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Abstract

We consider the coupling between three-dimensional (3D) and one-
dimensional (1D) fluid-structure interaction (FSI) models describing blood
flow inside compliant vessels. The 1D model is a hyperbolic system of
partial differential equations. The 3D model consists of the Navier-Stokes
equations for incompressible Newtonian fluids coupled with a model for the
vessel wall dynamics. A non standard formulation for the Navier-Stokes
equations is adopted to have suitable boundary conditions for the coupling
of the models. With this we derive an energy estimate for the fully 3D-1D
FSI coupling. We consider several possible models for the mechanics of the
vessel wall in the 3D problem and show how the 3D-1D coupling depends
on them. Several comparative numerical tests illustrating the coupling are
presented.
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1 Introduction

Blood flow in large arteries is characterized by traveling pressure waves, also
called pulse waves, which are due to the interaction between the blood and the
artery wall, which deforms under the action of the fluid pressure [26, 30]. A pos-
sible mathematical model describing such phenomena consists of the 3D Navier-
Stokes equations for incompressible Newtonian fluids, since blood is considered
incompressible and obeys a Newtonian rheology in medium to large vessels (see
[20, 32]). These equations are coupled with a model describing the movement
of the wall, which can not be neglected in large vessels since deformations up
to 10% of the vessel radius may occur during the cardiac cycle. The numer-
ical simulation of the pulse propagation phenomena induced by this coupling
is extremely challenging [33]. In particular, due to large added mass effect on
the structure, the FSI coupling algorithm should be implicit [3], which greatly
increases the computational costs, making it difficult to simulate large districts.
Although significant advances have been made during the last years on the ef-
ficiency of implicit algorithms for fluid-structure interaction [18, 9, 19, 10], and
by now simulations of rather large arterial trees, like those in [38, 2], are possi-
ble, their computational cost still discourage an extensive usage. Furthermore,
often one is interested in the detailed flow field only on a limited region, like a
particular artery or a major bifurcation. Yet, the human cardiovascular system
is formed by a closed network of vessels with a high level of interdependence and
realistic numerical simulations cannot be fully accomplished without taking this
into account [33, 15].

This motivates the adoption of simplified models, like for instance 1D models,
originally proposed by Euler [8] and widely used nowadays [29, 36]. These models
are described by hyperbolic systems of partial differential equations and, despite
having a lower level of accuracy compared to the fully 3D model, they capture
effectively the pulse waves at a much lower computational cost. This allows one
to properly simulate pressure waves propagation in large regions of the arterial
tree by a network of these models coupled together [17, 13, 33, 15].

Still, the need of detailed information calls for a more complex description in
specific sub-regions of interest. In fact, it is widely accepted that local blood flow
is strongly related to the initiation and progression of cardiovascular diseases,
like atherosclerosis [2, 27]. The information needed for these investigations, like
wall shear stress or local velocity patterns, may be computed only resorting to
3D simulations. By coupling the detailed 3D FSI model with the reduced 1D it
is possible to combine both requirements of having detailed information locally
while accounting for the global circulation. From another perspective, the 1D
network model can be thought as an absorbing (or far field) boundary condition
for the 3D detailed model.

This coupling of different models is known as the geometrical multiscale ap-
proach [16, 33, 15] and may also include, besides 3D and 1D models, lumped
parameters models [34, 14]. Here we focus on the coupling between 3D and 1D
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FSI models. Very little can be found in literature regarding the properties of
this coupling. In several applicative works, reduced models are coupled with
3D ones with the perspective of providing more realistic boundary conditions
[38, 28], and not with the objective of embedding the 3D model into a larger ar-
terial tree. Furthermore, in most of these applications the 3D model is assumed
to be rigid and the reduced models are lumped parameters ones [38, 25]. The
work [11] proposed some coupling strategies and algorithms based on subdomain
iterations, and analyzed the stability properties of each subproblem. However,
a stability analysis of the fully 3D-1D coupled problem is not yet available.

In this work we address for the first time the analysis of the two models to-
gether. We propose a coupling based on the continuity, at the coupling interface,
of the mass fluxes and normal component of the total stress. We adopt a proper
reformulation of the Navier-Stokes equations, for which the natural boundary
condition of the weak problem is precisely the normal total stress. With this
choice of coupling conditions, and by means of the reformulation of the fluid
equations, we are able to obtain an a priori energy estimate for the fully 3D-1D
FSI problem. At the best of our knowledge, this result is new.

We also consider several possibilities for the structure model on the 3D prob-
lem and discuss in each case the stability of the coupling. Furthermore, we
propose a numerical coupling algorithm, based on an explicit technique, and
present several numerical tests. The present paper is presented in the context
of blood flow in arteries, nevertheless the procedures here adopted may be ex-
tended to other similar problems where wave propagation phenomena arise due
to a fluid-structure interaction in pipes.

The outline of the paper is as follows. In Section 2 we present the Navier-
Stokes equations reformulated to have the normal total stresses as natural bound-
ary condition. Being a non standard formulation, we carry out a well posedness
analysis for the rigid wall case, providing an existence and unicity result for the
steady case, under suitable hypothesis on the data.

In Section 3 we consider the motion of the structure wall, by introducing
several possible models for the vessel wall dynamics, ranging from a simple 2D
algebraic model to 3D non linear elasticity. We study the coupling between
the adopted formulation of the fluid equations and the different models for the
movement of the wall, and we derive an energy estimate in each case.

In Section 4 we recall the 1D model and its energy estimate, as derived in
[11].

Section 5 is devoted to the full 3D-1D FSI coupling. Due to the formulation
adopted for the Navier-Stokes equations, and by imposing the continuity of the
fluxes and the total stresses, we are able to derive an energy estimate for the
fully coupled model. We also discuss the dependence of that energy balance on
the structure model chosen on the 3D side.

Numerical results are presented in Section 6. We propose an explicit numer-
ical algorithm for the 3D-1D coupling, while an implicit coupling is applied on
the 3D FSI problem and the Lax-Wendroff scheme is used for the 1D model.
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Several numerical tests are carried out, illustrating different coupling strategies.
To validate the results, the coupling problem solution is compared to the solution
of a complete 3D FSI problem in a longer domain.

2 The fluid equations

Let Ω be a bounded domain of R
3 representing a portion of a cylindrical artery.

We denote by Γw the portion of the boundary corresponding to the physical
arterial wall, while Γin and Γa represent the so called artificial boundaries, since
they do not correspond to any physical interface (see Figure 1). More precisely,
Γin is the upstream or proximal section, closest to the heart, and Γa is the
downstream or distal section, closest to the peripheral vessels. We assume that
the domain Ω ⊂ R

3 is open and connected and its boundary ∂Ω = Γw ∪Γin ∪Γa

is locally Lipschitz ( i.e., ∂Ω ∈ C1,1).

r

z

Γw
0

η r

R0

z=0 z=a

Γin ΓaΩ

Figure 1: Cylindrical vascular district Ωt.

Using the vectorial identity

u · ∇u =
1

2
∇|u|2 + curlu × u,

we write the Navier-Stokes equations in the following form, in Ω and for all
t ∈ I = (0, T ]





ρ
∂u

∂t
+ ρ

(
1

2
∇|u|2 + curlu × u

)
+ ∇p− div(2νD(u)) = 0,

div u = 0,
(1)

where the unknowns are the fluid velocity u and pressure p. Furthermore, ρ and
ν > 0 are the density and the dynamic viscosity of the fluid, respectively, and
are assumed to be constant; D is the strain tensor given by

D(u) =
1

2

(
∇u + ∇Tu

)
.

The choice of the rather unusual formulation (1) is motivated by the fact
that the normal total stress becomes a natural boundary condition (hereafter
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also called Neumann boundary condition) once problem (1) is written in a weak
form, as it will be shown next. On the other hand, we are interested in imposing
the normal total stress at the downstream section in view of the coupling with
th 1D model since, as we will show in Section 5, this choice allow us to obtain a
stable coupling.

We endow equations (1) with the initial condition

u = u0 for t = 0, in Ω, (2)

and either Dirichlet boundary conditions

u = h, (3)

or Neumann boundary conditions

σ
tot(u, p) · n = q, u × n = 0, (4)

on the artificial sections Γin and Γa, where h and q are given and σ
tot is the

total stress tensor given by

σ
tot(u, p) = −

(
p+

ρ

2
|u|2

)
I + 2νD(u).

We assume that, at any time t ∈ I, h ∈
[
H1/2(γ)

]3
and q ∈

[
H−1/2(γ)

]3
,

where γ is Γin or Γa, depending on where the Dirichlet or Neumann boundary
conditions, respectively, are being imposed.

At the boundary Γw we take no-slip conditions, i.e.

u = g for t ∈ I, on Γw. (5)

If the domain is fixed for all t ∈ I, then the no-slip condition is given by g = 0.
If a model for the wall dynamics is consider instead, and the domain changes in
time, then the function g is the velocity of the structure wall, i.e. the velocity
of the domain boundary.

Since the formulation of the Navier-Stokes equations we are adopting is a non
standard one, we will first carry out a well posedness analysis of the problem
in a fixed domain, i.e. with g = 0. This condition will be relaxed in the next
sections, when we will couple the fluid equations (1) with a model for the vessel
wall in a fluid-structure interaction (FSI) model, and further on when we will
couple the 3D FSI model with the 1D one.

We consider the case of Dirichlet boundary conditions (3) on Γin and Neu-
mann boundary conditions (4) on Γa. In order to write problem (1) in a weak

form we consider the closed subspace of
[
H1(Ω)

]3
of divergence free functions,

which we denote by Hdiv(Ω), and we introduce the following divergence free
space, for all t ∈ I:

V =
{
v ∈

[
H1(Ω)

]3
: div v = 0 in Ω,v = 0 on Γin ∪ Γw,u × n = 0 on Γa

}
,
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which is a closed subspace of
[
H1(Ω)

]3
and thus a Hilbert space for the inner

product of
[
H1(Ω)

]3
, hereafter denoted by (·, ·)H1(Ω). The corresponding norm

is denoted by ‖ · ‖H1(Ω), while (·, ·)L2(Ω) and ‖ · ‖L2(Ω) indicate the L2(Ω) inner
product and norm, respectively. Sometimes, for the sake of space, we will adopt
the short hand notation (·, ·) and ‖ ·‖ for the L2(Ω) inner product and norm. To
obtain the weak formulation of the Dirichlet problem, with g = 0, we proceed as
usual by multiplying the momentum equation of (1) by v ∈ V and integrating
by parts over Ω. With this we obtain, for all v ∈ V , for all t ∈ I, that

ρ

(
∂u

∂t
,v

)
+
ρ

2

〈
|u|2,v · n

〉
∂Ω

+ ρ (curlu × u,v) + 〈p,v · n〉∂Ω

−2ν 〈D(u) · n,v〉∂Ω + 2ν (D(u),∇v) = 0,

where< ·, · >γ stands for the duality pairing between
[
H−1/2(γ)

]3
and

[
H1/2(γ)

]3
,

for a regular open subset γ of ∂Ω. Taking into account the boundary conditions
verified by the test functions in V , as well as the Neumann boundary condition
on Γa, we obtain, for all v ∈ V , that

ρ

(
∂u

∂t
,v

)
+ 2ν (D(u),∇v) + ρ (curlu × u,v) = 〈q,v〉Γa

.

We define, for all t ∈ I, the following bilinear and trilinear forms: for all u, v,
w ∈

[
H1(Ω)

]3
,

a(u,v) := 2ν (D(u),∇v) and b(u,v,w) := ρ (curlu × v,w) .

It is worth mentioning that both forms a and b are well defined in
[
H1(Ω)

]3
, for

all t ∈ I. In particular, they are continuous:

|a(u,v)| 6 2ν‖D(u)‖‖∇v‖ 6 2ν‖∇u‖‖v‖H1(Ω) 6 2ν‖u‖H1(Ω)‖v‖H1(Ω),

|b(u,v,w)| 6 ρ

∣∣∣∣
∫

Ω
((v · ∇)u) · w dω

∣∣∣∣ + ρ

∣∣∣∣
∫

Ω
((∇u)v) · w dω

∣∣∣∣ 6

6 2ρC2‖u‖H1(Ω)‖v‖H1(Ω)‖w‖H1(Ω),

where C is a positive constant, from the continuous embedding of H1(Ω) in
L4(Ω).

We now define the following linear operator on
[
H1(Ω)

]3
, for all t ∈ I:

L(v) = 〈q,v〉Γa
.

Given the assumptions made on q, L is well defined and continuous with respect
to the dual norm

‖L‖∗ = sup
v∈V

L(v)

‖v‖[H1(Ω)]3
.

The weak formulation of the Dirichlet problem, with g = 0, reads:
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Problem 2.1 Find, ∀t ∈ I, u ∈ Hdiv(Ω) such that u(0, ·) = u0(·), u = h on
Γin, u × n = 0 on Γa and

(
∂u

∂t
,v

)
+ a(u,v) + b(u,u,v) = L(v) ∀v ∈ V.

For the homogeneous (h = 0) steady case, i.e.
∂u

∂t
= 0, it is possible to

derive, by a standard procedure, a well posedness result, which is given in the
next Theorem 2.1. The homogeneous steady version of Problem 2.1 reads

Problem 2.2 Find u ∈ V such that

a(u,v) + b(u,u,v) = L(v) ∀v ∈ V,

and we have the following

Theorem 2.1 Problem 2.2 has at least one solution. Furthermore, if there
exists a positive constant δ > 0 such that

ν2 > δ‖L‖∗, (6)

then Problem 2.2 has a unique solution.

Proof. This result can be derived from the existence and unicity results given
in [1, 6], for the steady Navier-Stokes equations, applied to our problem. In those
works the authors provide an existence result through a Faedo Galerkin’s method for a
variational problem with a trilinear form as in Problem 2.2, as long as the bilinear form
a is V -elliptic, i.e. ∃α > 0 such that a(v,v) > α‖v‖H1(Ω) ∀v ∈ V (see [6, Theorem
2.1]).

Thus, to show the existence of solutions of Problem 2.2, we have to prove that our
bilinear form a is V -elliptic. We demonstrate it by means of the Korn (see [5]) and
Poincarè (see [21]) inequalities:

∀v ∈
[
H1

0 (Ω)
]3
, ‖∇v‖2

6 CK(Ω)(D(v),D(v)) and ‖v‖2
H1(Ω) 6 CP (Ω)(∇v,∇v),

respectively. These inequalities can be applied to the test functions in V , since they
vanish in a measurable part of the boundary ∂Ω, recalling the assumptions made on Ω.
Whence, we have, for all v ∈ V

a(v,v) = 2ν (D(v),∇v) = 2ν (D(v),D(v)) > 2νC−2
K (Ω)‖∇v‖2

L2(Ω) > C(Ω)‖v‖2
[H1(Ω)]3 .

where C(Ω) = 2νC−2
K (Ω)(CP (Ω)+1)−1, being CK(Ω) and CP (Ω) the Korn and Poincarè

inequality constants, respectively.

The uniqueness, for data subject to condition (6), can be proved using the same

arguments as in [6, Theorem 2.3]. �
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It is possible to derive a similar existence and unicity result for the non ho-
mogeneous version (h 6= 0) of the steady Problem 2.2 through a lifting operator
procedure and a fixed point argument. In this case, further assumptions on the
problem data have to be made. Precisely, the lower bound on ν2 in the hy-
pothesis of the theorem depends also on the norm of the lift of h, as well as on
the coerciveness and continuity constants. We refer to [6, Theorem 2.4] for the
statement of the problem and the demonstration of the result. The application
to our case is straight forward.

3 The fluid-structure interaction problem

To have a fluid-structure interaction description of the problem, we couple equa-
tions (1) with a model for the vessel wall. Such model provides, at any time
t ∈ I, the displacement η with respect to the reference configuration Γ0

w, of each
point of Γw, that now depends on time Γw = Γw(t) := Γt

w, i.e. Γt
w = Γ0

w + η.
The matching conditions between the fluid and the solid on Γt

w are given by
{

u = η̇ for t ∈ I,
−(σ(u, p) + pextI) · n = Φ for t ∈ I,

(7)

where pext is a given external pressure which is considered zero from now on for
the sake of simplicity and with no loss of generality, σ(u, p) = −pI + 2νD(u) is
the Cauchy stress tensor of the fluid, Φ is the stress exerted by the structure on
the fluid and n is the outward unit vector to Γt

w. The first of (7) is the no-slip
condition that guarantees the total adherence of the fluid to the structure. The
second of (7) establishes the continuity of the stresses.

Depending on the type of differential operator describing the wall dynamics,
one needs to provide different types of initial and boundary conditions. If the
structure model is 2D (membrane model), the fluid stress on the structure is im-
posed through a forcing term, while if the structure model is 3D the fluid stress
on the wall is imposed through a Neumann boundary condition on Γt

w. In both
cases, the fluid stress is computed on the current configuration (Eulerian for-
mulation), since this is the most convenient formulation for the fluid equations.
However, it is common practice to write the structure equation on a reference
configuration Γ0

w (Lagrangian formulation), which is usually taken to be that at
the initial time. Thus, it is useful to rewrite the continuity of the stresses (the
second of (7)) on Γ0

w. By means of the Piola transform (see [5]), we have

− (det∇0η) (σ(u, p) + pextI)
(
∇0

−T
η
)
· n0 = Φ̂ for t ∈ I, on Γ0

w,
(8)

where Φ̂ is the structure force per unit reference surface area on Γ0
w, ∇0 indicates

the gradient with respect to the Lagrangian coordinates, and n0 is the outward
unit vector to Γ0

w.
By coupling the fluid equations with a structural wall model, the domain now

changes in time (Ω = Ω(t) := Ωt) with the solution of the structure problem η.
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Thus, the domain regularity depends on the regularity of the vessel wall model.
Results on the regularity of the solution of a FSI problem, which would ensure
the regularity of the fluid-structure interface, are still missing, as we will discuss
later on. We then need to do some hypothesis on the regularity of the domain
a priori. Precisely, we assume that, at any time t ∈ I the domain Ωt ⊂ R

3 is
open and connected and its boundary ∂Ωt := Γt

w ∪Γt
in ∪Γt

a is locally Lipschitz (
i.e., ∂Ωt ∈ C1,1). Furthermore, we assume that the domain Ωt verifies the cone
property, that will be needed to apply Korn’s inequality (see [22]).

Moreover, in order to derive the stability results in the sequel, we need to
apply a trace and Korn (see [22, 5]) inequalities. Since the constants on those
inequalities depend of the domain, which in turn depends on the solution η itself,
we need to assume that those constants, for all t ∈ I, are uniformly bounded
from above. Precisely, we assume the following.

Hypothesis 3.1 There exist positive constants Cin and Ca such that, for all
v ∈

[
H1(Ωt)

]3

‖v‖L2(Γt
in

) 6 Cin

(
‖v‖2

L2(Ωt) + ‖D(v)‖2
L2(Ωt)

) 1

2

,

and

‖v‖L2(Γt
a) 6 Ca

(
‖v‖2

L2(Ωt) + ‖D(v)‖2
L2(Ωt)

) 1

2

.

Remark 3.1 For all v ∈
[
H1(Ωt)

]3
vanishing in a measurable part of the

boundary ∂Ωt, a stronger Korn inequality (see [5, Theorem 6.3-4]) can be ap-
plied, and Hypothesis 3.1 becomes: there exist positive constants C̃in and C̃a such
that

‖v‖L2(Γt
in

) 6 C̃in‖D(v)‖2
L2(Ωt) and ‖v‖L2(Γt

a) 6 C̃a‖D(u)‖2
L2(Ωt). (9)

Proposition 3.1 If sections Γt
in and Γt

a do not change in time, and if the do-
main Ωt is regular enough, such that there exists a Lipschitz subdomain Ωp of
Ωt, verifying the cone property, which is included in every Ωt, for all t ∈ I,
and whose boundary contains Γt

in and Γt
a (see Figure 2), then Hypothesis 3.1 is

verified.

Proof. Due to the characteristics of Ωp and its independence on the time t, the

Korn inequality is valid in Ωp, at any time t ∈ I, for all v ∈
[
H1(Ωp)

]3
(see [5, 22]).

Moreover, since Γt
a ∪Γt

in ⊂ ∂Ωp, for all t ∈ I, we have a trace inequality on Ωp. Whence
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pΩ

Ωt

Γ t
in

Γ t
a

Figure 2: Domain Ωp, subset of Ωt, for all t ∈ I.

the following inequalities hold, for all v ∈
[
H1(Ωt)

]3
:

‖v‖L2(Γt
in

) 6 γin‖v‖2
H1(Ωp) 6 Cin

(
‖v‖2

L2(Ωp) + ‖D(v)‖2
L2(Ωp)

) 1

2

6 Cin

(
‖v‖2

L2(Ωt) + ‖D(v)‖2
L2(Ωt)

) 1

2

,

‖v‖L2(Γt
a) 6 γa‖v‖2

H1(Ωp) 6 Ca

(
‖v‖2

L2(Ωp) + ‖D(v)‖2
L2(Ωp)

) 1

2

6 Ca

(
‖v‖2

L2(Ωt) + ‖D(v)‖2
L2(Ωt)

) 1

2

,

where Cin = Cin(Ωp) = γinCK and Ca = Ca(Ωp) = γaCK are independent of time,

with γin = γin(Ωp) and γa = γa(Ωp) the trace inequality constants and CK = CK(Ωp)

the Korn inequality constant. �

Observe that, if the hypothesis of Proposition 3.1 are verified and v vanishes
in a measurable portion of the boundary ∂Ωp, then inequalities of Remark 3.1
hold true, with C̃in = C̃in(Ωp) and C̃a = C̃a(Ω

p) independent of time.
In this work we will analyze different models to represent the movements of

the vessel wall, starting with a simple algebraic one and concluding with a 3D
non linear elasticity model.

3.1 Simple 2D structure models

We will start by considering simple 2D structure models accounting only for
radial movements, i.e., η = ηrer where er is the radial coordinate unit vector
and ηr the radial component of η. In this case, the reference configuration Γ0

w

is assumed to have a cylindrical shape, so that the meaning of radial movement
is well understood:

Γ0
w = {(r, θ, z) : r = R0, 0 6 z 6 a, 0 6 θ < 2π} ,

where R0 is the arterial reference radius at rest and might depend on the axial
coordinate z.

Since only radial movements are considered, we take only the radial compo-
nent of the structural wall stresses Φ̂r = Φ̂ ·er. Hence, the structural model may
be written in the form

S(ηr) = Φ̂r, (10)
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where S is an operator, either differential or algebraic, that identifies the specific
model at hand.

We first consider a simple pressure-area algebraic relationship, which is the
simplest model derived from the equations of elasticity, assuming a cylindrical
geometry and membrane deformations. The thickness of the wall is assumed
to be small and vessel inertia, elastic bending as well as shear stress terms are
neglected. The model is then given by

S(ηr) :=
Eh

R2
0(1 − ξ2)

ηr = bηr, (11)

being h the wall thickness, E the Young modulus and ξ the Poisson ratio.
Defining the energy of the coupled problem (1), (2), (7) and (11) as

E3D−AL(t) :=
ρ

2
‖u‖2

L2(Ωt) +
b

2
‖ηr‖2

L2(Γ0
w),

the following result holds.

Theorem 3.1 The coupled fluid-structure problem (1), (2), (7) and (11), sat-
isfies the following equality:

d

dt
(E3D−AL(t)) + 2ν‖D(u)‖2

L2(Ωt) =

∫

Γt
in
∪Γt

a

(
σ

tot(u, p) · n
)
· u dγ, (12)

by which we obtain:

E3D−AL(T ) + 2ν

∫ T

0
‖D(u)‖2

L2(Ωt)dt =

= E3D−AL(0) +

∫ T

0

∫

Γt
in
∪Γt

a

(
σ

tot(u, p) · n
)
· u dγ dt, (13)

where E3D(0) is a constant depending only on the initial datum u0.

Proof. We first multiply the structure equation (11) by
∂ηr

∂t
and integrate on the

reference cylindrical surface Γ0
w, obtaining

b

∫

Γ0
w

ηr

∂ηr

∂t
dγ =

b

2

∫

Γ0
w

∂

∂t
(ηr)

2
dγ =

b

2

d

dt
‖ηr‖2

L2(Γ0
w) .

Regarding the forcing term of the structure, thanks to the continuity of the stresses on
Γ0

w given in (8), and the continuity of the velocities on Γt
w (the fist of (7)), we have:

∫

Γ0
w

Φ̂r

∂ηr

∂t
dγ =

∫

Γ0
w

(
− (det∇0η) (σ(u, p))

(
∇0

−T
η
)
· n0

)
· er

∂ηr

∂t
dγ

= −
∫

Γt
w

(σ(u, p) · n) · udγ.

11



Whence we obtain:

b

2

d

dt
‖ηr‖2

L2(Γ0
w) = −

∫

Γt
w

(σ(u, p) · n) · udγ. (14)

Similarly for the fluid equations, we multiply the momentum equation by u and
integrate over Ωt. We first observe that, due to the no-slip condition (the first of (7)),
the boundary Γt

w of the fluid domain Ωt is moving with velocity u and thus, from the
Reynolds transport theorem, we may write
∫

Ωt

ρ
1

2

∂

∂t
|u|2 dω =

ρ

2

d

dt

∫

Ωt

|u|2− ρ

2

∫

Γt
w

|u|2u·n dγ =
ρ

2

d

dt
‖u‖2

L2(Ωt)−
ρ

2

∫

Γt
w

|u|2u·n dγ.

On the other hand, noticing that
∫

Ωt

(curlu × u) · u dω =

∫

Ωt

(
(u · ∇)u − 1

2
∇|u|2u

)
u dω

=

∫

Ωt

(
1

2
u · ∇|u|2 − 1

2
u · ∇|u|2

)
dω = 0,

and that ∫

Ωt

D(u) : ∇u dω =

∫

Ωt

D(u) : D(u) dω,

and thanks to the incompressibility condition divu = 0, we have:

ρ

2

d

dt
‖u‖2

L2(Ωt)+2ν‖D(u)‖2
L2(Ωt) =

∫

Γt
in

∪Γt
a

(
σ

tot(u, p) · n
)
·u dγ+

∫

Γt
w

(σ(u, p) · n)·u dγ.

(15)

Summing up (14) and (15) we derive (12), and then (13) by integration between 0

and T . �

If homogeneous boundary conditions, either Dirichlet or Neumann, are pre-
scribed in the artificial sections, the boundary terms on the estimates (12) and
(13) vanish, leading to the following energy decay property.

Corollary 3.1 (energy decay property) The coupled fluid-structure problem
(1), (2), (7) and (11), with homogeneous boundary conditions on Γt

in and Γt
a,

satisfies the following energy equality:

d

dt
(E3D−AL(t)) + 2ν‖D(u)‖2

L2(Ωt) = 0, (16)

by which we obtain the following energy decay property:

E3D−AL(T ) + ν

∫ T

0
‖D(u)‖2

L2(Ωt)dt = E3D−AL(0), (17)

where E3D−AL(0) is a constant depending only on the initial datum u0.

If Neumann boundary conditions are considered on the artificial sections:

σ
tot(u, p) · n = r, u× n = 0 on Γt

in, and σ
tot(u, p) · n = q, u× n = 0 on Γt

a,
(18)

an energy estimate for the fluid-structure problem can be derived by means of
the Gronwall’s inequality.

12



Theorem 3.2 (Neumann problem) Under the Hypothesis (3.1), the coupled
fluid-structure problem (1), (2), (18), (7) and (11), satisfies the following a
priori energy estimate, for all t ∈ I

E3D−AL(t) + ν

∫ t

0
‖D(u)‖2

L2(Ωt)dt 6

6

(
E3D−AL(0) + C̃

∫ t

0
‖r‖2

L2(Γt
in

) dt+ C

∫ t

0
‖q‖2

L2(Γt
a) dt

)
e

2ν
ρ

t
, (19)

where C̃ and C are positive constants, and E3D−AL(0) is a constant depending
only on the initial datum u0.

Proof. Applying the inequalities of Hypothesis 3.1, and twice the Young inequality

ab 6
1

2β
a2 +

β

2
b2, with β =

ν

Cin

and β =
ν

Ca

, being Cin and Ca the constants in

inequalities of Hypothesis 3.1, we have:

∫

Γt
in

∪Γt
a

(
σ

tot(u, p) · n
)
· u dγ 6

6 ‖u‖L2(Γt
in

)‖r‖L2(Γt
in

) + ‖u‖L2(Γt
a)‖q‖L2(Γt

a)

6
ν

2Cin

‖u‖2
L2(Γt

in
) + C̃‖r‖2

L2(Γt
in

) +
ν

2Ca

‖u‖2
L2(Γt

a) + C‖q‖2
L2(Γt

a)

6 ν‖u‖2
L2(Ωt) + ν‖D(u)‖2

L2(Ωt) + C̃‖r‖2
L2(Γt

in
) + C‖q‖2

L2(Γt
a),

where C̃ =
Cin

2ν
and C =

Ca

2ν
.

Whence, integrating (12) between 0 and t 6 T we obtain the following inequality

E3D−AL(t) + ν

∫ t

0

‖D(u)‖2
L2(Ω) dt 6

6 E3D−AL(0) + C̃

∫ t

0

‖r‖2
L2(Γt

in
) dt+ C

∫ t

0

‖q‖2
L2(Γt

a) dt+ ν

∫ t

0

‖u‖2
L2(Ωt) dt.(20)

We now apply a Gronwall inequality (see for instance [5]): if g and ψ are continuous

functions in I and ψ(t) 6 g(t)+c

∫ t

0

ψ(s) ds, then ψ(t) 6 g(t)ect. The desired inequality

is obtained by identifying

ψ(t) = E3D−AL(t) + ν

∫ t

0

‖D(u)‖2
L2(Ω) dt,

and noticing that

ν

∫ t

0

‖u‖2
L2(Ωt) dt 6

2ν

ρ

∫ t

0

ψ(s) ds.

�

Remark 3.2 The need for the application of a Gronwall inequality for the Neu-
mann problem is due to the fact that imposing Neumann boundary conditions
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both on Γt
in and Γt

a does not prevent the existence of rigid motions. In fact, the
solution of the problem is well defined due to the fulfillment of the initial condi-
tion, yet, asymptotically, the solution is defined only up to a rigid motion and
we might loose control on the energy of the system in terms of the forcing terms.
If we assume that the two sections Γt

in and Γt
a are fixed, this implies, in partic-

ular, that u = 0 on ∂Γt
in and ∂Γt

a, which would be enough to prevent rigid body

motions. However, the trace of a function u ∈
[
H1(Ωt)

]3
on a one-dimensional

manifold is not well defined, and the use of the more stringent Korn inequality
(9) (see Remark 3.1) is questionable. This issue is still open.

Remark 3.3 The stability result is not derived for the non homogeneous Dirich-
let problem since in that case a lifting procedure has to be carried out and the
Hopf Lemma (see [21, Lemma 2.3, Chapter IV]) applied. The extension of either
of them to the moving domain case and for a trilinear form as the one used in
this work is not immediate.

If we include a second time derivative on the pressure-area algebraic model
(11) accounting for the vessel wall inertia, we obtain the independent rings model
[31], where

S(ηr) := ρ̃w
∂2ηr

∂t2
+ bηr, (21)

being ρ̃w = ρwh, with ρw the density of the wall material. This model needs
suitable initial conditions:

ηr = η0 and η̇r = η̇0, for t = 0, on Γ0
w, (22)

where the initial velocity η̇0 has to be compatible with the fluid initial condition:
η̇0er = u0.

Similar results to Theorems 3.1, 3.1 and 3.2 can be obtained in this case by
substituting E3D−AL(t) with E3D−IR(t) defined as

E3D−IR(t) :=
ρ

2
‖u‖2

L2(Ωt) +
ρ̃w

2

∥∥∥∥
∂ηr

∂t

∥∥∥∥
2

L2(Γ0
w)

+
b

2
‖ηr‖2

L2(Γ0
w),

and noticing that

ρ̃w

∫

Γ0
w

∂2ηr

∂t2
∂ηr

∂t
dγ =

ρ̃w

2

d

dt

∥∥∥∥
∂ηr

∂t

∥∥∥∥
2

Γ0
w

.

Continuing to increase complexity, we add to the independent rings model a
shear stress term, obtaining a generalized string model, for which

S(ηr) := ρ̃w
∂2ηr

∂t2
− a

∂2ηr

∂z2
+ bηr, (23)

where a = KGh, with K the Timoshenko shear correction factor and G the
shear modulus. In this model, longitudinal movements are still neglected, but
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shear forces are modeled. The shear stress term introduces second order spa-
tial derivatives, making it necessary to set up boundary conditions at ∂Γt

w =(
Γt

w ∩ Γt
in

)
∪

(
Γt

w ∩ Γt
a

)
.

The energy of the coupled FSI problem in this case is defined by

E3D−GS(t) :=
ρ

2
‖u‖2

L2(Ωt) +
ρ̃w

2

∥∥∥∥
∂ηr

∂t

∥∥∥∥
2

L2(Γ0
w)

+
a

2

∥∥∥∥
∂ηr

∂z

∥∥∥∥
2

L2(Γ0
w)

+
b

2
‖ηr‖2

L2(Γ0
w).

Observing that

−a
∫

Γt
a

∂2ηr

∂z2

∂ηr

∂t
dγ =

a

2

d

dt

∥∥∥∥
∂ηr

∂z

∥∥∥∥
2

L2(Γ0
w)

−
∫

∂Γt
w

(
a
∂ηr

∂z

∂ηr

∂t

)
dγ,

similar results to those of Theorems 3.1 and 3.2 can be deduced by imposing

Neumann homogeneous boundary conditions a
∂ηr

∂z
= 0 on ∂Γt

w, for all t ∈ I.

We conclude this section by giving some remarks on the models studied
here. These are very simple models for the wall movement which in principle
do not guarantee sufficient regularity of the solution for the coupling with the
fluid equations. Thus, not even the existence of the coupled problem can be
demonstrated rigorously, or at least no proof in that direction is available so far.
Indeed, from the matching conditions (7), we see that the fluid velocity at the
interface boundary Γt

w with the vessel is given by the time derivative of the wall
displacement ηr. However, for the models here presented to describe the wall
displacement, the derivative of the solution η̇r(t) does not, in general, belong to
H1/2(Γt

w) which is the natural space for the trace of u(t) ∈ Γt
w. For instance,

for the algebraic law model the structure displacement ηr coincides with the
regularity of the forcing term Φr. But the forcing term Φr, due to the matching
conditions (7), is given by the radial component of the normal stress exerted by
the fluid which, in the minimal conditions for the Navier-Stokes problem, is only
a H−1/2 functional.

For this reason, in order to justify our results, we had to assume a priori that

the displacement ηr is sufficiently regular. In particular, that
∂ηr

∂t
(t) ∈ H1/2(Γt

w),

which guarantees that u(t) ∈ H1(Ωt) and makes all the integrals and norms used
to derive the above results well defined. Furthermore, as already mentioned,
since the fluid domain Ωt depends on the structure model solution, we assumed
that such solution is regular enough so that Ωt is sufficiently regular at all times.
The issue of the regularity of the structure solution, and consequently of the
regularity, existence and uniqueness of the fluid structure problem, is still an
open problem.

To augment the regularity of the problem, several authors [7, 4, 35, 11] have
added to the generalized strings model extra regularizing terms, proportional to
∂3ηr

∂z2∂t
,
∂4ηr

∂z4
, or even

∂5ηr

∂z4∂t
. These terms may guarantee the required regularity
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of the time derivative of the displacement, however they do not have a direct
physical interpretation.

We shall see from numerical evidence that despite this fact, the simple models
here presented seem to work very well in practice.

3.2 3D non-linear elastic model

We consider now the equations of 3D non-linear elasticity to describe the wall
dynamics. Unlike the previous models, here the structure domain is a 3D
bounded subset Ωt

s = Ωs(t) of R
3, for t ∈ I, with boundary ∂Ωt

s = ∂Ωs(t).
We subdivide the boundary into four disjoint parts, such that ∂Ωt

s = ∂Ωs(t) =
Γt

s,w ∪ Γt
s,ext ∪ Γt

s,in ∪ Γt
s,a, where Γt

s,w is the part of the boundary interfacing
with the fluid domain, Γt

s,ext is the part in contact with the exterior and Γt
s,in

and Γt
s,a denote the artificial parts of the boundary at the inflow and outflow

sections, respectively (see Figure 3). Ω0
s is the structure reference domain, which

is taken to be the wall domain at the initial time, when we assume that the wall
is at rest, and ∂Ω0

s = Γ0
s,w ∪ Γ0

s,ext ∪ Γ0
s,in ∪ Γ0

s,a is the corresponding reference
boundary.

Γs,in

Γs,ext

s,wΓ

Ωs

Ωs0
s,wΓ0

Γs,a

Figure 3: Longitudinal section of the reference Ω0
s and current Ωt

s structure
domains.

The 3D equations of elasticity on Ωt
s have to be endowed with initial and

boundary conditions. We take the following initial conditions:

η = η0 and η̇ = η̇0, for t = 0, in Ω0
s. (24)

The initial velocity η̇0 has to be compatible with the fluid initial condition,
namely

η̇0 = u0, on Γ0
w.

At the exterior boundary Γt
s,ext we assume that the stress is zero, so we take

a homogeneous Neumann boundary condition. At Γt
s,w we have the matching

conditions (7). At the inflow and outflow sections it is not clear, from physi-
cal arguments, what is the proper boundary condition to impose. As we have
seen previously for the generalized strings model, these boundaries introduce a
boundary term in the energy estimate of the FSI problem, which vanishes if
homogeneous boundary conditions are considered. For the sake of simplicity we
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take a Dirichlet boundary condition at the upstream section Γt
s,in, meaning that

the artery is clamped at the inflow. At the downstream section Γt
s,a we take a

homogeneous Neumman boundary condition on the radial direction and a ho-
mogeneous Dirichlet boundary condition on the longitudinal direction, meaning
that the structure can not move on the longitudinal direction but it is free to
move radially.

As it is customary in solid mechanics, we write the structure equations in
Lagrangian coordinates (i.e. with respect to the reference configuration). The
structure model, for 3D compressible elastic materials, is thus given by





ρw
∂2

η

∂t2
− div0 (P) = 0 on Ω0

s

P · n0 = Φ̂ on Γ0
w

P · n0 = 0 on Γ0
s,ext

(P · n0) · τ a = 0 on Γ0
s,a

η · na = 0 on Γ0
s,a

η = 0 on Γ0
s,in

(25)

where ρw is the wall density, n0 is the outward unit vector to the reference
configuration Ω0

s, τ a and na are the tangent and outward normal vectors to
Γ0

s,a, respectively; div0 stands for the divergence operator with respect to the
Lagrangian coordinates and P = P(η) = FS is the first Piola-Kirchhoff tensor,
with S = S(η) the second Piola-Kirchhoff tensor and F = F(η) = I + ∇0η the
deformation gradient tensor. We denote by E = E(η) the Green- St Venant
strain tensor:

E =
1

2

(
FTF − I

)
=

1

2

(
∇T

0 η + ∇0η + ∇T
0 η∇0η

)
.

In this work we consider St. Venant-Kirchhoff materials, for which the re-
sponse function for the second Piola-Kirchhoff tensor is linear in E and given
by

S = λ tr(E)I + 2µE,

being λ =
Eξ

(1 + ξ)(1 − 2ξ)
and µ =

E

2(1 + ξ)
the Lamé constants, with E the

Young modulus and ξ the Poisson ratio. Notice that tensor E is symmetric,
implying also the symmetry of the second Piola-Kirchhoff tensor S.

We remark that a 3D linear elastic model on the constitutive equations is
obtained if instead of E we consider its linear counterpart e(η) = 1

2

(
∇T

η + ∇η
)
.

The result we show in this section can obviously be particularized to this case.
To derive an energy estimate of the FSI problem with such structure model

we define the energy of the problem as

E3D−E(t) =
ρ

2
‖u‖2

L2(Ωt) +
ρw

2
‖η̇‖2

L2(Ω0
s) + µ ‖E‖2

L2(Ω0
s) +

λ

2
‖trE‖2

L2(Ω0
s) .
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Theorem 3.3

i) energy decay property: The coupled fluid-structure problem (1), (2), (7),
(24) and (25), with homogeneous boundary conditions on Γt

in and Γt
a, sat-

isfies the following energy equality:

d

dt
(E3D−E(t)) + ν‖D(u)‖2

L2(Ωt) = 0, (26)

by which we obtain the following energy decay property:

E3D−E(T ) + ν

∫ T

0
‖D(u)‖2

L2(Ωt)dt = E3D−E(0), (27)

where E3D−E(0) is a constant depending only on the initial data u0, η0

and η̇0.

ii) Neumann problem: Under the Hypothesis 3.1, the coupled fluid-structure
problem (1), (2), (18), (7), (24) and (25), satisfies the following a priori
energy estimate, for all t ∈ I

E3D−E(t) + ν

∫ t

0
‖D(u)‖2

L2(Ω)dt 6

(
E3D−E(0) + C̃

∫ t

0
‖r‖2

L2(Γt
in

) dt+ C

∫ t

0
‖q‖2

L2(Γt
a) dt

)
e

2ν
ρ

t
, (28)

where C̃ and C are positive constants.

Proof. We proceed as in Theorem 3.1, by multiplying the structure equation (25) by
η̇ and integrating over the reference domain Ω0

s.
For the inertia term we obtain

ρw

∫

Ω0
s

∂2
η

∂t2
· η̇ dω =

ρw

2

d

dt
‖η̇‖2

L2(Ω0
s) .

By integration by parts we have that

−
∫

Ω0
s

div0 (P) · η̇ dω = −
∫

∂Ω0
s

(P · n0) · η̇ dγ +

∫

Ω0
s

P : ∇η̇ dω.

We notice now that, since S is a symmetric tensor, we have

P : ∇η̇ = FS : Ḟ = S : FT Ḟ = S :

(
1

2

(
FT Ḟ + ḞT F

))
= S : Ė.

So, we can write
∫

Ω0
s

P : ∇η̇ dω =

∫

Ω0
s

S : Ė dω =

∫

Ω0
s

λ tr(E)I : Ė dω +

∫

Ω0
s

2µE : Ė dω

= λ

∫

Ω0
s

trE tr Ė dω + µ
d

dt
‖E‖2

L2(Ω0
s)

=
λ

2

d

dt
‖trE‖2

L2(Ω0
s) + µ

d

dt
‖E‖2

L2(Ω0
s) .
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Regarding the boundary term, due to the boundary conditions of equations (25)
and the matching conditions (7) we have that

∫

∂Ω0
s

(P · n0) · η̇ dγ =

∫

Γ0
w

Φ̂ · η̇ dγ =

∫

Γt
w

Φ · u dγ = −
∫

Γt
w

(σ(u, p) · n) · u dγ

Thus, we obtain

ρ̃w

2

d

dt
‖η̇‖2

L2(Ω0
s) +

λ

2

d

dt
‖trE‖2

L2(Ω0
s) + µ

d

dt
‖E‖2

L2(Ω0
s) = −

∫

Γt
w

(σ(u, p) · n) · u dγ. (29)

Summing (29) and (15) we derive

d

dt
(E3D−E(t)) + 2ν‖D(u)‖2

L2(Ωt) =

∫

Γt
in

∪Γt
a

(
σ

tot(u, p) · n
)
· u dγ, (30)

which leads to the energy decay property by taking homogeneous boundary conditions

on Γt
in and Γt

a, and to the desired inequality, by bounding from above its right hand

side as in Theorem 3.2. �

We conclude this section by observing that, unlike the simplified models pre-
sented in the previous section, the 3D elastic model provides sufficient regularity
to be coupled with the Navier-Stokes equations. Indeed, in this case an existence
result, for the steady case, can be found in the literature [23]. However, the well
posedness of fluid-structure interaction problems in a general setting is still an
open problem.

4 The 1D model

One-dimensional (1D) models can be derived from the incompressible Navier-
Stokes equations coupled with a structure model for the vessel wall, by making
some simplifying assumptions and integrating over the cross section of the artery
(see [14, 16]). The vessel is assumed to have axial symmetry and fixed cylinder
axis. Furthermore only radial displacements are considered and dominance of the
axial velocity is supposed. Finally it is assumed that the pressure is constant
on each transversal section and that there are no body forces. Under these
assumptions, and assuming a specific axial velocity profile, the 1D model for
blood flow in a cylindrical vessel is given by the following system:





∂A

∂t
+
∂Q

∂z
= 0

z ∈ (a, b), t ∈ I,
∂Q

∂t
+

∂

∂z

(
αQ2

A

)
+
A

ρ

∂p

∂z
= −2πν(α+ 2)

Q

A

(31)

Here (b−a) is the vessel length, z denotes the axial direction, α is the momentum
flux correction coefficient, ν is the fluid dynamic viscosity and ρ is the fluid
density; α, ν and ρ are assumed constant and we take α = 1, corresponding to
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a flat velocity profile. The unknowns are the cross-section area A, the flow rate
Q and the averaged pressure p.

System (31) is closed by providing an algebraic relation linking pressure and
area. We consider here the same pressure-area algebraic relation (11) mentioned
in Section 2. Written in terms of p and A it becomes

ψ(A;A0, β) = β

√
A−

√
A0

A0
with β =

√
πh0E

1 − ν2
, (32)

Both E and A0 may be functions of z.
With this closing pressure-area algebraic relation system (31) turns out to be

hyperbolic and possesses two distinct eigenvalues (see [16]) λ1,2 = u±
√

β

2ρA0
A

1

4 .

Their corresponding eigenfunctions (characteristic variables) are given by

W1,2 = u± 4

√
β

2ρA0

(
A

1

4 −A
1

4

0

)
.

Under physiological conditions for haemodynamics the flow is subcritical (see
[16]), i.e., the eigenvalues λ1 and λ2 have opposite signs: λ1 > 0 and λ2 < 0.
In this case W1 corresponds to the incoming characteristic on the entering point
z = a, while W2 is the incoming characteristic on the exiting point z = b.

We take the following initial and boundary conditions

A(0, z) = A0, Q(0, z) = Q0, a 6 z 6 b,
W1(t) = g1(t), z = a,
W2(t) = g2(t), z = b,

(33)

where g1 and g2 are given functions, and define the energy of the 1D model as

E1D(t) :=
ρ

2

∫ b

a
A(t, z)u2(t, z)dz +

∫ b

a
Ψ(A(t, z))dz, ∀t ∈ I,

with

Ψ(A) =

∫ A

A0

ψ(τ)dτ.

It was shown in [11] that, for ψ(t) given by relation (32), Ψ(A) is always positive,
making E1D(t) a positive function for all Q, A > 0 and t. The next result holds
(see [11]).

Lemma 4.1 System (31) together with the pressure-area relation (32) satisfies
the following energy equality:

d

dt
(E1D(t)) +Krρ

∫ b

a
u2dz + Q

(
p+

ρ

2
u2

)∣∣∣
b

a
= 0, (34)
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which leads to the following energy conservation property:

E1D(T ) +Krρ

∫ T

0

∫ b

a
u2dz +

∫ T

0
Q

(
p+

ρ

2
u2

)∣∣∣
b

a
dt = E1D(0). (35)

Furthermore, we have that

i) if homogeneous boundary conditions are considered (g1(t) = g2(t) = 0, for
all t ∈ I), then

E1D(T ) +Krρ

∫ T

0

∫ b

a
u2dz 6 E1D(0);

ii) if the boundary data satisfies

g1(t) > −4

√
β

2ρA0
A

1

4 , and g2(t) < 4

√
β

2ρA0
A

1

4 , ∀t ∈ I,

then there exists a positive function G(g1, g2) such that

E1D(T ) +Krρ

∫ T

0

∫ b

a
u2dzdt 6 E1D(0) +

∫ T

0
G(g1(t), g2(t))dt. (36)

5 Coupling the 3D with the 1D model

In this Section we study the 3D-1D FSI coupling problem defined by the 3D
Navier-Stokes equations (1) and (2), the matching conditions between the 3D
fluid and the vessel wall (7), the structure model (10) and (22) or (25) and (24),
and the 1D model (31)-(33), as a whole. By putting together the 3D FSI energy
estimates derived in Section 3 and the 1D energy estimate provided in Section
4, we will be able to deduce the proper matching conditions to impose at the
interface between the 3D and 1D FSI models.

We consider the 3D domain of Figure 1 coupled with a 1D domain I = (a, b)
(see Figure 4). On the first domain we solve the 3D fluid-structure interaction
problem while in the second we take the simplified 1D model.

At the exit point z = b we consider an absorbing boundary condition W2 = 0,
which means that the incoming characteristic vanishes. If the structure model
on the 3D problem requires boundary conditions we take Dirichlet homogeneous
boundary conditions for the structure at the inlet (Γt

w ∩ Γt
in or Γt

s,in, according
to the model).

The objective is to find the proper interface conditions we need to impose on
Γt

a such that the 3D-1D FSI coupled problem is stable. At the interface z = a
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Figure 4: Cylindrical vascular district Ω.

the 1D model provides the averaged quantities Q1D, p1D, A1D and u1D =
Q1D

A1D
.

These quantities are defined in the 3D model, for the same interface Γt
a as:

Q3D =

∫

Γt
a

u · ndγ, A3D =
∣∣Γt

a

∣∣ , p3D =
1

|Γt
a|

∫

Γt
a

pdγ, u3D =
Q(a)

|Γt
a|
.

By imposing the continuity of the all or some of the above mentioned quan-
tities (or functions of them) at the interface Γt

a, we will be able to provide the
3D model with averaged boundary data on Γt

a. However, the 3D Navier-Stokes
equations require pointwise data and thus these averaged quantities have to be
properly set up. There are two possibilities: either the 3D model is provided
with a mean pressure type of data (mean pressure problem), or with a flow rate
one (flow rate problem).

For the mean pressure problem, Heywood et.al. [24] proposed an approach
resulting in imposing a constant normal stress on Γt

a. For the case of our Navier-
Stokes formulation (1), this approach consists in considering the normal compo-
nent of the total stress to be constant and equal to the given total mean pressure
value.

Regarding the flow rate problem we follow the Lagrange multiplier approach
proposed in [12, 37]. It consists in considering the flux condition as a constraint
imposed in a weak sense through a Lagrange multiplier. Also in this case, for
the formulation of the fluid equations here presented, the normal component of
the total stress, although unknown, turns out to be constant.

We observe that the imposition of defective boundary data for the Navier-
Stokes problem is subject of active research. In particular, well posedness results
for the two above mentioned cases were given in the cited works only for the
rigid wall case.

In order to derive an a priori energy estimate, we start by taking the simplest
structure model on the 3D problem, that is the pressure-area algebraic relation
(11). By summing the energy inequalities obtained separately for the 3D FSI
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model (12) and the 1D one (34), we obtain

d

dt
(E3D−AL(t)) + 2ν‖D(u)‖2

L2(Ωt) +
d

dt
(E1D(t)) +Krρ

∫ b

a
u2dz =

∫

Γt
in
∪Γt

a

(
σ

tot(u, p) · n
)
· u dγ − Q

(
p+

ρ

2
u2

)∣∣∣
b

a
. (37)

Supposing that we are able to bound from above in terms of the problem
data the boundary terms not corresponding to the interface section, for instance
as it was done in Theorem 3.2, we easily verify from (37) that an energy estimate
can be achieved if the coupling terms on Γt

a due to the 3D fluid equations and
the 1D model cancel out. To that purpose we define as interface conditions on
Γt

a the continuity of the normal component of the total stress σtot and of the
flux Q:





σ
tot · n = pn +

ρ

2
|u|2n − 2νD(u) · n =

(
p1D +

ρ

2
|u1D|2

)
n, on Γt

a,

Q3D =

∫

Γt
a

u · ndγ = Q1D, on Γt
a.

(38)
We now notice that, from the interface conditions (38), and the methods de-
scribed above to treat the defective boundary conditions on the 3D problem, we
have

∫

Γt
a

(
pn +

ρ

2
|u|2n − 2νD(u) · n

)
· udγ =

=
(
p1D +

ρ

2
|u1D|2

)∫

Γt
a

u · ndγ = Q1D

(
p1D +

ρ

2
|u1D|2

)
,

which makes the right hand side of (37) to vanish. So we can conclude the
following result.

Theorem 5.1 Consider the 3D-1D FSI coupling problem, given by (1), (2),
(7), (11) and (31)-(33), together with the coupling conditions (38). We have the
following cases.

i) energy decay property: if homogeneous boundary conditions are taken on
Γt

in, and absorbing boundary conditions are considered for the 1D problem
in z = b, then the problem satisfies the following energy decay property:

E3D−AL (T ) + ν

∫ T

0
‖D(u)‖2

L2(Ωt) dt+ E1D(T ) +Krρ

∫ T

0

∫ b

a
u2dz 6

6 E3D−AL (0) + E1D(0). (39)

ii) Neumann problem: if a Neumann boundary condition (18) is considered
on Γt

in, and a non homogeneous boundary condition is considered for the
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1D problem at z = b then the problem satisfies the following a priori energy
estimate, for all t ∈ I

E3D−AL(t) + ν

∫ t

0
‖D(u)‖2

L2(Ω)dt+ E1D(t) +Krρ

∫ t

0

∫ b

a
u2dz 6

6

(
E3D−AL(0) + E1D(0) + C̃

∫ t

0
‖r‖2

L2(Γt
in

) dt+

∫ t

0
G(g2(t)) dt

)
e

2ν
ρ

t
,

where G is as defined in Lemma 4.1, C̃ is a positive constant as defined in
Theorem 3.2 and E3D−AL(0) and E1D(0) depend only on the initial conditions.

Remark 5.1 The results are readily extended to the case of more than one in-
terface section, by applying conditions (38) to each section separately. Clearly
if all artificial sections are interfaced with the 1D model, we can apply directly
estimate (39). In this case, an extra positive term, depending on the boundary
data of the 1D model, will appear on the right hand side of (39), as in (36) (see
Lemma 4.1).

If, instead of the pressure-area algebraic relation for the structure, we use the
independent rings model (21), exactly the same result can be deduced, replacing
E3D−AL with E3D−IR and noticing that E3D−IR(0) depends also on η0 and η̇0.

If the generalized strings model (23) is considered instead, boundary con-
ditions have to be prescribed on the displacement ηr at ∂Γt

w =
(
Γt

w ∩ Γt
in

)
∪(

Γt
w ∩ Γt

a

)
. In fact, this boundary term appears in the final energy estimate of

the coupled 3D-1D problem. For instance, if a homogeneous boundary condi-
tion is prescribed on the Navier-Stokes equations at Γt

in, we have the following
inequality:

E3D−GS (T ) + 2ν

∫ T

0
‖D(u)‖2

L2(Ωt) dt+ E1D(T ) +Krρ

∫ T

0

∫ b

a
u2dz 6

6 E3D−GS (0) + E1D(0) +

∫ T

0
G(g2(t)) dt+

∫ T

0

∫

Γt
w∩Γt

a

a
∂ηr

∂z

∂ηr

∂t
dγdt. (40)

Since the 1D model employs only an algebraic structure model, and therefore
does not require any boundary condition of the wall displacement, the boundary
term appearing in (40) can not be balanced with the corresponding 1D term.
As it was shown in Theorem 5.1, an energy inequality can be easily derived if
homogeneous boundary conditions are chosen for the 3D wall displacement. Yet,
this choice does not guarantee that the vessel cross-section area is continuous
between the 3D and 1D models. We will see that this drawback does not seem
to be relevant in numerical simulations, since the coupling carried out without
imposing the continuity of the area at the interface works very well.

On the other hand, we may include the continuity of the cross-section area
as a further coupling condition on Γt

a between the two models. This resorts
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in imposing non homogeneous Dirichlet boundary conditions to the 3D vessel
displacement. Yet, it is not obvious that imposing the continuity of the area at
the interface Γt

a will yield the stability of the coupled problem, since this does
not necessarily imply a bound on the boundary term of (40).

We remark that the issue of the continuity of the area at the coupling in-
terface did not come up with the simpler algebraic law and independent rings
models because they intrinsically admit discontinuities on the displacement ηr

and hence on the area. Nevertheless, also these models have proved to work very
well at the numerical level.

We finish this discussion by noticing that imposing the continuity of the
flux as in (38) actually guarantees the conservation of the mass, even when the
continuity of the area is not assured.

Finally, the same result on the energy estimate of the 3D-1D coupled problem
can be obtained if we consider the 3D non-linear elastic model (25) for the
description of the wall movements. In this case, as for the generalized strings
model, a boundary term appears in the energy inequality and the energy estimate
can be deduced by imposing homogeneous boundary conditions at Γ0

s,a (as for
instance in (25)). The same considerations made for the generalized strings
model apply here.

6 Numerical results

The numerical approximation of the 3D-1D FSI coupling is carried out con-
sidering two sub-problems, the 3D and the 1D, separately. Here, we solve the
coupling explicitly, meaning that there are no sub-iterations at each time step.
The coupling strategy applied consists in passing, at each time step, the flux
computed by the 3D solver at the previous time step to the 1D solver, which, in
turn, computes the total pressure to be fed into the 3D model.

The Navier-Stokes equations are discretized in time by the implicit Euler
scheme, combined with an Arbitrary Lagrangian Eulerian formulation to ac-
count for the moving boundary. Whenever the structure model includes an
inertia term, the time discretization of the structure is done through a Newmark
scheme. The space discretization of the fluid is done using P1-P1buble finite
elements, while for the structure we use P1 finite elements. The fluid-structure
coupling is solved implicitly through a quasi-Newton algorithm [10], where in
the fluid tangent operator we have neglected the shape derivatives (i.e. the
derivatives with respect to the position of the moving boundary). Finally, we
have used a conforming finite element space discretization between fluid and
structure. The 1D problem is solved through a Lax-Wendroff finite element
scheme [16], which has very good dispersion error properties. All the numerical
solvers have been developed in C++ within the finite element library LifeV
(http://www.lifev.org/).

We consider a straight cylindrical vessel of length 5cm, with radius of 0.5cm
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and wall thickness of 0.1cm. We take the fluid viscosity ν = 0.03poise and
the fluid density ρ = 1g/cm3. Regarding the structure properties, we take the
density ρw = 1.2g/cm3, the Poisson ratio ξ = 0.3 and the Young Modulus
E = 3 × 106dyne/cm2. A pressure of 1.3332 × 104dyne/cm2 (100mmHg) is
imposed at the inlet Γt

in during 3 × 10−3s, representing a pressure impulse.
Although a single impulse is not a realistic condition for the application at
hand, it is useful to highlight some properties of the coupling, in particular the
presence of spurious reflections.

We couple the 3D fluid structure-interaction model with a 1D model of length
5cm in which we considered 50 finite elements. The 3D domain is composed of
2880 elements in the fluid domain and 3840 elements in the solid domain (when
using the 3D elastic model for the structure). We carry out the simulations
using a time step of 0.25×10−3s in the 3D code, and 10−5s in the 1D code. The
results of this 3D-1D coupling are compared with the solution of the 3D fluid-
structure interaction problem in a vessel with the same characteristics but with
double length (10cm), which is considered the “exact solution”. The final time is
T = 0.02s, which is sufficient in our test for the wave to leave the computational
domain.

We consider four different test cases in this geometry, corresponding to three
different structure models for the vessel wall: the pressure-area algebraic law,
the independent rings model, and a 3D linear elastic model. For the 3D linear
elastic model two situations are treated: in one we do not impose the continuity
of the area at the coupling interface Γt

a, leaving the structure free to move
radially at that interface by prescribing the homogeneous boundary conditions
described in Section 3; in the other we force the continuity of the area, by
imposing the displacement provided by the 1D model through relation (32) on
the 3D structure, by means of a Dirichlet boundary condition.

In Figure 5 we show the pressure values of the “exact” and the coupled
solutions at three different times, using the 3D linear elastic model without
imposing the continuity of the area. It is evident that, even without imposing
the continuity of the area at the coupling interface, the 1D model acts as an
absorbing boundary condition, eliminating the spurious reflections.

To study the influence of the different structural models here considered,
we analyze the time evolution of the solution on two different sections of the
cylinder: the section in middle of the tube, at z = 2.5cm, and the ending
section, interfacing with the 1D model, at z = 5cm. Figures 6, 7 and 8 show the
comparison between the “exact” and coupled solution values of the area, mean
pressure and flux, respectively, in the two sections, for the four cases studied.
We verify that, whatever structural model is employed, the coupled solution is in
good agreement with the “exact” one, except for the case where the continuity
of the area is forced. In that case, the coupling seems to work very well until
when instabilities start to appear at the coupling interface, where the area is
imposed. We recall that, in this case, a stability result could not be obtained,
and the numerical results seem to confirm this fact. We wish however to point
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Figure 5: Comparison between the pressure values of the exact and the coupled
solutions at three different times (t=0.005, 0.01 and 0.015), using a 3D linear
elastic model for the structure, without imposing the continuity of the area at
the coupling interface.

out that the study of the stability of numerical algorithms for the coupling is not
the subject of the present paper, and will be addressed in a forthcoming work.
It may be possible that by using an implicit coupling algorithm the continuity
of the area could be more robustly imposed. Nevertheless, we remark once more
how the coupling without imposition of the continuity of the area proves to work
very well. We also observe that, when using the algebraic law model on the 3D
problem, the coupling seems to work better than for the other structural models.
This is expected since, in that case, we are considering the same structural model
in both the 3D and the 1D parts.

These considerations are confirmed when looking at the relative errors on
the main quantities (namely area, mean pressure and flux), presented in Figure
9. The relative errors are computed as the difference between the quantity
computed by the 3D-1D coupled model and the corresponding “exact” quantity,
divided by the maximum value in time. Observe that, even at the coupling
interface, where the maximum relative errors are found, the errors of the mean
pressure and the area remain under 10%, except in the case where the continuity
of the area is imposed. The errors of the flux at the coupling interface are slightly
higher due to the fact that we are performing an explicit coupling, and the flux
at the coupling interface is in fact the one at the previous time step. We have
carried out some numerical tests for different values of the time step, which
have demonstrated that these relative errors remain roughly the same. This
shows that the errors plotted in Figure 9 are actually due to the 3D-1D coupling
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Figure 6: Comparison between exact and coupled solution values of the area, for
the four test cases considered, at two sections: the middle one z = 2.5cm (left)
and the interface section with the 1D model z = 5cm (right).

(modelling errors), and they are not affected by the time discretization scheme.
We also remark the much improved quality of these results compared with those
obtained by using standard boundary conditions, like for instance stress free
conditions at the artificial sections, in which the relative errors are of the order
of 75%.

Finally, in the picture of Figure 10 we present the discrepancies of the area
between the 3D and 1D models at the coupling interface. We compute the rela-

tive differences on the area as
A3D −A1D

A0
, where A0 is the reference area, which

is in our case πR2
0 = 0.7854cm2. Obviously, in the case where the continuity

of the area is forced at the interface, that difference is zero. In all other cases
discontinuities of the area are expected, yet they are bounded and rather small.
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Figure 7: Comparison between exact and coupled solution values of the mean
pressure, for the four test cases considered, at two sections: the middle one
z = 2.5cm (left) and the interface section with the 1D model z = 5cm (right).

7 Conclusions

We have considered the coupling between 3D and 1D fluid-structure interaction
models describing the flow inside compliant tubes. We proposed a 3D-1D cou-
pling based on the continuity, at the coupling interface, of the normal total stress
and of the flux. By adopting a reformulation of the Navier-Stokes equations, for
which the natural boundary condition of the weak problem is precisely the nor-
mal total stress, we derived an a priori energy estimate for the global 3D-1D
FSI coupling. Several models for the structure vessel wall on the 3D problem
were considered, starting with a simple algebraic model and concluding with a
3D non-linear elastic one, and the energy estimate result of the 3D-1D model
was extended to each case.

We have shown that if the structure wall model does not require boundary
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Figure 8: Comparison between exact and coupled solution values of the flux
(right), for the four test cases considered, at two sections: the middle one z =
2.5cm (left) and the interface section with the 1D model z = 5cm (right).

conditions, the stability result is readily obtained. On the other hand, if the
structure model requires boundary conditions, the stability result is obtained
only by choosing homogeneous (either Dirichlet or Neumann) boundary condi-
tions for the structure. In both cases, the stability of the 3D-1D FSI coupling
is obtained without imposing the continuity of the area at the coupling inter-
face. Nevertheless, the prescription of the continuity of the flux guarantees the
conservation of the mass, so that the coupling is consistent.

Intensive numerical tests were carried out, showing that the coupling works
very well, even for an explicit coupling algorithm, which was the strategy here
applied.

The description of other possible algorithms at the numerical level, as well as
the analysis of the discretization of the models here presented and a comparative
study between the Navier-Stokes formulation here proposed and a more standard
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Figure 9: Relative errors for the solution values of the mean pressure (up), the
flux (middle) and the area (bottom), for the four test cases considered, at two
sections: the middle one z = 2.5cm (left) and the interface section with the 1D
model z = 5cm (right).

one, will be the subject of a forthcoming work.
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Soc. Royale Sciences Liège, (3-4):182–191, 1962.
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