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SUNTO. Si esaminano i sottogruppi di gruppi di Lie semisemplici con

due generatori casuali.

In recent years, attention has been paid to the structure of random sub-

groups of finite groups—see, e.g., [4]. Bill Kantor, one of the protagonists

of this investigation, asked what can be said about random subgroups of

Lie groups. This paper presents some answers to Kantor’s question. We

consider subgroups 〈x,y〉 generated by two randomly chosen elements x
and y of a semisimple algebraic group G, under the hypothesis that x and

y are chosen with a sufficiently continuous probability distribution. We

shall see that:

• the subgroup 〈x,y〉 is almost surely free

• the subgroup 〈x,y〉 is almost surely Zariski-dense

• if the probability density is highly concentrated, then 〈x,y〉 is almost

surely dense (in the usual topology)

• if the probability density is highly diffuse, then 〈x,y〉 is probably

discrete (in the usual topology).

We now make the working hypotheses more precise. Let G be a connected

semisimple algebraic subgroup of GL(n,C), with Lie algebra g. We denote

by G0 a real form of G (i.e., the fixed-point set a conjugate analytic invo-

lutive automorphism of G) and by g0 its Lie algebra. Then (g0)C = g. The

connected component of the identity of G0 is denoted Ge.
Let ν be a Borel probability measure on G × G, supported in Ge × Ge.

∗

We shall assume that, if V is any algebraic subvariety of G ×G, other than

G × G itself, then ν(V) = 0. Let ω and Γω denote the random variable in

G ×G with law ν and the subgroup 〈x,y〉, where ω = (x,y).

∗We can also deal with the case where ν is supported in G0 ×G0, but the statements be-
come more complicated. Similarly, we can also extend our arguments to deal with reductive
G, but in the interest of simplicity we do not do this here in detail.
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This note owes much to H. Furstenberg, G. Lehrer, W. Neumann, and

R.J. Zimmer, who offered useful comments about preliminary versions of

this material.

1 Freedom of random subgroups

Theorem 1.1 With probability 1, Γω is free.

Proof. LetW denote the set of nontrivial finite reduced words in x, y , x−1

and y−1. Each w in W gives rise to an algebraic subvariety Vw of G × G.

By Tits’ theorem [5], G contains a free subgroup, so each subvariety Vw
is a proper subvariety of G × G. Thus ν(Vw) = 0 for each w in W , so

ν(∪wεWVw) = 0, and Γω is almost surely free.

This sort of argument goes back at least as far as S. Balcerzyk and J. My-

cielski [2]. It extends verbatim to the (nonabelian) reductive case.

2 Zariski-denseness of random subgroups

Theorem 2.1 With probability 1, Γω is Zariski-dense in G.

Proof. We give details for the case where G = SL(n,C). The general case

is similar.

The key is the fact that the set
{

(x,y) ∈ G ×G : 〈x,y〉 is not Zariski-dense in G
}

is a proper closed subvarietyG×G. Indeed, ifx is regular (i.e., the eigenspac-

es of Ad(x) associated to nonzero eigenvalues all have dimension 1, and

the eigenspace associated to the eigenvalue zero is of minimal dimension),

which is a probability one occurrence, and 〈x,y〉 is not Zariski-dense, then

there is a parabolic subgroup ofG containing both x andy , i.e., there exists

k such that, in an appropriate basis,

xij = yij = 0 1 ≤ i ≤ k, k+ 1 ≤ j ≤ n.

In this case, the dimension of the linear span of the set L, given by

L =
{

x,x2, . . . , xn−1
}

∪
{

y,xyx−1, x2yx−2, . . . , xn
2−nyxn−n

2}

,

in the space of n × n matrices is less then n2. On the other hand, if x is

chosen inG such that Ad(x) hasn2−n+1 distinct eigenvalues (the maximal

number), then “most” y in G have the property that the dimension of the

linear span of the above set is exactly n2.

For the argument in the general semisimple case, see Tits [5].

Mutatis mutandis, this extends easily to the reductive case.
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3 Structure of Zariski-dense subgroups

Lemma 3.1 Let H be a Zariski-dense subgroup of G, contained in the real

form G0. Let h be the Lie algebra of the (usual) closure of H in G0. Then h is

an ideal in g0.

Proof. Let {e1, . . . , en} be a basis for g0 over R, such that {e1, . . . , ek} is

a basis for h, and let {f1, . . . , fn} be the dual basis. We may also consider

these as bases of g and its complex dual.

First, Ad(H)maps h into h. This can be seen by observing that conjuga-

tion by h in H maps H into H, so maps H into H, and then differentiating.

Next,

{h ∈ G : fj(Ad(h)ei) = 0 1 ≤ i ≤ k, k+ 1 ≤ j ≤ n}

is an algebraic subvariety of G containing the Zariski-dense subgroup H,

and hence is all G. Thus hC is an Ad(G)-invariant subalgebra of g, and h is

an ideal in g0.

Corollary 3.2 Suppose additionally that G is simple. Then with probabil-

ity 1, Γω is either dense or discrete.

If G is semisimple, then the dichotomy of the corollary need not hold.

For instance, suppose that G may be written as a direct product:

G = G1 × . . .×Gk.

If Hi is a Zariski-dense subgroup of Gi for each i, then H1 × . . . × Hk is

Zariski-dense in G1× . . .×Gk. If some Hi are dense and others are discrete

in Gi, then the product group is neither dense nor discrete.

4 A criterion for denseness

The arguments of Lemma 4.1 and Proposition 4.2 below are essentially a

simplified version of Margulis’ Lemma (see, e.g., [1, p. 101]).

We equip the space Mn of n×n matrices with the usual operator norm

‖·‖.

Lemma 4.1 If ‖X‖ ≤ 1 and ‖Y‖ ≤ 1, then

∥

∥exp(X) exp(Y) exp(−X) exp(−Y)− I −
1

2
[X, Y]

∥

∥

≤ 16e4 ‖X‖‖Y‖ (‖X‖ + ‖Y‖).
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Proof. For the duration of this proof, fix X and Y in Mn; we write xt and

yt for exp(tX) and exp(tY) respectively.

Consider the function φ : [0,1]→ Mn(C) given by

φ(t) = xt yt x−t y−t .

It is easy to check that φ(0) = I, φ′(0) = 0, φ′′(0) = [X, Y], and that

φ′′′(t) =

4
∑

i,j,k=1

xtφ
1
i,j,k(X)ytφ

2
i,j,k(Y)x−tφ

3
i,j,k(−X)y−tφ

4
i,j,k(−Y),

where

φli,j,k(Z) =



























Z3 if all of i, j, and k are equal to l

Z2 if two of i, j, and k are equal to l

Z if one of i, j, and k is equal to l

1 if none of i, j, and k is equal to l.

By Taylor’s theorem,

∥

∥exp(X) exp(Y) exp(−X) exp(−Y)− I −
[X, Y]

2

∥

∥

≤
1

2
sup{

∥

∥φ′′′(t)
∥

∥ : t ∈ [0,1]}.

We estimate
∥

∥φ′′′(t)
∥

∥ by grouping the terms: if all of i, j, k are odd, we

obtain the term

xtX
3ytx−ty−t − 3xtX

2ytX x−ty−t + 3xtX ytX
2x−ty−t − xtytX

3x−ty−t

which is equal to

xt [X
3yt −yt X

3]x−t y−t − 3xt X[X yt −yt X]X x−t y−t ,

and the norm of this expression is at most

e3
∥

∥

∥X3yt −ytX
3
∥

∥

∥+ 3e3 ‖X‖2
∥

∥Xyt −ytX
∥

∥ .

Since

∥

∥Xpyt −ytX
p
∥

∥ =
∥

∥Xp(yt − I)− (yt − I)X
p
∥

∥

≤ 2‖X‖p
∥

∥yt − I
∥

∥

≤ 2e ‖X‖p ‖Y‖ ,

the contribution of these “all odd” terms is at most 8e4 ‖X‖3
‖Y‖. Simi-

larly, the contribution of the terms with all of i, j, and k even is at most

8e4 ‖X‖‖Y‖3. Each term with at least one of i, j, and k even and at least
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one of i, j, and k odd contributes a factor which is at most e4 ‖X‖2
‖Y‖ or

e4 ‖X‖‖Y‖2, and the lemma is proved.

Let U be the subset expV of GL(n,C), where

V = {X ∈ Mn(C) : ‖X‖ ≤ 0.02}.

Proposition 4.2 Suppose that G is simple, that x,y ∈ Ge ∩ U , and that

〈x,y〉 is free and Zariski-dense. Then 〈x,y〉 is dense in Ge.

Proof. Write x = exp(X) and y = exp(Y), where X,Y ∈ V . We define yn
inductively as follows: y0 = y , and yn = xyn−1x

−1y−1
n−1. We shall show

that yn ∈ U ; it follows that 〈x,y〉 has an accumulation point inside U .

Thus 〈x,y〉 is not discrete, so is dense.

To see that yn ∈ U , suppose inductively that yn−1 = exp(Yn−1), where

Yn−1 ∈ V ; then Lemma 4.1 implies that

∥

∥yn − I −
1

2
[X, Yn−1]

∥

∥ ≤ 0.015,

so that

∥

∥yn − I
∥

∥ ≤ 0.015+
1

2
‖[X, Yn−1]‖ ≤ 0.016.

Now

logyn = (yn − I)−
1

2
(yn − I)

2 +
1

3
(yn − I)

3 − . . . ,

so

∥

∥log(yn)
∥

∥ ≤ 0.016+
1

2
[0.016]2 +

1

3
[0.016]3 + . . . < 0.02,

and log(yn) is in V , as required.

We take now a product of such sets inside an almost direct product of

simple groups, and we obtain the following.

Theorem 4.3 There exists a neighbourhood U of e in Ge such that, if suppν
⊆ U ×U , then Γω is dense in Ge with probability 1.

To extend this to the reductive case, we again need some control of the

size of the centre Z0 of G0.
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5 A criterion for discreteness

Suppose that x and y are transformations of a space B, and that there is a

point b in B and subsets U and V of B such that {b}, U , and V are pairwise

disjoint, and

xm({b} ∪ V) ⊆ U ∀m ∈ Z\{0}

ym({b} ∪U) ⊆ V ∀m ∈ Z\{0}.

Then, as observed by Tits [5], 〈x,y〉 is free. Indeed, if w is any nontrivial

word in x, y , x−1 and y−1, then wb ∈ U ∪ V , so wb ≠ b, and w ≠ e. This

argument also implies that 〈x,y〉 is discrete, at least if U and V are closed

sets. For if wn is any sequence of nontrivial words tending to the identity,

wnb tends to b, so b lies in the closure of U ∪ V .

Theorem 5.1 Ifµ is a “reasonable” probability measure onG, andxn andyn
are independent identically distributed random variables with law µ∗ . . .∗µ
(n times), then

lim
n→∞

P(〈xn, yn〉 is discrete) = 1.

Idea of the proof. According to work of Y. Guivarc’h [G], based on ideas of

Furstenberg and of V.I. Oseledets, asn increases, xn andyn act increasingly

“contractively” on the boundary B of G. More precisely, there are small

subsets Un, Vn, Pn and Qn of B such that, if m ≠ 0,

(xn)
m(B\Pn) ⊆ Un and (yn)

m(B\Qn) ⊆ Vn

and as n increases, Un, Vn, Bn, and Pn become smaller. Provide that

Un ∩Qn = ∅, Vn ∩ Pn = ∅, and b ∈ B\(Pn ∪Qn ∪Un ∪ Vn),

which has probability 1 in the limit as n increases, the criterion for dis-

creteness above is satisfied.

In the reductive case, Γω is almost surely discrete if, in addition, Z0 is

big enough.
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