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ABSTRACT. We give a summary of Auslander’s theory of coherent

functors and its application to the study of flat families in projective

three-space. This is joint work with M. Martin-Deschamps and D.

Perrin. Full details will appear in the paper [3], [4], [5], [6].

1 Functors on A-modules

Let A be a commutative noetherian ring. Let Mod(A) be the category of all

A-modules, and let M = Modfg (A) be the category of finitely generated

A-modules.

One often has to deal with an A-linear functor F from M to M. Such a

functor associates to each module M ∈ M another module F(M) ∈ M; to

a morphism f : M -→ M′ it associates a morphism F(f) : F(M) -→ F(M′);
and to say that F is A-linear means that the induced map

HomA(M,M
′) -→ HomA(F(M)), F(M

′))

is A-linear.

Here are a few examples of A-linear functors.

1) For a fixed M ∈ M, we define the functor hM by hM(N) = HomA

(M,N) for all N ∈ M.
2) For a fixed M ∈ M, the tensor product functor N 7-→ M ⊗A N , which

we denote by M ⊗ ·.

3) If A is an integral domain, we can define a functor τ by τ(M) = the

torsion submodule of M .

4) The derived functors of 1) and 2), which are ExtiA(M, ·) and TorAi (M, ·).
5) An example from algebraic geometry which is important in the sequel,

is as follows. Let Y = Spec A, and left f : X -→ Y be a proper morphism of

schemes. Let F be a coherent sheaf on X. Then we consider the functor T i,
for any i ≥ 0, defined by
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T i(N) = Hi(X,F ⊗A N).

Note that the cohomology groups of a sheaf on X have a natural struc-

ture of A-module, and these will be finitely generated over A because X is

proper over Y and F is coherent.

If F is an A-linear functor form M to M, and if

0 -→ N′ -→ N -→ N′′ -→ 0

is a short exact sequence of A-modules, then we obtain a sequence of A-

modules

0 -→ F(N′) -→ F(N) -→ F(N′′) -→ 0.

If it exact in the middle, we say F is half exact. If it is exact in the middle

and on the left, F is left exact. Similarly right exact. If exact everywhere,

then F is exact.

For example, in the list above, 1) and 3) are left exact; 2) is right exact;

the functors in 4) are all half exact; and ifF is flat over Y , then the functors

in 5) will also be exact.

2 Coherent functors

Let us denote by Funct (M) the set of all A-linear functors form M to M.

A morphism of functors F -→ G is a collection of maps F(M) -→ G(M) for

each M ∈ M which commute with the induced maps F(M) -→ F(M′) and

G(M) -→ G(M′) for any morphism of modules M -→ M′. Given a morphism

of functors f : F -→ G, we can define new functors ker f , im f , coker f by

(kerf) (M) = ker(F(M) -→ G(M))

and similarly for im and coker. In this way Funct (M) becomes an abelian

category.

Among all these functors, some are better than others. Following Aus-

lander [1], we define a functor F to be coherent if there are modulesM,N ∈
M and an exact sequence of functors

hM -→ hN -→ F -→ 0.

Then one can show that the set of all coherent functors C forms an

abelian subcategory of Funct (M). In particular, if f : F -→ G is a morphism

of coherent functors, then ker f , im f , and coker f are also coherent. Also

an extension of coherent functors is coherent.

In the examples above, the functors hM are coherent by definition. To

see that the tensor product functor M ⊗· is coherent, let P1 -→ P0 -→ M -→ 0

be a projective resolution ofM . Then we get an exact sequence of functors
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P1 ⊗ · -→ P0 ⊗ · -→ M ⊗ · -→ 0.

For a finitely generated projective A-module P , let P∨ = HomA(P,A) be

its dual. Then the functor P ⊗ · is isomorphic to hP∨ . Thus we see that

M⊗· is coherent. Note at this point it is essential that we are working with

finitely generated modules over a noetherian ring A.

This argument shows more generally that if P. is a complex of finitely

generated projective A-modules, then the functors hi(P.⊗·) will be coher-

ent. Thus we see that the functors Exti(M, ·) and Tori(M, ·) are coherent,

by using a projective resolution of M .

On the other hand, if A is an integral domain which is not a field, the

torsion-submodule functor τ is not coherent. In fact it is not even finitely

generated, meaning there is no M ∈ M admitting a surjective morphism

hM -→ τ -→ 0.

With regard to the cohomology functors T i in example 5) above, if we

assume that X is projective over Y , and the sheaf F is flat over Y , then

there exists a complex L. of free finitely generated A-modules such that

T i(N) = hi(L. ⊗A N)

for each N ∈ M [2, III.12.3]. Thus as above we see that the functors T i are

coherent. But ifF is not flat, the functors T i need not be coherent [3, 2.11].

3 Duality

For a finite dimensional vector space V over a field k, we are familiar with

the dual vector space V∗ = Homk (V , k). The operation of taking the dual

vector space is an exact, contravariant functor∗ from the category of vector

spaces to itself, with a natural isomorphism ∗∗= id.

For finitely generated projective modules P over a ring, the operation

of taking the dual module P∨ = Hom (P,A) has similar properties, but this

operation does not extend to the category of all A-modules. However if

we consider the larger category C of coherent functors (here I am thinking

of M as being embedded in C by associating to the module M the functor

M ⊗ ·) there is a good notion of duality.

Given a coherent functor F ∈ C, represent it as a cokernel

hM -→ hN -→ F -→ 0.

The map of functors hM -→ hN arises from a map of modules f : N -→ M ,

so we can define the dual functor F∗ by

F∗ = ker (N ⊗ · -→ M ⊗ ·).
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Then one shows that this is well-defined (i.e. independent of the choice

of the representation hM -→ hN -→ F), and that ∗ is a contravariant exact

functor from C to C with∗∗ � idC . In particular, the functors hM andM⊗·
are dual to each other. One can also see easily that Exti(M, ·) and Tori(M, ·)
are dual coherent functors. The duality interchanges left exact and right

exact functors, and sends half exact functors into half exact functors. The

exact functors are all of the form P ⊗ ·, where P is a finitely generated

projective A-module. The dual of P ⊗ · is hP � P
∨ ⊗ ·, so the duality ∗ on

C extends the duality ∨ on projective A-modules.

Using this notion of dual coherent functors, one can express Grothendieck’s

duality theorem (which generalizes Serre duality over a field) in a particu-

larly nice way.

Theorem 3.1 [3, 7.4] Let Y = SpecA , let X be a smooth projective scheme

over Y of relative dimension n, and let ω = ΩnX/Y be the relative dualizing

sheaf. Then for any coherent sheaf F on X, flat over Y , the functors

Extn−iX (F ,ω⊗A ·) and Hi(X,F ⊗A ·)

are dual coherent functors.

The value of this result is that while there is no simple relationship

between the individual A-modules Extn−iA (F ,ω) andHi(X,F), the theorem

gives a duality between the corresponding functors.

4 Space curves

LetX be the projective space P3
k over an algebraically closed field k. A curve

in X is a closed subscheme C of pure dimension one with no embedded

points. To the curve C we associate its Rao module

MC =
⊕

n∈Z
H1(X, IC(n)),

where IC is the sheaf of ideals of the curve C. This module is a finite length

graded module over the polynomial ring R = k[x,y, z,w].
An N-type resolution of the curve C is an exact sequence

0 -→ P -→N -→ IC -→ 0

on X, where P is dissocié, meaning isomorphic to a direct sum ⊕OX(−ni),
and N is locally free with H2

∗(N ) = 0. Here Hi∗(N ) means

⊕n∈ZH
i(X,N (n)).

Two curves C and C′ are linked if there exists a complete intersection

curve D containing C and C′ and such that
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IC,D � Hom(OC′ ,OD)

and

IC′,D � Hom(OC′ ,OD)

Two curves C and C′ are equivalent up to biliason if they can be con-

nected by a chain of an even number of such linkages.

Now we can state the classical Rao theorem as follows.

Theorem 4.1 [8],[9] Let X = P3
k. Then there are one-to-one correspondences

between the following three sets:

i) the set of curves C ⊆ X,up to biliaison equivalence

ii) the set of locally free sheaves N on X satisfying H2
∗(N ) = 0, up to

stable equivalence (adding dissocié sheaves) and twists

iii) the set of finite length graded R-modules, modulo isomorphism, up to

shift in degrees.

The correspondences are given by associating to a curve C its Rao mod-

ule MC , and the sheaf N coming from an N-type resolution.

Furthermore, each biliaison equivalence class of curves (except for the

class of ACM curves, which corresponds to the 0 module over R) satisfies

the Lazarsfeld-Rao property: in each biliaison equivalence class there is

a minimal curve C0, and any other curve C in the biliaison class can be

obtained from C0 by a finite number of elementary biliaisons, followed

by a deformation with constant cohomology (see [7] for a more detailed

statement).

5 Families of space curves

Our purpose here is to find the analogue of the results of § 4 for families

of space curves.

Let A be a noetherian local ring, let Y = Spec A, and let X = P
3
Y . A

curve in X is a closed subscheme C ⊆ X, flat over Y, with the property that

for each t ∈ Y , the fibre Ct ⊆ Xt = P
3
k(t) is a curve in the previous sense,

namely pure dimension 1 with no embedded points.

Liaison and biliaison are defined as before.

For the N-type resolution, we require only that there be an exact se-

quence

0 -→ P -→N -→ IC -→ 0

with P dissocié and N locally free on X.

If N and N ′ are two locally free sheaves on X, we say that a morphism

f : N -→N ′ is a pseudo-isomorphism (psi for short) if it induces
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1) an isomorphism of functors H1
∗(N ⊗A ·) -→ H1

∗(N
′ ⊗ ·) and

2) an injection of functors H2
∗(N ⊗A ·) -→ H2

∗(N
′ ⊗ ·).

We say two locally free sheavesN andN ′ are equivalent for psi if they

can be joined by a chain of sheaves which admit psi between them in one

direction or the other.

Theorem 5.1 [4] Let X = P
3
Y , with Y = Spec A as above. Any curve C ⊆

X admits an N-type resolution. The corresponding locally free sheaf N is

uniquely determined up to psi. If C and C′ are two curves, with sheaves N ,

N ′ in their N-type resolutions, then C and C′ are equivalent for biliaison if

and only if N and N ′ are equivalent for psi.

Theorem 5.2 [5] With X, A as above, ifN is a locally free sheaf on X, there

exists a curve C0 ⊆ X of minimal degree with N-type resolution N0 which is

psi toN , and any other curve C′ in the same biliaison equivalence class can

be obtained from C0 by a finite number of elementary biliaisons followed by

a deformation with constant cohomology.

For our third result, we need an analogue of the Rao module of a curve

over a field. The natural choice would seem to be the Rao functor

FC =
⊕

n∈Z
H1(X, IC(n)⊗A ·)

This is a functor fromA-modules to gradedRA = A[x,y, z,w]-modules.

It is a direct sum of its graded pieces Fn, each of which is a coherent functor

on A-modules.

One can show easily enough that curves C and C′ which are equivalent

up to biliaison give rise to functors FC and FC′ which differ only by a shift

in degrees. However, the converse statement is false, so we need a more

refined notion to play the role of the Rao module.

As above, let A be a noetherian local ring, and let RA = A[x,y, z,w]. A

triad is a complex L0
-→ L1

-→ L2 of finitely generated graded RA-modules,

flat overA, and such thathi(L·) is a finitely generatedA-module for i = 1,2.

A morphism of triads is simply a morphism of complexes. A morphism of

triads f : L· -→ L
′· is a pseudo-isomorphism (psi for short) if it induces

1) an isomorphism of functors h1(L· ⊗A ·) -→ h2(L
′· ⊗A ·) and

2) an injection of functors h2(L· ⊗A ·) -→ h2(L
′· ⊗A ·).

We say two triads are equivalent for psi if they can be joined by a finite

chain of such morphism, in either direction.

To a triad L we associate the sheaf

N = ker(
∼

L0
-→

∼

L1)

which will be locally free on X. We say that a triad L· is associated to a

curve C ifN is psi equivalent to a sheaf coming from an N-type resolution

of C . In that case the Rao functor of C can be obtained as h1(L· ⊗ ·).
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Theorem 5.3 [6] Let C and C′ be curves with associated triads L· and L
′·.

Then C and C′ are equivalent for biliaison if and only if L· and L
′· are

equivalent for psi.

In the special case of a discrete valuation ring A, with residue field k
and quotient field K, suppose given finite length graded modules M0 over

k[x,y, z,w] and M1 over K[x,y, z,w]. Then we can compute effectively

all possible triads L· whose associated modules are h1(L. ⊗ k) = M0 and

h1(L· ⊗ K) = M1, and thus in principle we can determine all possible flat

families of curves C ⊆ P3
A whose special and general fibre C0 and C1 are in

the biliaison equivalence classes determined by the Rao modules M0 and

M1. While the computations quickly become quite complicated, we are still

hopeful that this will be a fruitful method for studying properties of the

Hilbert scheme of curves in P3 over a field k.
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