ROBIN HARTSHORNE

Università di California Berkeley

COHERENT FUNCTORS AND FAMILIES OF SPACE CURVES

Conferenza tenuta l'11 giugno 1997

ABSTRACT. We give a summary of Auslander's theory of coherent functors and its application to the study of flat families in projective three-space. This is joint work with M. Martin-Deschamps and D. Perrin. Full details will appear in the paper [3], [4], [5], [6].

1 Functors on *A*-modules

Let *A* be a commutative noetherian ring. Let Mod(A) be the category of all *A*-modules, and let $\mathcal{M} = \text{Mod}_{fg}$ (*A*) be the category of finitely generated *A*-modules.

One often has to deal with an *A*-linear functor *F* from \mathcal{M} to \mathcal{M} . Such a functor associates to each module $M \in \mathcal{M}$ another module $F(M) \in \mathcal{M}$; to a morphism $f : M \to M'$ it associates a morphism $F(f) : F(M) \to F(M')$; and to say that *F* is *A*-linear means that the induced map

$$\operatorname{Hom}_A(M, M') \to \operatorname{Hom}_A(F(M)), F(M'))$$

is A-linear.

Here are a few examples of *A*-linear functors.

1) For a fixed $M \in \mathcal{M}$, we define the functor h_M by $h_M(N) = Hom_A$ (M, N) for all $N \in M$.

2) For a fixed $M \in \mathcal{M}$, the tensor product functor $N \mapsto M \otimes_A N$, which we denote by $M \otimes \cdot$.

3) If *A* is an integral domain, we can define a functor τ by $\tau(M)$ = the torsion submodule of *M*.

4) The derived functors of 1) and 2), which are $\operatorname{Ext}_{A}^{i}(M, \cdot)$ and $\operatorname{Tor}_{i}^{A}(M, \cdot)$.

5) An example from algebraic geometry which is important in the sequel, is as follows. Let Y = Spec A, and left $f : X \to Y$ be a proper morphism of schemes. Let \mathcal{F} be a coherent sheaf on X. Then we consider the functor T^i , for any $i \ge 0$, defined by

R. HARTSHORNE

$$T^{\iota}(N) = H^{\iota}(X, \mathcal{F} \otimes_A N).$$

Note that the cohomology groups of a sheaf on *X* have a natural structure of *A*-module, and these will be finitely generated over *A* because *X* is proper over *Y* and \mathcal{F} is coherent.

If *F* is an A-linear functor form \mathcal{M} to \mathcal{M} , and if

$$0 \to N' \to N \to N'' \to 0$$

is a short exact sequence of *A*-modules, then we obtain a sequence of *A*-modules

$$0 \to F(N') \to F(N) \to F(N'') \to 0.$$

If it exact in the middle, we say *F* is *half exact*. If it is exact in the middle and on the left, *F* is *left exact*. Similarly *right exact*. If exact everywhere, then *F* is *exact*.

For example, in the list above, 1) and 3) are left exact; 2) is right exact; the functors in 4) are all half exact; and if \mathcal{F} is flat over *Y*, then the functors in 5) will also be exact.

2 Coherent functors

Let us denote by Funct (\mathcal{M}) the set of all A-linear functors form \mathcal{M} to \mathcal{M} . A morphism of functors $F \to G$ is a collection of maps $F(M) \to G(M)$ for each $M \in \mathcal{M}$ which commute with the induced maps $F(M) \to F(M')$ and $G(M) \to G(M')$ for any morphism of modules $M \to M'$. Given a morphism of functors $f : F \to G$, we can define new functors ker f, im f, coker f by

$$(\ker f) (M) = \ker(F(M) \rightarrow G(M))$$

and similarly for im and coker. In this way Funct (\mathcal{M}) becomes an abelian category.

Among all these functors, some are better than others. Following Auslander [1], we define a functor F to be *coherent* if there are modules $M, N \in \mathcal{M}$ and an exact sequence of functors

$$h_M \rightarrow h_N \rightarrow F \rightarrow 0.$$

Then one can show that the set of all coherent functors *C* forms an abelian subcategory of Funct (\mathcal{M}). In particular, if $f : F \to G$ is a morphism of coherent functors, then ker f, im f, and coker f are also coherent. Also an extension of coherent functors is coherent.

In the examples above, the functors h_M are coherent by definition. To see that the tensor product functor $M \otimes \cdot$ is coherent, let $P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ be a projective resolution of M. Then we get an exact sequence of functors

88

$$P_1 \otimes \cdots \to P_0 \otimes \cdots \to M \otimes \cdots \to 0.$$

For a finitely generated projective *A*-module *P*, let $P^{\vee} = \text{Hom}_A(P, A)$ be its dual. Then the functor $P \otimes \cdot$ is isomorphic to $h_{P^{\vee}}$. Thus we see that $M \otimes \cdot$ is coherent. Note at this point it is essential that we are working with finitely generated modules over a noetherian ring *A*.

This argument shows more generally that if *P*. is a complex of finitely generated projective *A*-modules, then the functors $h_i(P.\otimes \cdot)$ will be coherent. Thus we see that the functors $\text{Ext}^i(M, \cdot)$ and $\text{Tor}^i(M, \cdot)$ are coherent, by using a projective resolution of *M*.

On the other hand, if A is an integral domain which is not a field, the torsion-submodule functor τ is not coherent. In fact it is not even finitely generated, meaning there is no $M \in M$ admitting a surjective morphism $h_M \rightarrow \tau \rightarrow 0$.

With regard to the cohomology functors T^i in example 5) above, if we assume that X is projective over Y, and the sheaf \mathcal{F} is flat over Y, then there exists a complex L of free finitely generated A-modules such that

$$T^i(N) = h^i(L \cdot \otimes_A N)$$

for each $N \in \mathcal{M}$ [2, III.12.3]. Thus as above we see that the functors T^i are coherent. But if \mathcal{F} is not flat, the functors T^i need not be coherent [3, 2.11].

3 Duality

For a finite dimensional vector space *V* over a field *k*, we are familiar with the dual vector space $V^* = \text{Hom}_k(V, k)$. The operation of taking the dual vector space is an exact, contravariant functor * from the category of vector spaces to itself, with a natural isomorphism **= id.

For finitely generated projective modules *P* over a ring, the operation of taking the dual module $P^{\vee} = \text{Hom }(P, A)$ has similar properties, but this operation does not extend to the category of all A-modules. However if we consider the larger category *C* of coherent functors (here I am thinking of \mathcal{M} as being embedded in *C* by associating to the module *M* the functor $M \otimes \cdot$) there is a good notion of duality.

Given a coherent functor $F \in C$, represent it as a cokernel

$$h_M \rightarrow h_N \rightarrow F \rightarrow 0.$$

The map of functors $h_M \rightarrow h_N$ arises from a map of modules $f : N \rightarrow M$, so we can define the dual functor F^* by

$$F^* = \ker (N \otimes \cdot \longrightarrow M \otimes \cdot).$$

R. HARTSHORNE

Then one shows that this is well-defined (i.e. independent of the choice of the representation $h_M \rightarrow h_N \rightarrow F$), and that * is a contravariant exact functor from *C* to *C* with $** \cong id_C$. In particular, the functors h_M and $M \otimes \cdot$ are dual to each other. One can also see easily that $\text{Ext}^i(M, \cdot)$ and $\text{Tor}_i(M, \cdot)$ are dual coherent functors. The duality interchanges left exact and right exact functors, and sends half exact functors into half exact functors. The exact functors are all of the form $P \otimes \cdot$, where *P* is a finitely generated projective *A*-module. The dual of $P \otimes \cdot$ is $h_P \cong P^{\vee} \otimes \cdot$, so the duality * on *C* extends the duality \vee on projective *A*-modules.

Using this notion of dual coherent functors, one can express Grothendieck's duality theorem (which generalizes Serre duality over a field) in a particularly nice way.

Theorem 3.1 [3, 7.4] Let Y = SpecA, let X be a smooth projective scheme over Y of relative dimension n, and let $\omega = \Omega_{X/Y}^n$ be the relative dualizing sheaf. Then for any coherent sheaf \mathcal{F} on X, flat over Y, the functors

$$Ext_X^{n-i}(\mathcal{F}, \omega \otimes_A \cdot)$$
 and $H^i(X, \mathcal{F} \otimes_A \cdot)$

are dual coherent functors.

The value of this result is that while there is no simple relationship between the individual A-modules $\operatorname{Ext}_{A}^{n-i}(\mathcal{F}, \omega)$ and $H^{i}(X, \mathcal{F})$, the theorem gives a duality between the corresponding functors.

4 Space curves

Let *X* be the projective space \mathbb{P}^3_k over an algebraically closed field *k*. A *curve* in *X* is a closed subscheme *C* of pure dimension one with no embedded points. To the curve *C* we associate its *Rao module*

$$M_C = \bigoplus_{n \in \mathbb{Z}} H^1(X, \mathcal{I}_C(n)),$$

where I_C is the sheaf of ideals of the curve C. This module is a finite length graded module over the polynomial ring R = k[x, y, z, w].

An N-type resolution of the curve C is an exact sequence

$$0 \to \mathcal{P} \to \mathcal{N} \to \mathcal{I}_C \to 0$$

on *X*, where \mathcal{P} is *dissocié*, meaning isomorphic to a direct sum $\oplus \mathcal{O}_X(-n_i)$, and \mathcal{N} is locally free with $H^2_*(\mathcal{N}) = 0$. Here $H^i_*(\mathcal{N})$ means

$$\oplus_{n\in\mathbb{Z}}H^{i}(X,\mathcal{N}(n)).$$

Two curves C and C' are linked if there exists a complete intersection curve D containing C and C' and such that

90

$$\mathcal{I}_{C,D} \cong Hom(\mathcal{O}_{C'}, \mathcal{O}_D)$$

and

$$\mathcal{I}_{C',D} \cong Hom(\mathcal{O}_{C'},\mathcal{O}_D)$$

Two curves C and C' are *equivalent up to biliason* if they can be connected by a chain of an even number of such linkages.

Now we can state the classical Rao theorem as follows.

Theorem 4.1 [8],[9] Let $X = \mathbb{P}_k^3$. Then there are one-to-one correspondences between the following three sets:

i) the set of curves $C \subseteq X$, up to biliaison equivalence

ii) the set of locally free sheaves \mathcal{N} on X satisfying $H^2_*(\mathcal{N}) = 0$, up to stable equivalence (adding dissocié sheaves) and twists

iii) the set of finite length graded R-modules, modulo isomorphism, up to shift in degrees.

The correspondences are given by associating to a curve *C* its Rao module M_C , and the sheaf \mathcal{N} coming from an *N*-type resolution.

Furthermore, each biliaison equivalence class of curves (except for the class of *ACM* curves, which corresponds to the 0 module over *R*) satisfies the Lazarsfeld-Rao property: in each biliaison equivalence class there is a minimal curve C_0 , and any other curve *C* in the biliaison class can be obtained from C_0 by a finite number of elementary biliaisons, followed by a deformation with constant cohomology (see [7] for a more detailed statement).

5 Families of space curves

Our purpose here is to find the analogue of the results of § 4 for families of space curves.

Let *A* be a noetherian local ring, let Y = Spec A, and let $X = \mathbb{P}_Y^3$. A curve in X is a closed subscheme $C \subseteq X$, flat over Y, with the property that for each $t \in Y$, the fibre $C_t \subseteq X_t = \mathbb{P}_{k(t)}^3$ is a curve in the previous sense, namely pure dimension 1 with no embedded points.

Liaison and biliaison are defined as before.

For the N-type resolution, we require only that there be an exact sequence

$$0 \to \mathcal{P} \to \mathcal{N} \to \mathcal{I}_C \to 0$$

with \mathcal{P} dissocié and \mathcal{N} locally free on X.

If \mathcal{N} and \mathcal{N}' are two locally free sheaves on X, we say that a morphism $f : \mathcal{N} \to \mathcal{N}'$ is a *pseudo-isomorphism* (psi for short) if it induces

R. HARTSHORNE

1) an isomorphism of functors $H^1_*(\mathcal{N} \otimes_A \cdot) \to H^1_*(\mathcal{N}' \otimes \cdot)$ and

2) an injection of functors $H^2_*(\mathcal{N} \otimes_A \cdot) \to H^2_*(\mathcal{N}' \otimes \cdot)$.

We say two locally free sheaves \mathcal{N} and \mathcal{N}' are *equivalent for psi* if they can be joined by a chain of sheaves which admit psi between them in one direction or the other.

Theorem 5.1 [4] Let $X = \mathbb{P}_Y^3$, with Y = Spec A as above. Any curve $C \subseteq X$ admits an N-type resolution. The corresponding locally free sheaf \mathcal{N} is uniquely determined up to psi. If C and C' are two curves, with sheaves \mathcal{N} , \mathcal{N}' in their N-type resolutions, then C and C' are equivalent for biliaison if and only if \mathcal{N} and \mathcal{N}' are equivalent for psi.

Theorem 5.2 [5] With X, A as above, if \mathcal{N} is a locally free sheaf on X, there exists a curve $C_0 \subseteq X$ of minimal degree with N-type resolution \mathcal{N}_0 which is psi to \mathcal{N} , and any other curve C' in the same biliaison equivalence class can be obtained from C_0 by a finite number of elementary biliaisons followed by a deformation with constant cohomology.

For our third result, we need an analogue of the Rao module of a curve over a field. The natural choice would seem to be the *Rao functor*

$$F_C = \bigoplus_{n \in \mathbb{Z}} H^1(X, \mathcal{I}_C(n) \otimes_A \cdot)$$

This is a functor from *A*-modules to graded $R_A = A[x, y, z, w]$ -modules. It is a direct sum of its graded pieces F_n , each of which is a coherent functor on *A*-modules.

One can show easily enough that curves *C* and *C'* which are equivalent up to biliaison give rise to functors F_C and $F_{C'}$ which differ only by a shift in degrees. However, the converse statement is false, so we need a more refined notion to play the role of the Rao module.

As above, let *A* be a noetherian local ring, and let $R_A = A[x, y, z, w]$. A *triad* is a complex $L^0 \rightarrow L^1 \rightarrow L^2$ of finitely generated graded R_A -modules, flat over *A*, and such that $h^i(L^{\cdot})$ is a finitely generated *A*-module for i = 1, 2. A morphism of triads is simply a morphism of complexes. A *morphism* of triads $f: L^{\cdot} \rightarrow L^{\prime}$ is a *pseudo-isomorphism* (psi for short) if it induces

1) an isomorphism of functors $h^1(L^{\cdot} \otimes_A \cdot) \rightarrow h^2(L^{\prime} \cdot \otimes_A \cdot)$ and

2) an injection of functors $h^2(L^{\cdot} \otimes_A \cdot) \rightarrow h^2(L^{\prime} \cdot \otimes_A \cdot)$.

We say two triads are *equivalent* for psi if they can be joined by a finite chain of such morphism, in either direction.

To a triad *L* we associate the sheaf

$$\mathcal{N} = ker(L^0 \to L^1)$$

which will be locally free on *X*. We say that a triad L^{\cdot} is associated to a curve *C* if \mathcal{N} is psi equivalent to a sheaf coming from an *N*-type resolution of *C*. In that case the Rao functor of *C* can be obtained as $h^1(L^{\cdot} \otimes \cdot)$.

92

Theorem 5.3 [6] Let C and C' be curves with associated triads L^{\cdot} and $L^{'}$. Then C and C' are equivalent for biliaison if and only if L^{\cdot} and $L^{'}$ are equivalent for psi.

In the special case of a discrete valuation ring A, with residue field k and quotient field K, suppose given finite length graded modules M_0 over k[x, y, z, w] and M_1 over K[x, y, z, w]. Then we can compute effectively all possible triads L^{\cdot} whose associated modules are $h^1(L^{\cdot} \otimes k) = M_0$ and $h^1(L^{\cdot} \otimes K) = M_1$, and thus in principle we can determine all possible flat families of curves $C \subseteq \mathbb{P}^3_A$ whose special and general fibre C_0 and C_1 are in the biliaison equivalence classes determined by the Rao modules M_0 and M_1 . While the computations quickly become quite complicated, we are still hopeful that this will be a fruitful method for studying properties of the Hilbert scheme of curves in \mathbb{P}^3 over a field k.

References

- [1] AUSLANDER M., "*Coherent functors*", Proc. Conf. Categorial Algebra, La Jolla 1965, Springer, New York (1966), 189-231.
- [2] HARTSHORNE R., "Algebraic Geometry", Springer, New York (1977)
- [3] HARTSHORNE R., "Coherent functors", Advances in Math. 140 (1998), 44-94
- [4] HARTSHORNE R., MARTIN-DESCHAMPS M., PERRIN D., "Un Theoreme de Rao pour les families de courbes gauches", (to appear) J. of Algebra
- [5] HARTSHORNE R., MARTIN-DESCHAMPS M., PERRIN D., "*Construction de familles minimales de courbes gauches*", (to appear) Pacific J. of Math.
- [6] HARTSHORNE R., MARTIN-DESCHAMPS M., PERRIN D., "*Triades et familles de courbes gauches*", (to appear) Math. Annalen
- [7] MARTIN-DESCHAMPS M., PERRIN D., "Sur la classification des courbes gauches", Asterisque **184-185** (1990)
- [8] RAO A.P., "Liaison among curves in \mathbb{P}^3 ", Invent. Math. 50 (1979), 205-217
- [9] RAO A.P., "Liaison equivalence classes", Math. Ann. 258 (1981), 169-173

Robin Hartshorne Università di California Berkeley

Pervenuta in Redazione il 17 giugno 1997