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Abstract

We consider a differential system based on the coupling of the Navier-Stokes
and Darcy equations for modeling the interaction between surface and sub-
surface flows. We formulate the problem as an interface equation, we analyze
the associated (nonlinear) Steklov-Poincaré operators, and we prove its well-
posedness.

1 Introduction and setting of the problem

Let Ω ⊂ R
d (d = 2, 3) be a bounded domain, decomposed as the union of

two non intersecting subdomains Ωf and Ωp separated by an interface Γ, i.e.
Ω̄ = Ω̄f ∪ Ω̄p, Ωf ∩ Ωp = ∅ and Ω̄f ∩ Ω̄p = Γ. We suppose the boundaries ∂Ωf

and ∂Ωp to be Lipschitz continuous. From the physical point of view, Γ is a
surface separating an upper domain Ωf filled by a fluid, from a lower domain
Ωp formed by a porous medium. We assume that the fluid contained in Ωf has
a fixed upper surface (i.e., we do not consider the case of free-surface fluid) and
can filtrate through the underlying porous medium.
In order to describe the motion of the fluid in Ωf , we introduce the Navier-Stokes
equations: ∀t > 0,

∂tuf − ∇ · T(uf , pf ) + (uf · ∇)uf = f in Ωf ,
∇ · uf = 0 in Ωf ,

(1)

where T(uf , pf ) = ν(∇uf + ∇Tuf ) − pf I is the Cauchy stress tensor, ν > 0
is the kinematic viscosity of the fluid, while uf and pf are the fluid velocity
and pressure, respectively; ∇ is the gradient operator with respect to the space
coordinates.
In the lower domain Ωp, we define the piezometric head ϕ = z+pp/(ρfg), where
z is the elevation from a reference level, pp is the pressure of the fluid in Ωp, ρf

its density and g is the gravity acceleration.
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The fluid motion in Ωp is described by the equations:

nup = −K∇ϕ in Ωp ,
∇ · up = 0 in Ωp ,

(2)

where up is the fluid velocity, n is the volumetric porosity and K is the hydraulic
conductivity tensor K = diag(K1, . . . ,Kd) with Ki ∈ L∞(Ωp), i = 1, . . . , d.
The first equation is Darcy’s law. In the following, we shall denote K = K/n =
diag(Ki/n) (i = 1, . . . , d).

For the sake of clarity, in our analysis we shall adopt homogenous boundary con-
ditions. The treatment of non-homogeneous conditions involves some additional
technicalities, but neither the guidelines of the theory nor the final results are
affected. We refer the reader to [7]. In particular, for the Navier-Stokes problem
we impose the no-slip condition uf = 0 on ∂Ωf \Γ, while for the Darcy problem,
we set the piezometric head ϕ = 0 on Γb

p and we require the normal velocity to

be null on Γp: up · np = 0 on Γp, where ∂Ωp = Γ ∪ Γb
p ∪ Γp (see Fig. 1). np

and nf denote the unit outward normal vectors to the surfaces ∂Ωp and ∂Ωf ,
respectively, and we have nf = −np on Γ. We suppose nf and np to be regular
enough, and we indicate n = nf for simplicity of notation.

Ωf

Ωp
nf

np

∂Ωf

Γp Γp

Γb
p

Γ

Figure 1: Schematic representation of a 2D vertical section of the computational

domain

We supplement the Navier-Stokes and Darcy problems with the following con-
ditions on Γ:

up · n = uf · n , (3)

−ετ i · (T(uf , pf) · n) = νuf · τ i , i = 1, . . . , d− 1 , (4)

−n · (T(uf , pf) · n) = gϕ , (5)

where τ i (i = 1, . . . , d − 1) are linear independent unit tangential vectors to
the boundary Γ, and ε is the characteristic length of the pores of the porous
medium.
Conditions (3)-(5) impose the continuity of the normal velocity on Γ, as well as
that of the normal component of the normal stress, but they allow pressure to
be discontinuous across the interface.
A rigorous mathematical justification of these interface conditions, usually de-
noted as Beavers-Joseph-Saffman conditions, can be found in [12, 13, 14].
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The same interface conditions have been considered in [8, 9, 10, 15] for the
coupling of Stokes and Darcy equations.
From Sect. 1.1 on, we focus on the steady problem obtained by dropping the
time derivative in the momentum equation (1).
Then, after writing the weak form of the global problem (Sect. 1.1), we refor-
mulate it as a nonlinear problem in one sole interface unknown. In Sect. 3,
we introduce and analyze some nonlinear extension operator that will be used
in Sect. 4 to write the nonlinear interface problem Sλ = 0, whose unknown
solution λ is the common value of the normal velocity uf · n = up · n across Γ.
S is a nonlinear Steklov-Poincaré operator. Finally, in Sect. 4.1, we prove the
well-posedness of this interface problem.

1.1 Weak form of the global problem

From now on, we shall consider the steady case for the Navier-Stokes equations
and, instead of (2), we will use the following formulation for Darcy problem:

find ϕ : −∇ · (K∇ϕ) = 0 in Ωp . (6)

We define the functional spaces:

Hf = {v ∈ (H1(Ωf ))d : v = 0 on ∂Ωf \ Γ}, (7)

Hp = {ψ ∈ H1(Ωp) : ψ = 0 on Γb
p}, (8)

and let Q = L2(Ωf ). We denote by | · |1 the H1-seminorm, and by ‖ · ‖0 the
L2-norm; it will always be clear form the context whether we are referring to
the norms and seminorms in Ωf or Ωp.
Then, we introduce the bilinear forms

af (v,w) =

∫

Ωf

ν

2
(∇v + ∇Tv) · (∇w + ∇Tw) ∀v,w ∈ (H1(Ωf ))d , (9)

bf (v, q) = −
∫

Ωf

q∇ · v ∀v ∈ (H1(Ωf ))d, ∀q ∈ Q , (10)

ap(ϕ, ψ) =

∫

Ωp

∇ψ · K∇ϕ ∀ϕ, ψ ∈ H1(Ωp) , (11)

and, for all v,w, z ∈ (H1(Ωf ))d, the trilinear form

cf (w; z,v) =

∫

Ωf

[(w · ∇)z] · v =

d
∑

i,j=1

∫

Ωf

wj
∂zi

∂xj
vi . (12)

The coupling conditions (3)-(5) can be incorporated in the weak formulation of
the Navier-Stokes/Darcy problem as natural conditions on Γ. In fact, the latter
reads:

find uf ∈ Hf , pf ∈ Q, ϕ ∈ Hp such that for all v ∈ Hf , q ∈ Q, ψ ∈ Hp,

af (uf ,v) + cf (uf ;uf ,v) + bf(v, pf ) + g ap(ϕ, ψ)

+

∫

Γ

g ϕ(v · n) −
∫

Γ

g ψ(uf · n) +

∫

Γ

d−1
∑

j=1

ν

ε
(uf · τ j)(v · τ j) =

∫

Ωf

f · v , (13)

bf (uf , q) = 0 . (14)
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In the next sections, we will consider the issue of the well-posedness of (13)-(14).
In our analysis, we shall use some classical existence and uniqueness results for
nonlinear problems, that we anticipate, for the sake of clarity, in the following
section.

2 General existence and uniqueness results

In this section we recall some existence and uniqueness results for nonlinear
saddle-point problems, referring the reader to, e.g., [3, 4, 5, 6, 11] for a rigorous
study.

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two real Hilbert spaces. Consider a bilinear
continuous form b(·, ·) : X × Y → R, (v, q) → b(v, q), and a trilinear form
a(·; ·, ·) : X×X×X → R, (w, u, v) → a(w;u, v), where, for w ∈ X the mapping
(u, v) → a(w;u, v) is a bilinear continuous form on X ×X .
Then, we consider the following problem: given l ∈ X ′, find a pair (u, p) ∈ X×Y
satisfying

a(u;u, v) + b(v, p) = 〈l, v〉 ∀v ∈ X,
b(u, q) = 0 ∀q ∈ Y.

(15)

Introducing the linear operatorsA(w) ∈ L(X ;X ′) for w ∈ X , andB ∈ L(X ;Y ′):

〈A(w)u, v〉 = a(w;u, v) ∀u, v ∈ X ,

〈Bv, q〉 = b(v, q) ∀v ∈ X, ∀q ∈ Y ,

problem (15) becomes: find (u, p) ∈ X × Y such that

A(u)u+BT p = l in X ′ ,
Bu = 0 in Y ′ .

(16)

Taking V = Ker(B), we associate (15) with the problem:

find u ∈ V : a(u;u, v) = 〈l, v〉 ∀v ∈ V , (17)

or, equivalently: find u ∈ V s.t. ΠA(u)u = Π l in V ′, where the linear operator
Π ∈ L(X ′;V ′) is defined by 〈Π l, v〉 = 〈l, v〉, ∀v ∈ V .
If (u, p) is a solution of problem (15), then u solves (17). The converse may be
proven provided an inf-sup condition holds. Indeed, the following results can be
proved.

Theorem 2.1 (Existence and uniqueness) Suppose that:

1. the bilinear form a(w; ·, ·) is uniformly elliptic in the Hilbert space V with
respect to w, i.e. there exists a constant α > 0 such that

a(w; v, v) ≥ α‖v‖2
X ∀v, w ∈ V ;

2. the mapping w → ΠA(w) is locally Lipschitz-continuous in V , i.e. there
exists a continuous and monotonically increasing function L : R

+ → R
+

such that for all m > 0

|a(w1;u, v) − a(w2;u, v)| ≤ L(m)‖u‖X‖v‖X‖w1 − w2‖X (18)

∀u, v ∈ V , ∀w1, w2 ∈ Sm with Sm = {w ∈ V : ‖w‖X ≤ m};
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3. it holds
‖Π l‖V ′

α2
L

(‖Π l‖V ′

α

)

< 1 . (19)

Then, problem (17) has a unique solution u ∈ V .

We consider now problem (15).

Theorem 2.2 Assume that the bilinear form b(·, ·) satisfies the inf-sup condi-
tion: ∃β > 0

inf
q∈Y

sup
v∈X

b(v, q)

‖v‖X‖q‖Y
≥ β . (20)

Then, for each solution u of (17) there exists a unique p ∈ Y such that the pair
(u, p) is a solution of (15).

3 Some nonlinear extension operators: defini-

tion and analysis

In this section we apply domain decomposition methods at the differential level
to study the Navier-Stokes/Darcy problem. We identify the subdomains with
Ωf and Ωp, then we introduce and analyze some nonlinear extension operators
that will be used in Sect. 4 to write the Steklov-Poincaré interface equation
associated to the coupled problem.
In our analysis we adopt the interface condition

uf · τ j = 0 on Γ, j = 1, . . . , d− 1, (21)

instead of (4). This simplification is acceptable from the physical viewpoint
since the term in (4) involving the normal derivatives of uf is multiplied by ε,
and the velocity uf can be supposed of order O(ε) in the neighborhood of Γ
(see [13]), so that the left hand side can be approximated to zero. We point
out that this simplification does not alter the coupling structure, since (4) is a
boundary condition for the fluid problem in Ωf and not a coupling condition.

We consider the trace space Λ = H
1/2
00 (Γ) (see [16]) and the spaces

Hτ
f = {v ∈ Hf : v · τ j = 0 on Γ, j = 1, . . . , d− 1} , (22)

H0
p = {ψ ∈ Hp : ψ = 0 on Γ} . (23)

Moreover, we consider two linear continuous extension operators:

R
τ
1 : Λ → Hτ

f such that (Rτ
1µ) · n = µ on Γ ∀µ ∈ Λ , (24)

R2 : H1/2(Γ) → Hp such that R2µ = µ on Γ, ∀µ ∈ H1/2(Γ) . (25)

We can prove the following result (see [7]).

Proposition 3.1 The coupled Navier-Stokes/Darcy problem (13)-(14) can be
reformulated in the equivalent multidomain form:
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find uf ∈ Hτ
f , pf ∈ Q, ϕ ∈ Hp such that

af (uf ,w) + cf (uf ;uf ,w) + bf(w, pf )=

∫

Ωf

f · w ∀w ∈ (H1
0 (Ωf ))d , (26)

bf (uf , q) = 0 ∀q ∈ Q , (27)

ap(ϕ, ψ) = 0 ∀ψ ∈ H0
p , (28)

∫

Γ

(uf · n)µ = ap(ϕ,R2µ) ∀µ ∈ Λ , (29)

∫

Γ

g ϕµ =

∫

Ωf

f (Rτ
1µ) − af (uf ,R

τ
1µ)

−cf(uf ;uf ,R
τ
1µ) − bf (Rτ

1µ, pf) ∀µ ∈ Λ . (30)

Our aim is now to reformulate the coupled problem (26)-(30) as an interface
equation in a scalar unknown defined on Γ corresponding to the trace of the
fluid normal velocity uf ·n on Γ. First of all, we need to introduce and analyze
some further extension operators.

Let us consider the (unknown) interface variable λ = (uf · n)|Γ.

Due to the incompressibility constraint in Ωf and to the boundary conditions
imposed on ∂Ωf \ Γ, it must be λ ∈ Λ0 with

Λ0 =

{

µ ∈ Λ :

∫

Γ

µ = 0

}

. (31)

Then, let us define the linear extension operator:

Rf : Λ0 → Hτ
f ×Q0, η → Rfη = (R1

fη,R
2
fη), (32)

satisfying (R1
fη) · n = η on Γ, and

af (R1
fη,w) + bf (w, R2

fη) = 0 ∀w ∈ (H1
0 (Ωf ))d ,

bf (R1
fη, q) = 0 ∀q ∈ Q0 ,

(33)

where Q0 = {q ∈ Q :
∫

Ωf
q = 0}. Moreover, we consider the linear extension

operator
Rp : Λ0 → Hp, η → Rpη (34)

such that

ap(Rpη, ψ) =

∫

Γ

ηψ ∀ψ ∈ Hp . (35)

Finally, let us introduce the following nonlinear extension operator:

Rf : Λ0 → Hτ
f ×Q0, η → Rfη = (R1

fη,R2
fη)

such that (R1
fη) · n = η on Γ, and, for all v ∈ (H1

0 (Ωf ))d, q ∈ Q0,

af (R1
fη,v) + cf (u∗ + R

1
fη;u∗ + R

1
fη,v) + bf(v,R2

f η) = 0 ,

bf(R1
fη, q) = 0 ,

(36)

where u∗ ∈ (H1
0 (Ωf ))d satisfies the linear auxiliary Stokes problem:
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find u∗ ∈ (H1
0 (Ωf ))d, π∗ ∈ Q0:

af (u∗,v) + bf (v, π∗) =

∫

Ωf

f · v ∀v ∈ (H1
0 (Ωf ))d ,

bf (u∗, q) = 0 ∀q ∈ Q0 .
(37)

Let us finally recall that the following estimate holds:

|u∗|1 ≤ 2

Cκν
‖f‖0 . (38)

3.1 Existence and uniqueness of the operator Rf

We face now the issue of the existence and uniqueness of the extension oper-
ator Rf . With this purpose, we define the auxiliary (homogeneous) nonlinear
operator

R0 : Λ0 → (H1
0 (Ωf ))d ×Q0, η → R0η = (R1

0η,R2
0η),

with Ri
0η = Ri

fη −Ri
fη, i = 1, 2.

(39)

Clearly, R
1
0η · n = 0 on Γ, and it satisfies:

af (R1
0η,v) + cf (u∗ + R

1
fη + R

1
0η;u∗ + R

1
fη + R

1
0η,v)

+bf(v,R2
0η) = 0 ,

bf (R1
0η, q) = 0 ,

(40)

for all v ∈ (H1
0 (Ωf ))d, q ∈ Q0. Remark that problem (40) is analogous to (36),

but here R
1
0η ∈ (H1

0 (Ωf ))d, while R
1
fη ∈ Hτ

f .

We consider the functional space

V 0
f = {v ∈ (H1

0 (Ωf ))d : ∇ · v = 0 in Ωf} , (41)

and, given η ∈ Λ0, we define the form:

a(w; z,v) = af (z,v) + cf (w; z,v) + cf (u∗ + R
1
fη; z,v)

+ cf (z;u∗ + R
1
fη,v) ∀w, z,v ∈ (H1(Ωf ))d , (42)

and the functional

〈ℓ,v〉 = −cf (u∗ + R
1
fη;u∗ + R

1
fη,v) ∀v ∈ (H1(Ωf ))d . (43)

Thus, we can rewrite (40) as: given η ∈ Λ0,

find R
1
0η ∈ V 0

f : a(R1
0η; R

1
0η,v) = 〈ℓ,v〉 ∀v ∈ V 0

f . (44)

Finally, let us recall some useful inequalities: the Poincaré inequality (see, e.g.,
[17] p. 11)

∃CΩf
> 0 : ‖v‖0 ≤ CΩf

|v|1 ∀v ∈ Hf , (45)

the Korn inequality (see, e.g., [18] p. 149): ∀v = (v1, . . . , vd) ∈ Hf

∃Cκ > 0 :

∫

Ωf

d
∑

j,l=1

(

∂vj

∂xl
+
∂vl

∂xj

)2

≥ Cκ‖v‖2
1 , (46)
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and
∃Ĉ > 0 : |c(w; z,v)| ≤ Ĉ|w|1 |z|1 |v|1 ∀w, z,v ∈ Hf , (47)

which follows from the Poincaré inequality (45) and the inclusion (H1(Ωf ))d ⊂
(L4(Ωf ))d (for d = 2, 3) due to the Sobolev embedding theorem (see [1]).

We can now state the following result.

Proposition 3.2 Let f ∈ L2(Ωf ) such that

‖f‖0

ν2
<

1

8
· C

2
κ

Ĉ
, (48)

where Cκ and Ĉ are the constants introduced in (46) and (47), respectively. If

η ∈
{

µ ∈ Λ0 : |R1
fµ|1 <

νCκ

4Ĉ
− 2

Cκν
‖f‖0

}

, (49)

then, there exists a unique nonlinear extension Rfη = (R1
fη,R2

fη) ∈ Hτ
f ×Q0.

Remark 3.1 Notice that (49) imposes a constraint on η. In particular, since
the norms |R1

fη|1 and ‖η‖Λ are equivalent (see [9], Lemma 4.1), this condition
implies that a unique extension Rfη exists, provided the norm of η is small
enough. In our specific case, this means that we would be able to consider an
extension Rfλ only if the normal velocity λ across the interface Γ is sufficiently
small.
Finally, remark that (48) guarantees that the radius of the ball in (49) is positive.

Proof. The proof is made of several steps and it is based on Theorems 2.1-2.2.

1. Let v,w ∈ V 0
f and η ∈ Λ0. Then, we have

a(w;v,v) = af (v,v) + cf (w;v,v)

+ cf (u∗ + R
1
fη;v,v) + cf (v;u∗ + R

1
fη,v). (50)

Integrating by parts and recalling that w ∈ V 0
f , then

cf (w;v,v) =
1

2

∫

∂Ωf

w · n|v|2 − 1

2

∫

Ωf

∇ ·w|v|2 = 0 ,

where |v| is the Euclidian norm of the vector v. Moreover, denoting by nj the
components of the unit outward normal vector nf to ∂Ωf , we have

cf (v;u∗ + R
1
fη,v) =

∫

Ωf

d
∑

i,j=1

vj

∂(u∗ + R
1
fη)i

∂xj
vi

= −
d
∑

i,j=1

∫

Ωf

∂

∂xj
(vivj)(u∗ + R

1
fη)i +

d
∑

i,j=1

∫

∂Ωf

(vivj)(u∗ + R
1
fη)inj

= −
d
∑

i,j=1

∫

Ωf

∂vi

∂xj
vj(u∗ + R

1
fη)i −

d
∑

i,j=1

∫

Ωf

∂vj

∂xj
vi(u∗ + R

1
fη)i

+
d
∑

i,j=1

∫

∂Ωf

vj nj(u∗ + R
1
fη)ivi

= −cf (v;v,u∗ + R
1
fη).
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Finally, ∇ · (u∗ + R
1
fη) = 0 by construction, so that cf (u∗ + R

1
fη;v,v) = 0.

Then (50) becomes:

a(w;v,v) = af (v,v) − cf (v;v,u∗ + R
1
fη) , (51)

and using the inequalities (46) and (47) we obtain:

a(w;v,v) ≥ Cκν

2
|v|21 − Ĉ|v|21 |u∗ + R

1
fη|1

≥ |v|21
(

Cκν

2
− Ĉ(|u∗|1 + |R1

fη|1)
)

≥ |v|21
(

Cκν

2
− Ĉ

(

2‖f‖0

νCκ
+ |R1

fη|1
))

,

the last inequality following from (38). Then, thanks to (49), the bilinear form
a(w; ·, ·) is uniformly elliptic on V 0

f with respect to w, with constant αa (inde-
pendent of w):

αa =
Cκν

2
− Ĉ

(

2‖f‖0

νCκ
+ |R1

fη|1
)

.

2. Still using (47), we easily obtain:

|a(w1; z,v) − a(w2; z,v)| = |cf (w1 − w2; z,v)| ≤ Ĉ|w1 − w2|1|v|1|z|1.

3. We have

‖Π ℓ‖(V 0

f
)′ = sup

v∈V 0

f
,v 6=0

| − cf (u∗ + R
1
fη;u∗ + R

1
fη,v)|

|v|1

≤ sup
v∈V 0

f
,v 6=0

Ĉ|u∗ + R
1
fη|21 |v|1

|v|1

≤ Ĉ

(

2

Cκν
‖f‖0 + |R1

fη|1
)2

,

so that

Ĉ
‖Π ℓ‖(V 0

f
)′

α2
a

< 1

owing to (49).

4. Thanks to (49) and 1–3, a(·; ·, ·) and ℓ satisfy the hypotheses of Theorem 2.1,
which allows us to conclude that there exists a unique solution R

1
0η ∈ V 0

f to
(44).

5. Since the inf-sup condition is satisfied, Theorem 2.2 guarantees that there
exists a unique solution (R1

0η,R2
0η) to (40). The thesis follows from (39). 2

4 The interface equation associated to the cou-

pled problem

In this section we reformulate the global coupled problem (26)-(30) as an inter-
face equation depending solely on λ = (uf · n)|Γ.
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We formally define the nonlinear pseudo-differential operator S : Λ0 → Λ′
0,

〈Sη, µ〉 = af(R1
fη + u∗,R

τ
1µ) + cf (R1

fη + u∗; R
1
fη + u∗,R

τ
1µ)

+bf(Rτ
1µ,R2

fη + π∗) −
∫

Ωf

f (Rτ
1µ)

+

∫

Γ

g(Rpη)µ ∀η ∈ Λ0, ∀µ ∈ Λ . (52)

We have the following equivalence result, whose proof follows the guidelines of
Theorem 4.1 in [9].

Theorem 4.1 The solution to (26)-(30) can be characterized as follows:

uf = R
1
fλ+ u∗, pf = R2

fλ+ π∗ + p̂f , ϕ = Rpλ , (53)

where p̂f = (meas(Ωf ))−1
∫

Ωf
pf , and λ ∈ Λ0 is the solution of the nonlinear

interface problem:
〈Sλ, µ〉 = 0 ∀µ ∈ Λ0 . (54)

Moreover, p̂f can be obtained from λ by solving the algebraic equation

p̂f = (meas(Γ))−1〈Sλ, ε〉,

where ε ∈ Λ is a fixed function such that

1

meas(Γ)

∫

Γ

ε = 1 . (55)

Notice that a more useful characterization of the operator S can be provided.
Indeed, with the special choice R

τ
1 = R

1
f in (52), thanks to (33), we obtain

bf (R1
fµ,R2

fη + π∗) = 0 ∀η, µ ∈ Λ0 .

Moreover, owing to (39), for η, µ ∈ Λ0, we have

〈Sη, µ〉 = af (R1
0η + R

1
fη + u∗,R

1
fµ)

+cf(R1
0η + R

1
fη + u∗; R

1
0η + R

1
fη + u∗,R

1
fµ)

−
∫

Ωf

f (R1
fµ) +

∫

Γ

g(Rpη)µ .

By taking R
1
0η (∈ (H1

0 (Ωf ))d) as test function in (33), we obtain:

af (R1
fµ,R

1
0η) + bf (R1

0η,R
2
fµ) = 0 .

Finally, since R2
fµ ∈ Q0, owing to (40) it follows that af (R1

fµ,R
1
0η) = 0, so

that, for all η, µ ∈ Λ0, the operator S can be characterized as

〈Sη, µ〉 = af (R1
fη + u∗,R

1
fµ)

+cf(R1
0η + R

1
fη + u∗; R

1
0η + R

1
fη + u∗,R

1
fµ)

+

∫

Γ

g(Rpη)µ−
∫

Ωf

f (R1
fµ) . (56)
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4.1 Existence and uniqueness result

We study the existence and uniqueness of the solution of the nonlinear interface
problem (54).
Note that in view of (56), Sλ is defined in terms of the operator R

1
0λ, which,

thanks to (40), satisfies in its turn the following problem for all v ∈ V 0
f :

af(R1
0λ,v) + cf (R1

0λ+ R
1
fλ+ u∗; R

1
0λ+ R

1
fλ+ u∗,v) = 0 . (57)

Therefore, in order to prove the existence and uniqueness of the solution of
the interface problem, we have to consider (54), with the operator S as in
(56), coupled with (57), i.e., we have to guarantee at once the existence and
uniqueness of λ ∈ Λ0 and R

1
0λ ∈ V 0

f . To this aim we apply Theorem 2.1

replacing the space V by the product space W = Λ0 × V 0
f endowed with the

norm:
‖v̄‖W = (|R1

fµ|21 + |v|21)1/2 ∀v̄ = (µ,v) ∈W . (58)

We introduce the trilinear form and the linear functional associated with our
problem in the space W . For any fixed w̄ = (η,w) ∈ W , we define the following
operator depending on w̄:

A(η,w) : W → Λ′
0 × (V 0

f )′,
A(η,w) : (ξ,u) → (A0(η,w)(ξ,u),Af (η,w)(ξ,u))

where, for every test function µ ∈ Λ0,

〈A0(η,w)(ξ,u), µ〉 = af (R1
fξ,R

1
fµ) + cf (w + R

1
fη;u + R

1
fξ,R

1
fµ)

+cf(u + R
1
fξ;u∗,R

1
fµ)

+cf(u∗;u + R
1
fξ,R

1
fµ) +

∫

Γ

g(Rpξ)µ ,

whereas for any test function v ∈ V 0
f ,

〈Af (η,w)(ξ,u),v〉 = af (u,v) + cf (w + R
1
fη;u + R

1
fξ,v)

+cf (u∗;u + R
1
fξ,v) + cf (u + R

1
fξ;u∗,v) .

We indicate by ã the form associated to the operator A:

ã(w̄; ū, v̄) = 〈A0(η,w)(ξ,u), µ〉 + 〈Af (η,w)(ξ,u),v〉 (59)

for all w̄ = (η,w), ū = (ξ,u), v̄ = (µ,v) ∈W .

Next, we define two functionals ℓ0 : Λ0 → R and ℓf : V 0
f → R as:

〈ℓ0, µ〉 =

∫

Ωf

f (R1
fµ) − af (u∗,R

1
fµ) − cf (u∗;u∗,R

1
fµ) ∀µ ∈ Λ0 ,

〈ℓf ,v〉 = −cf (u∗;u∗,v) ∀v ∈ V 0
f ,

and denote
〈ℓ̃, v̄〉 = 〈ℓ0, µ〉 + 〈ℓf ,v〉 ∀v̄ = (µ,v) ∈W . (60)

Thus, the problem defined by (54) and (57) can be reformulated as:

find ū = (λ,R1
0λ) ∈ W : ã(ū; ū, v̄) = 〈ℓ̃, v̄〉 ∀v̄ = (µ,v) ∈W . (61)

We shall prove the existence and uniqueness of the solution only in a closed
convex subset of W .
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Lemma 4.1 Let f ∈ L2(Ωf ) be such that

‖f‖0

ν2
< Cmin

C2
κ

Ĉ
, (62)

where 0 < Cmin < 1/16 is a suitable positive constant, depending only on CΩf

and Cκ, to guarantee that

C2
1 −

(

3
√

2

4
+ 1

)

C2 > 0 , (63)

where

C1 =
Cκν

4Ĉ
− 4‖f‖0

Cκν
, C2 =

√
2

Ĉ

(

CΩf
‖f‖0 +

4

Cκ
‖f‖0 +

4Ĉ

C2
κν

2
‖f‖2

0

)

. (64)

Moreover, let
0 ≤ rm < rM ≤ C1 (65)

be two constants defined as

rm =
C1 −

√

C2
1 − 2C2

2
and rM = C1 −

√

C2/
√

2 . (66)

If we consider
Br = {w̄ = (η,w) ∈W : |R1

fη|1 ≤ r} , (67)

with
rm < r < rM , (68)

then, there exists a unique solution ū = (λ,R1
0λ) ∈ Br to (61).

Remark 4.1 Since the constants C1 and C2 in (64) depend on ‖f‖0, the condi-
tion (63) can be viewed as an inequality in ‖f‖0. By simple algebraic calculations
we can prove that there exists a constant,

Cmin =
2+( 3

2
+
√

2)(CΩf
+ 4

Cκ
)−

q

[2+( 3

2
+
√

2)(CΩf
+ 4

Cκ
)]2− 1

4
(10−4

√
2)

2(10−4
√

2)
(69)

such that any ‖f‖0 satisfying (62) is a solution of this inequality. Moreover, we
get that 0 < Cmin < 1/16, so that C1 > 0, and rm and rM in (66) satisfy (65).

Proof. The proof is composed of several parts.

1. For each w̄ = (η,w) ∈ Br the bilinear form ã(w̄; ·, ·) is uniformly coercive on
W .

By definition, for all v̄ = (µ,v) we have

ã(w̄; v̄, v̄) = af (R1
fµ,R

1
fµ) + af (v,v) +

∫

Γ

g(Rpµ)µ

+cf (w + R
1
fη;v + R

1
fµ,v + R

1
fµ)

+cf (v + R
1
fµ;u∗,v + R

1
fµ)

+cf (u∗;v + R
1
fµ,v + R

1
fµ) .

12



Thanks to (35), we have
∫

Γ
g(Rpµ)µ ≥ 0. Using the inequalities (46) and (47),

the estimate (38) and the fact that w ∈ V 0
f , we obtain

ã(w̄; v̄, v̄) ≥ Ckν

2
(|R1

fµ|21 + |v|21) − 2Ĉ|R1
fη|1(|R1

fµ|21 + |v|21)

−4Ĉ|u∗|1(|R1
fµ|21 + |v|21)

≥ Ckν

2
(|R1

fµ|21 + |v|21) − 2Ĉ|R1
fη|1(|R1

fµ|21 + |v|21)

−4Ĉ
2

Ckν
‖f‖0(|R1

fµ|21 + |v|21) .

Thus,
ã(w̄; v̄, v̄) ≥ αã(|R1

fµ|21 + |v|21) , (70)

having set

αã =
Ckν

2
− 2Ĉ|R1

fη|1 −
8Ĉ

Ckν
‖f‖0 . (71)

Condition αã > 0 is equivalent to |R1
fµ|1 < C1, which is satisfied in view of (65)

and (68). Thus, the bilinear form ã(w̄; ·, ·) is uniformly coercive with respect to
any w̄ ∈ Br.
Thanks to the Lax-Milgram Lemma (see, e.g., [17] p. 133) the operator A(w̄) ∈
L(W ;W ′) is invertible for each w̄ ∈ Br. Moreover, the inverse T (w̄) = (A(w̄))−1

belongs to L(W ′;W ) and it satisfies

‖T (w̄)‖L(W ′;W ) ≤
1

αã
.

Now, we prove that there exists a unique ū ∈ Br such that ū = T (ū)ℓ̃, i.e., (61)
has a unique solution in Br.

2. v̄ → T (v̄)ℓ̃ maps Br into Br and is a strict contraction in Br.

For all v̄ = (µ,v) ∈ Br we have

‖T (v̄)ℓ̃‖W ≤ ‖T (v̄)‖L(W ′;W )||ℓ̃||W ′ ≤ ||ℓ̃||W ′

αã
.

Moreover,

||ℓ̃||W ′ = sup
v̄∈W,v̄ 6=0

∣

∣

∣

∣

∣

∫

Ωf

f (R1
fµ) − af (u∗,R

1
fµ) − cf (u∗;u∗,v + R

1
fµ)

∣

∣

∣

∣

∣

‖v̄‖W

≤ sup
v̄∈W,v̄ 6=0

CΩf
‖f‖0|R1

fµ|1 + 2ν|u∗|1|R1
fµ|1 + Ĉ|u∗|21|v + R

1
fµ|1

‖v̄‖W

≤ sup
v̄∈W,v̄ 6=0

(

CΩf
‖f‖0 + 2ν|u∗|1 + Ĉ|u∗|21

)

(|R1
fµ|1 + |v|1)

‖v̄‖W

≤
√

2
(

CΩf
‖f‖0 + 2ν|u∗|1 + Ĉ|u∗|21

)

≤
√

2

(

CΩf
‖f‖0 +

4

Cκ
‖f‖0 +

4Ĉ

C2
κν

2
‖f‖2

0

)

, (72)
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the last inequality following from (38). From (72) and (71), corresponding to
some w̄ = (η,w) ∈ Br, condition

||ℓ̃||W ′

αã
≤ r

is equivalent to
2r2 − 2C1r + C2 ≤ 0 ,

that is rmin ≤ r ≤ rmax with

rmin =
C1 −

√

C2
1 − 2C2

2
and rmax =

C1 +
√

C2
1 − 2C2

2
.

Since rm = rmin < rM ≤ rmax, it follows that for any v̄ ∈ Br with r satisfying
(68), T (v̄)ℓ̃ belongs to Br.
Finally, to prove that the map v̄ → T (v̄)ℓ̃ is a strict contraction in Br, we
should guarantee (see [11] p. 282) that for any w̄1, w̄2 ∈ Br

‖(T (w̄1) − T (w̄2))ℓ̃‖W ≤ ||ℓ̃||W ′

α2
ã

L(r)‖w̄1 − w̄2‖W < ‖w̄1 − w̄2‖W , (73)

L(r) being the Lipschitz continuity constant associated to A. However,

|〈(A(w̄1) −A(w̄2))(ū), v̄〉| = |ã(w̄1; ū, v̄) − ã(w̄2; ū, v̄)|
= |cf (w1 + R

1
fη1 − (w2 + R

1
fη2);u + R

1
fλ,v + R

1
fµ)|

≤ Ĉ|w1 + R
1
fη1 − w2 − R

1
fη2|1 |u + R

1
fλ|1 |v + R

1
fµ|1

≤ 2
√

2Ĉ‖w̄1 − w̄2‖W ‖ū‖W ‖v̄‖W ,

so that L(r) = 2
√

2Ĉ. Thus, condition

||ℓ̃||W ′

α2
ã

L(r) < 1

is equivalent to

r2 − 2C1r + C2
1 − C2√

2
> 0

i.e.,

r < rMIN = C1 −
√

C2/
√

2 or r > rMAX = C1 +

√

C2/
√

2 .

Condition r > rMAX does not fit with the previous restrictions on r. However,
since rM = rMIN , (73) is satisfied for any r in the interval (68).
3. The existence and uniqueness of the solution ū = (λ,R1

0λ) ∈ Br to (61) is
now a simple consequence of the Banach contraction theorem (see, e.g., [19]).
2

The following theorem is a direct consequence of the previous lemma.

Theorem 4.2 If (62) holds with Cmin given in (69), and rm and rM defined
in (66), then problem (61) has a unique solution ū = (λ,R1

0λ) in the set

BrM
= {w̄ = (η,w) ∈W : |R1

fη|1 < rM} ,

14



and it satisfies |R1
fλ|1 ≤ rm. In particular, it follows that (54) has a unique

solution λ in the set SrM
⊂ Λ0,

SrM
= {η ∈ Λ0 : |R1

fη|1 < rM} ,

and it satisfies |R1
fλ|1 ≤ rm.

Proof. Since problem (54) has a solution λ if and only if ū = (λ,R1
0λ) is a

solution of problem (61), we prove only the first part of theorem.
From the previous Lemma 4.1, if (62) holds, with Cmin given in (69), (61) has
at least a solution in BrM

as it has a solution in Br ⊂ BrM
, for any rm <

r < rM . To prove the uniqueness, let us assume that (61) has two solutions
ū1 = (λ1, (R

1
0λ)1) 6= ū2 = (λ2, (R

1
0λ)2) in BrM

. Then, r1 = |R1
fλ1|1 < rM and

r2 = |R1
fλ2|1 < rM . Therefore, any set Br with max{rm, r1, r2} < r < rM

contains two different solutions of problem (61). This contradicts the result of
Lemma 4.1. Now, let ū = (λ,R1

0λ) be the unique solution of problem (61) in
BrM

. According to Lemma 4.1, it belongs to each Br ⊂ BrM
with rm < r < rM ,

and consequently |R1
fλ|1 ≤ rm. 2

Remark 4.2 Notice that condition (62) is analogous to what is usually required
to prove existence and uniqueness of the solution of the Navier-Stokes equations.
Moreover, we have proved that the solution is unique in SrM

. Thus, in view of
Remark 3.1, Theorem 4.2 states that the solution is unique only for sufficiently
small normal velocities λ across the interface Γ. Finally, notice that (62) im-
plies (48) and that SrM

is included in the set (49), so that the existence and
uniqueness of the nonlinear extension R

1
0λ is ensured as well.

The reformulation of the coupled problem as an interface equation is interesting
in view of setting up iterative substructuring methods to compute the solution
of the global problem. In particular, we can split the operator S into a nonlinear
part, say Sf , associated to the Navier-Stokes problem in Ωf , and a linear part
Sp related to the Darcy equation in Ωp, and exploit them to set up iterative
methods inspired to the Dirichlet-Neumann and Neumann-Neumann schemes
in domain decomposition (see, e.g., [18]). This study will be the object of a
forthcoming work [2].

References

[1] R.A. Adams. Sobolev Spaces. Academic Press, New York, 1975.

[2] L. Badea, M. Discacciati, and A. Quarteroni. Iterative substructuring
methods for the Navier-Stokes/Darcy coupling. Technical report, 2007.
In preparation.

[3] F. Brezzi, J. Rappaz, and P.A. Raviart. Finite dimensional approximation
of nonlinear problems. Part I: Branches of nonlinear solutions. Numer.
Math., 36:1–25, 1980.

[4] F. Brezzi, J. Rappaz, and P.A. Raviart. Finite dimensional approximation
of nonlinear problems. Part II: Limit points. Numer. Math., 37:1–28, 1981.

15



[5] F. Brezzi, J. Rappaz, and P.A. Raviart. Finite dimensional approximation
of nonlinear problems. Part III: Simple bifurcation points. Numer. Math.,
38:1–30, 1981.

[6] G. Caloz and J. Rappaz. Numerical Analysis for Nonlinear and Bifurcation
Problems. In Handbook of Numerical Analysis, Vol. V, pages 487–637.
North-Holland, Amsterdam, 1997.

[7] M. Discacciati. Domain Decomposition Methods for the Coupling of Surface
and Groundwater Flows. PhD thesis, Ecole Polytechnique Fédérale de
Lausanne, Switzerland, 2004.

[8] M. Discacciati, E. Miglio, and A. Quarteroni. Mathematical and numerical
models for coupling surface and groundwater flows. Appl. Numer. Math.,
43:57–74, 2002.

[9] M. Discacciati and A. Quarteroni. Analysis of a domain decomposition
method for the coupling of Stokes and Darcy equations. In F. Brezzi,
A. Buffa, S. Corsaro, and A. Murli, editors, Numerical Mathematics and
Advanced Applications, ENUMATH 2001, pages 3–20. Springer. Milan,
2003.

[10] M. Discacciati and A. Quarteroni. Convergence analysis of a subdomain
iterative method for the finite element approximation of the coupling of
Stokes and Darcy equations. Comput. Visual. Sci., 6:93–103, 2004.

[11] V. Girault and P.A. Raviart. Finite Element Methods for Navier-Stokes
Equations. Theory and Algorithms. Springer, Berlin, 1986.
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[14] W. Jäger, A. Mikelić, and N. Neuss. Asymptotic analysis of the laminar
viscous flow over a porous bed. SIAM J. Sci. Comput., 22(6):2006–2028,
2001.

[15] W.L. Layton, F. Schieweck, and I. Yotov. Coupling fluid flow with porous
media flow. SIAM J. Num. Anal., 40:2195–2218, 2003.

[16] J.L. Lions and E. Magenes. Problèmes aux Limites Non Homogènes et
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