JUAN LUIS VAZQUEZ, Universidad Autonoma de Madrid NONLINEAR DIFFUSION, FROM POROUS MEDIA TO FRACTIONAL DIFFUSION. EVOLUTIONS, FREE BOUNDARIES AND ASYMPTOTICS
Martedì 07 Giugno 2011, ore 16:30 Dipartimento di Matematica, V. Saldini, 50, Aula Chisini |
|
|
|
ROBERTO MAURI, Dip.to di Ing. Chimica, Chimica Ind. e Scienze dei Materiali, Università di Pisa MEAN FIELD MODELING OF MULTIPHASE SYSTEMS Lunedì 23 Maggio 2011, ore 17:00 Dipartimento di Matematica, Politecnico di Milano, Aula Seminari VI piano |
|
|
|
THOMAS BARTSCH, University of Giessen SOLITARY WAVES FOR COUPLED NONLINEAR SCHROEDINGER EQUATIONS Mercoledì 30 Marzo 2011, ore 17:00 Università di Milano, Dipartimento di Matematica, Via Saldini |
|
|
|
|
|
FULVIO RICCI, Scuola Normale Superiore di Pisa RECENTI SVILUPPI NELLA TEORIA DEGLI INTEGRALEI SINGOLARI Venerdì 25 Febbraio 2011, ore 11:00 Politecnico di Milano, Dipartimento di Matematica, Sala Consiglio VII piano |
|
|
|
GIUSEPPE SACCOMANDI, Università di Perugia MICROMECHANICAL BASED DAMAGE MODELS
Lunedì 21 Febbraio 2011, ore 17:00 Politecnico di Milano, Dipartimento di Matematica, Aula seminari MOX VI piano |
|
|
Abstract
|
|
|
In polymer physics and biomechanics the need for models based on micro-mechanics considerations is clear. In this talk we show that it is possible to study the behavior of disordered media constituted by considering at the microscale a bimodal distributions of elastic and breakable links with variable activation and fracture thresholds. Depending on the microscopic distribution properties, the material may be characterized by an unstable strain domain, which gives the possibilities of having homogeneous or localized damage. This simple idea delivers a theoretical scheme to describe many experimental effects observed at the microstructure and macroscopic scale in disordered materials like synthetic or biological polymers. Moreover, we discuss how these idea may fitting in the theory of continuum mechanics with multiple configurations.
|
|
|
|
|
|
|