logo del seminario matematico e fisico di milano
Seminario Matematico e Fisico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano
Direttore: Paolo Stellari
      
Vice Direttore: Gabriele Grillo
      
Segretario: Daniele Cassani

Home / Archivio conferenze

È disponibile il canale youtube del Seminario
youtube

Cerca:

Anton Baranov, Saint Petersburg State University
Spectral synthesis for systems of exponentials and reproducing kernels
Giovedì 07 Febbraio 2019, ore 16:00
Sala di Rappresentanza, Dipartimento di Matematica, Via C. Saldini 50, Milano
Abstract
 
Guido Kings, Università di Regensburg
The Birch-Swinnerton-Dyer conjecture, some recent progress
Lunedì 07 Gennaio 2019, ore 16:00
Aula C, Dipartimento di Matematica, Via C. Saldini 50, Milano
Abstract
 
Arkady Tsinober, Tel Aviv University
Turbulence versus Mathematics and vice versa
Martedì 04 Dicembre 2018, ore 16:00
Aula 3015 del Dipartimento di Matematica e Applicazioni dell'Università di Milano - Bicocca
Abstract
 
Shigefumi Mori, Kyoto University Institute of Advanced Study
BIRATIONAL EQUIVALENCE OF ALGEBRAIC VARIETIES
Lunedì 26 Novembre 2018, ore 16:30
Aula Chisini, Diparimento di Matematica, Via C. Saldini 50
 
Terence Tao, University of California, Los Angeles
VAPORIZING AND FREEZING THE RIEMANN ZETA FUNCTION
Venerdì 22 Giugno 2018, ore 14:30
Edificio U4, P.zza della Scienza, 4, Aula Luisella Sironi
Abstract
In 1950, de Bruijn studied the effect of evolving the Riemann zeta function (or more precisely, a closely related function known as the Riemann xi function) by the (backwards) heat equation. His analysis, together with later work by Newman, showed that there existed a finite constant Lambda, at most 1/2 in value, such that the Riemann hypothesis for this evolved function was true at times greater than or equal to Lambda, and false below that threshold. Thus the Riemann hypothesis for the zeta function is equivalent to Lambda being non-positive. Recently, in joint work with Brad Rodgers, I was able to establish the complementary estimate that Lambda is non-negative, confirming a conjecture of Newman; thus, the Riemann hypothesis for zeta, if true, is only "barely so". The proof relies on an analysis of the dynamics of zeroes of entire functions under heat flow; it turns out that as one evolves forward in time, the zeroes "freeze" into approximate arithmetic progressions, while if one evolves backwards, the zeroes "vaporize" to leave the critical line. In followup work in an online collaborative "Polymath" project, the upper bound on Lambda has also been improved. We describe these results and their proofs in this talk.
 
Zeljko Cuckovic, University of Toledo
The essential norm estimates of Hankel and the $\overline\partial$-Neumann operators
Venerdì 01 Giugno 2018, ore 11:00
Sala di Rappresentanza, Università di Milano, Via C. Saldini 50, Milano
Abstract