

2) an injection of functors H2 (N ®4 -) — H3(N' ® -).

We say two locally free sheaves N and N’ are equivalent for psi if they
can be joined by a chain of sheaves which admit psi between them in one
direction or the other.

Theorem 5.1 [4] Let X = P}, with Y = Spec A as above. Any curve C <
X admits an N-type resolution. The corresponding locally free sheaf N is
uniquely determined up to psi. If C and C’ are two curves, with sheaves N,
N in their N-type resolutions, then C and C' are equivalent for biliaison if
and only if N and )N are equivalent for psi.

Theorem 5.2 [5] With X, A as above, if N is a locally free sheaf on X, there
exists a curve Co < X of minimal degree with N -type resolution Ny which is
psi to N, and any other curve C’ in the same biliaison equivalence class can
be obtained from Cy by a finite number of elementary biliaisons followed by
a deformation with constant cohomology.

For our third result, we need an analogue of the Rao module of a curve
over a field. The natural choice would seem to be the Rao functor

Fe= @ HY(X,1c(n) ®4 -)
nez

This is a functor from A-modules to graded R4 = A[x, v, z, w]-modules.
Itis a direct sum of its graded pieces F;, each of which is a coherent functor
on A-modules.

One can show easily enough that curves C and C’ which are equivalent
up to biliaison give rise to functors F¢ and F¢ which differ only by a shift
in degrees. However, the converse statement is false, so we need a more
refined notion to play the role of the Rao module.

As above, let A be a noetherian local ring, and let R4 = A[x,y,z,w]. A
triad is a complex L — L1 — L2 of finitely generated graded R4-modules,
flat over A, and such that hi(L") is a finitely generated A-module fori = 1, 2.
A morphism of triads is simply a morphism of complexes. A morphism of
triads f : L' — L' is a pseudo-isomorphism (psi for short) if it induces

1) an isomorphism of functors h! (L' ® 4 -) — h?(L" ®4 -) and

2) an injection of functors h?(L" ®4 -) — h2(L" ®4 -).

We say two triads are equivalent for psi if they can be joined by a finite
chain of such morphism, in either direction.

To a triad L we associate the sheaf

N = ker(L0— L1

which will be locally free on X. We say that a triad L' is associated to a
curve C if N is psi equivalent to a sheaf coming from an N-type resolution
of C. In that case the Rao functor of C can be obtained as h!(L* ® -).
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Theorem 5.3 [6] Let C and C' be curves with associated triads L' and L.
Then C and C’ are equivalent for biliaison if and only if L' and L are
equivalent for psi.

In the special case of a discrete valuation ring A, with residue field k
and quotient field K, suppose given finite length graded modules M, over
k[x,v,z,w] and M; over K[x, v, z,w]. Then we can compute effectively
all possible triads L' whose associated modules are h!(L- ® k) = My and
hl(L" ® K) = My, and thus in principle we can determine all possible flat
families of curves C c [P’f, whose special and general fibre Cy and C; are in
the biliaison equivalence classes determined by the Rao modules My and
M. While the computations quickly become quite complicated, we are still
hopeful that this will be a fruitful method for studying properties of the
Hilbert scheme of curves in P3 over a field k.
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