MICHAEL COWLING - BRIAN DOROFAEFF

School of Mathematics, University of New South Wales

RANDOM SUBGROUPS OF LIE GROUPS

Conferenza tenuta l'8 settembre 1997

SUNTO. Si esaminano i sottogruppi di gruppi di Lie semisemplici con due generatori casuali.

In recent years, attention has been paid to the structure of random subgroups of finite groups-see, e.g., [4]. Bill Kantor, one of the protagonists of this investigation, asked what can be said about random subgroups of Lie groups. This paper presents some answers to Kantor's question. We consider subgroups $\langle x, y\rangle$ generated by two randomly chosen elements x and y of a semisimple algebraic group G, under the hypothesis that x and y are chosen with a sufficiently continuous probability distribution. We shall see that:

- the subgroup $\langle x, y\rangle$ is almost surely free
- the subgroup $\langle x, y\rangle$ is almost surely Zariski-dense
- if the probability density is highly concentrated, then $\langle x, y\rangle$ is almost surely dense (in the usual topology)
- if the probability density is highly diffuse, then $\langle x, y\rangle$ is probably discrete (in the usual topology).

We now make the working hypotheses more precise. Let G be a connected semisimple algebraic subgroup of $G L(n, \mathbb{C})$, with Lie algebra \mathfrak{g}. We denote by G_{0} a real form of G (i.e., the fixed-point set a conjugate analytic involutive automorphism of G) and by \mathfrak{g}_{0} its Lie algebra. Then $\left(\mathfrak{g}_{0}\right)_{\mathbb{C}}=\mathfrak{g}$. The connected component of the identity of G_{0} is denoted G_{e}.

Let v be a Borel probability measure on $G \times G$, supported in $G_{e} \times G_{e}$.* We shall assume that, if V is any algebraic subvariety of $G \times G$, other than $G \times G$ itself, then $v(V)=0$. Let ω and Γ_{ω} denote the random variable in $G \times G$ with law ν and the subgroup $\langle x, y\rangle$, where $\omega=(x, y)$.

[^0]This note owes much to H. Furstenberg, G. Lehrer, W. Neumann, and R.J. Zimmer, who offered useful comments about preliminary versions of this material.

1 Freedom of random subgroups

Theorem 1.1 With probability $1, \Gamma_{\omega}$ is free.
Proof. Let W denote the set of nontrivial finite reduced words in x, y, x^{-1} and y^{-1}. Each w in W gives rise to an algebraic subvariety V_{w} of $G \times G$. By Tits' theorem [5], G contains a free subgroup, so each subvariety V_{w} is a proper subvariety of $G \times G$. Thus $v\left(V_{w}\right)=0$ for each w in W, so $v\left(\cup_{w \in W} V_{w}\right)=0$, and Γ_{ω} is almost surely free.

This sort of argument goes back at least as far as S. Balcerzyk and J. Mycielski [2]. It extends verbatim to the (nonabelian) reductive case.

2 Zariski-denseness of random subgroups

Theorem 2.1 With probability 1, Γ_{ω} is Zariski-dense in G.
Proof. We give details for the case where $G=S L(n, C)$. The general case is similar.

The key is the fact that the set

$$
\{(x, y) \in G \times G:\langle x, y\rangle \text { is not Zariski-dense in } G\}
$$

is a proper closed subvariety $G \times G$. Indeed, if x is regular (i.e., the eigenspaces of $\operatorname{Ad}(x)$ associated to nonzero eigenvalues all have dimension 1, and the eigenspace associated to the eigenvalue zero is of minimal dimension), which is a probability one occurrence, and $\langle x, y\rangle$ is not Zariski-dense, then there is a parabolic subgroup of G containing both x and y, i.e., there exists k such that, in an appropriate basis,

$$
x_{i j}=y_{i j}=0 \quad 1 \leq i \leq k, k+1 \leq j \leq n .
$$

In this case, the dimension of the linear span of the set L, given by

$$
L=\left\{x, x^{2}, \ldots, x^{n-1}\right\} \cup\left\{y, x y x^{-1}, x^{2} y x^{-2}, \ldots, x^{n^{2}-n} y x^{n-n^{2}}\right\},
$$

in the space of $n \times n$ matrices is less then n^{2}. On the other hand, if x is chosen in G such that $\operatorname{Ad}(x)$ has $n^{2}-n+1$ distinct eigenvalues (the maximal number), then "most" y in G have the property that the dimension of the linear span of the above set is exactly n^{2}.

For the argument in the general semisimple case, see Tits [5].
Mutatis mutandis, this extends easily to the reductive case.

3 Structure of Zariski-dense subgroups

Lemma 3.1 Let H be a Zariski-dense subgroup of G, contained in the real form G_{0}. Let \mathfrak{h} be the Lie algebra of the (usual) closure of H in G_{0}. Then \mathfrak{h} is an ideal in \mathfrak{g}_{0}.

Proof. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for \mathfrak{g}_{0} over \mathbb{R}, such that $\left\{e_{1}, \ldots, e_{k}\right\}$ is a basis for \mathfrak{h}, and let $\left\{f_{1}, \ldots, f_{n}\right\}$ be the dual basis. We may also consider these as bases of \mathfrak{g} and its complex dual.

First, $\operatorname{Ad}(H)$ maps \mathfrak{h} into \mathfrak{h}. This can be seen by observing that conjugation by h in H maps H into H, so maps H into H, and then differentiating. Next,

$$
\left\{h \in G: f_{j}\left(\operatorname{Ad}(h) e_{i}\right)=0 \quad 1 \leq i \leq k, k+1 \leq j \leq n\right\}
$$

is an algebraic subvariety of G containing the Zariski-dense subgroup H, and hence is all G. Thus $\mathfrak{h}_{\mathbb{C}}$ is an $\operatorname{Ad}(G)$-invariant subalgebra of \mathfrak{g}, and \mathfrak{h} is an ideal in \mathfrak{g}_{0}.

Corollary 3.2 Suppose additionally that G is simple. Then with probability $1, \Gamma_{\omega}$ is either dense or discrete.

If G is semisimple, then the dichotomy of the corollary need not hold. For instance, suppose that G may be written as a direct product:

$$
G=G_{1} \times \ldots \times G_{k} .
$$

If H_{i} is a Zariski-dense subgroup of G_{i} for each i, then $H_{1} \times \ldots \times H_{k}$ is Zariski-dense in $G_{1} \times \ldots \times G_{k}$. If some H_{i} are dense and others are discrete in G_{i}, then the product group is neither dense nor discrete.

4 A criterion for denseness

The arguments of Lemma 4.1 and Proposition 4.2 below are essentially a simplified version of Margulis' Lemma (see, e.g., [1, p. 101]).

We equip the space M_{n} of $n \times n$ matrices with the usual operator norm $\|\cdot\|$.

Lemma 4.1 If $\|X\| \leq 1$ and $\|Y\| \leq 1$, then

$$
\begin{gathered}
\left\|\exp (X) \exp (Y) \exp (-X) \exp (-Y)-I-\frac{1}{2}[X, Y]\right\| \\
\leq 16 e^{4}\|X\|\|Y\|(\|X\|+\|Y\|) .
\end{gathered}
$$

Proof. For the duration of this proof, fix X and Y in M_{n}; we write x_{t} and y_{t} for $\exp (t X)$ and $\exp (t Y)$ respectively.

Consider the function $\phi:[0,1] \rightarrow M_{n}(\mathbb{C})$ given by

$$
\phi(t)=x_{t} y_{t} x_{-t} y_{-t}
$$

It is easy to check that $\phi(0)=I, \phi^{\prime}(0)=0, \phi^{\prime \prime}(0)=[X, Y]$, and that

$$
\phi^{\prime \prime \prime}(t)=\sum_{i, j, k=1}^{4} x_{t} \phi_{i, j, k}^{1}(X) y_{t} \phi_{i, j, k}^{2}(Y) x_{-t} \phi_{i, j, k}^{3}(-X) y_{-t} \phi_{i, j, k}^{4}(-Y),
$$

where

$$
\phi_{i, j, k}^{l}(Z)= \begin{cases}Z^{3} & \text { if all of } i, j, \text { and } k \text { are equal to } l \\ Z^{2} & \text { if two of } i, j, \text { and } k \text { are equal to } l \\ Z & \text { if one of } i, j, \text { and } k \text { is equal to } l \\ 1 & \text { if none of } i, j, \text { and } k \text { is equal to } l\end{cases}
$$

By Taylor's theorem,

$$
\begin{aligned}
& \left\|\exp (X) \exp (Y) \exp (-X) \exp (-Y)-I-\frac{[X, Y]}{2}\right\| \\
& \quad \leq \frac{1}{2} \sup \left\{\left\|\phi^{\prime \prime \prime}(t)\right\|: t \in[0,1]\right\}
\end{aligned}
$$

We estimate $\left\|\phi^{\prime \prime \prime}(t)\right\|$ by grouping the terms: if all of i, j, k are odd, we obtain the term

$$
x_{t} X^{3} y_{t} x_{-t} y_{-t}-3 x_{t} X^{2} y_{t} X x_{-t} y_{-t}+3 x_{t} X y_{t} X^{2} x_{-t} y_{-t}-x_{t} y_{t} X^{3} x_{-t} y_{-t}
$$

which is equal to

$$
x_{t}\left[X^{3} y_{t}-y_{t} X^{3}\right] x_{-t} y_{-t}-3 x_{t} X\left[X y_{t}-y_{t} X\right] X x_{-t} y_{-t}
$$

and the norm of this expression is at most

$$
e^{3}\left\|X^{3} y_{t}-y_{t} X^{3}\right\|+3 e^{3}\|X\|^{2}\left\|X y_{t}-y_{t} X\right\|
$$

Since

$$
\begin{aligned}
\left\|X^{p} y_{t}-y_{t} X^{p}\right\| & =\left\|X^{p}\left(y_{t}-I\right)-\left(y_{t}-I\right) X^{p}\right\| \\
& \leq 2\|X\|^{p}\left\|y_{t}-I\right\| \\
& \leq 2 e\|X\|^{p}\|Y\|
\end{aligned}
$$

the contribution of these "all odd" terms is at most $8 e^{4}\|X\|^{3}\|Y\|$. Similarly, the contribution of the terms with all of i, j, and k even is at most $8 e^{4}\|X\|\|Y\|^{3}$. Each term with at least one of i, j, and k even and at least
one of i, j, and k odd contributes a factor which is at most $e^{4}\|X\|^{2}\|Y\|$ or $e^{4}\|X\|\|Y\|^{2}$, and the lemma is proved.

Let U be the subset $\exp V$ of $G L(n, \mathbb{C})$, where

$$
V=\left\{X \in M_{n}(\mathbb{C}):\|X\| \leq 0.02\right\} .
$$

Proposition 4.2 Suppose that G is simple, that $x, y \in G_{e} \cap U$, and that $\langle x, y\rangle$ is free and Zariski-dense. Then $\langle x, y\rangle$ is dense in G_{e}.

Proof. Write $x=\exp (X)$ and $y=\exp (Y)$, where $X, Y \in V$. We define y_{n} inductively as follows: $y_{0}=y$, and $y_{n}=x y_{n-1} x^{-1} y_{n-1}^{-1}$. We shall show that $y_{n} \in U$; it follows that $\langle x, y\rangle$ has an accumulation point inside \bar{U}. Thus $\langle x, y\rangle$ is not discrete, so is dense.

To see that $y_{n} \in U$, suppose inductively that $y_{n-1}=\exp \left(Y_{n-1}\right)$, where $Y_{n-1} \in V$; then Lemma 4.1 implies that

$$
\left\|y_{n}-I-\frac{1}{2}\left[X, Y_{n-1}\right]\right\| \leq 0.015
$$

so that

$$
\left\|y_{n}-I\right\| \leq 0.015+\frac{1}{2}\left\|\left[X, Y_{n-1}\right]\right\| \leq 0.016 .
$$

Now

$$
\log y_{n}=\left(y_{n}-I\right)-\frac{1}{2}\left(y_{n}-I\right)^{2}+\frac{1}{3}\left(y_{n}-I\right)^{3}-\ldots,
$$

so

$$
\left\|\log \left(y_{n}\right)\right\| \leq 0.016+\frac{1}{2}[0.016]^{2}+\frac{1}{3}[0.016]^{3}+\ldots<0.02,
$$

and $\log \left(y_{n}\right)$ is in V, as required.

We take now a product of such sets inside an almost direct product of simple groups, and we obtain the following.

Theorem 4.3 There exists a neighbourhood U ofe in G_{e} such that, if supp v $\subseteq U \times U$, then Γ_{ω} is dense in G_{e} with probability 1 .

To extend this to the reductive case, we again need some control of the size of the centre Z_{0} of G_{0}.

5 A criterion for discreteness

Suppose that x and y are transformations of a space B, and that there is a point b in B and subsets U and V of B such that $\{b\}, U$, and V are pairwise disjoint, and

$$
\begin{array}{ll}
x^{m}(\{b\} \cup V) \subseteq U & \forall m \in \mathbb{Z} \backslash\{0\} \\
y^{m}(\{b\} \cup U) \subseteq V & \forall m \in \mathbb{Z} \backslash\{0\}
\end{array}
$$

Then, as observed by Tits [5], $\langle x, y\rangle$ is free. Indeed, if w is any nontrivial word in x, y, x^{-1} and y^{-1}, then $w b \in U \cup V$, so $w b \neq b$, and $w \neq e$. This argument also implies that $\langle x, y\rangle$ is discrete, at least if U and V are closed sets. For if w_{n} is any sequence of nontrivial words tending to the identity, $w_{n} b$ tends to b, so b lies in the closure of $U \cup V$.

Theorem 5.1 If μ is a "reasonable" probability measure on G, and x_{n} and y_{n} are independent identically distributed random variables with law $\mu * \ldots * \mu$ (n times), then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\langle x_{n}, y_{n}\right\rangle \text { is discrete }\right)=1
$$

Idea of the proof. According to work of Y. Guivarc'h [G], based on ideas of Furstenberg and of V.I. Oseledets, as n increases, x_{n} and y_{n} act increasingly "contractively" on the boundary B of G. More precisely, there are small subsets U_{n}, V_{n}, P_{n} and Q_{n} of B such that, if $m \neq 0$,

$$
\left(x_{n}\right)^{m}\left(B \backslash P_{n}\right) \subseteq U_{n} \quad \text { and } \quad\left(y_{n}\right)^{m}\left(B \backslash Q_{n}\right) \subseteq V_{n}
$$

and as n increases, U_{n}, V_{n}, B_{n}, and P_{n} become smaller. Provide that

$$
U_{n} \cap Q_{n}=\varnothing, \quad V_{n} \cap P_{n}=\varnothing, \quad \text { and } \quad b \in B \backslash\left(P_{n} \cup Q_{n} \cup U_{n} \cup V_{n}\right)
$$

which has probability 1 in the limit as n increases, the criterion for discreteness above is satisfied.

In the reductive case, Γ_{ω} is almost surely discrete if, in addition, Z_{0} is big enough.

References

[1] BALLMANN W., GROMOW M., and SCHROEDER V., "Manifolds of Nonpositive Curvature", Birkhäuser, Boston, Basel, Stuttgart, (1985)
[2] BALCERZYK S., and MYCIELSKI J., "On faithful representations of free products of groups", Fund. Math. 50,(1961), 63-71
[3] GUIVARC’H Y., "Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire", Ergodic Theory Dynamical Systems 10, (1990), 483-512
[4] KANTOR W.M., and LUBOTZKY A., "The probability of generating a finite classical group", Geom. Dedic. 36, (1990), 67-87
[5] TITS J., "Free subgroups in linear groups", J. Algebra 20,(1972), 250270
M. Cowling

School of Mathematics
University of New South Wales
Sydney, NSW 2052 Australia

[^0]: *We can also deal with the case where v is supported in $G_{0} \times G_{0}$, but the statements become more complicated. Similarly, we can also extend our arguments to deal with reductive G, but in the interest of simplicity we do not do this here in detail.

