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Abstract

We apply the reduced basis method to solve Navier-Stokes equations in
parametrized domains. Special attention is devoted to the treatment of the
parametrized non-linear transport term in the reduced basis framework,
including the case of non-affine parametric dependence that is treated by
an empirical interpolation method. This method features (i) a rapid global
convergence owing to the property of the Galerkin projection onto a space
WN spanned by solutions of the governing partial differential equation at
N (optimally) selected points in the parameter space, and (ii) the off-
line/on-line computational procedures which decouple the generation and
projection stages of the approximation process.
This method is well suited for the repeated and rapid evaluations required
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(USA), rozza@mit.edu.
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in the context of parameter estimation, design, optimization, and real-time
control. Our analysis focuses on: (i) the pressure treatment of incompress-
ible Navier-Stokes problem; (ii) the fulfillment of an equivalent inf-sup
condition to guarantee the stability of the reduced basis solutions. The
applications that we consider involve parametrized geometries, like e.g. a
channel with curved upper wall or an arterial bypass configuration.

1 Introduction

The use of reduced basis methods in numerical fluid dynamics is aimed at provid-
ing real-time solutions and information on fluid mechanics outputs. Their exten-
sion to the non-linear steady Navier-Stokes equations which requires treatment
of non-linearities and non-affine parametric dependence, provides an efficient
optimization toolbox in design problems with a certain degree of complexity.
Previous works on reduced basis methods for non-linear problems in fluid me-
chanics were carried out in the 1990s by Peterson [17] and by Ito and Ravindran
[12]. The former work was focused on stream-function and vorticity formulation
for various Reynolds numbers; either Taylor and Lagrangian basis functions were
used to build the approximation space. In the latter the authors built a reduced
basis approximation for a Navier-Stokes problem (either steady or unsteady) in
a cavity using different techniques to build reduced basis approximation spaces
(Hermite and/or Taylor spaces, incorporating the derivatives of velocity with
respect to the considered parameter, the Reynolds number). In this case the
reduced basis formulation does not include the pressure in the reduced-order
model. More recently Patera and Veroy, have developed the reduced basis in
non-linear fluid mechanics using Lagrangian basis (i.e. global approximation
functions) to study natural convection problem, parametrized by physical quan-
tities (such as the Grashof number [15] or the viscosity [35]) in divergence-free
spaces. In [34] they developed rigorous a posteriori error estimation and bounds
for real time computation based on the Brezzi-Rappaz-Raviart theory. A review
is provided also in [8]. In our work we follow this line and focus our attention
on the following aspects: i) the efficient treatment of the non-linear term; ii)
the domain parametrization; iii) the incorporation of a stable approximation for
pressure (useful for example in haemodynamic applications, see [28]); iv) the
use of non-affine transformation terms by an empirical interpolation method to
allow for more complex geometries, such as curved walls. Related aspects deal
with the use of different options to build the reduced basis velocity spaces and
the efficient off-line selection of the basis functions.
Recent results address flow optimization using sensitivity analysis and the re-
duced basis method, see for example Burkardt [3] and Gunzburger [11]. A
reduced basis element method has been proposed by Løvgren et al. to solve
steady Navier-Stokes problems with geometrical parameters [14].
The present work is organized as follows: after this introduction, we have made
a short review on the use of reduced basis for Navier-Stokes, then in Section 2
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the formulation of the steady Navier-Stokes problem is presented. From Section
3 to Section 5 we build the reduced basis formulation for Navier-Stokes equa-
tions in parametrized domains with (i) affine, (ii) non-affine and (iii) combined
affine/non-affine parametric dependence. Several aspects relevant to algebraic
and approximation stability are analyzed. In particular, we consider the prob-
lem of ill-conditioning and the choice of the basis, by exploring algorithms to
optimize the selection of basis functions for chosen values of parameters and,
possibly, orthonormalization procedures for the basis functions. Moreover, we
focus on the problem of fulfilling an equivalent inf-sup condition to guarantee
the stability of the pressure solution. In Sections 6, 7 and 8 numerical results
and computational costs and savings are reported. Some conclusions follow.

2 Steady Navier-Stokes equations

The steady Navier-Stokes equations in a domain Ω ⊂ R
d(d = 1, 2, 3) with mixed

boundary conditions on Γ = Γin ∪ Γout ∪ Γw read:





−ν∆u + (u · ∇)u + ∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on Γw, u = gin on Γin,
(
ν ∂u

∂n̂
− pn̂

)
= 0 on Γout,

(2.1)

where Ω is a domain occupied by fluid of constant density, u is the fluid velocity,
p the pressure, f a force field, ν a kinematic viscosity and n the normal unit
vector to the domain boundary. For the mathematical theory of the Navier-
Stokes equations see e.g. Galdi [6] and for their numerical solution see Temam
[33], Girault and Raviart [7], Brezzi and Fortin [2], Canuto et al. [5].
The weak formulation of problem (2.1) reads: find u ∈ Y = (H1

ΓD
(Ω))d, p ∈

Q = L2(Ω):





ν

∫

Ω
∇u · ∇wdΩ −

∫

Ω
p∇ · wdΩ +

∫

Ω
(u · ∇)u · wdΩ =

∫

Ω
f · wdΩ+〈F 0,w〉 ∀w ∈ Y,

∫

Ω
q∇ · udΩ = 〈G0, q〉 ∀q ∈ Q,

(2.2)
F 0, G0 are terms due to non-homogeneous Dirichlet boundary condition on Γin,
ΓD = Γin ∪ Γw and H1

ΓD
(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. If Γout is empty,

then Q must be taken as L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω q = 0}. We discretize problem

(2.2) by a stable finite element approximation (e.g. the Taylor-Hood P
2 − P

1

elements for velocity and pressure, respectively) on a fine mesh triangulation;
see, for example, Quarteroni and Valli [21] and Gresho and Sani [9]. To solve the
system of non-linear equations arising from the space discretization of (2.2) we
use the iterative (quadratically convergent) Newton method [22] which involves
the Frechet linearization of the advection term (uh ·∇)uh. The linearized version
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of the discretized problem (2.2) at each iteration reads: for k ≥ 0, given u
(k)
h ,

find u
(k+1)
h ∈ Yh, p

(k+1)
h ∈ Qh, such that





ν

∫

Ω
∇u

(k+1)
h · ∇whdΩ −

∫

Ω
p
(k+1)
h ∇ · whdΩ +

∫

Ω
[(u

(k)
h · ∇)u

(k+1)
h +

+(u
(k+1)
h · ∇)u

(k)
h ] · wh dΩ −

∫

Ω
(u

(k)
h · ∇)u

(k)
h · wh dΩ =

=

∫

Ω
f · whdΩ + 〈F 0,wh〉 ∀wh ∈ Yh,

∫

Ω
qh ∇ · u

(k+1)
h dΩ = 〈G0, qh〉 ∀qh ∈ Qh,

(2.3)

where Yh and Qh are stable finite element subspaces of Y and Q respectively.
As stopping criterium we can adopt a condition based on the difference between
two steps

‖u
(k+1)
h − u

(k)
h ‖ ≤ ǫ

where ǫ is a given (small) tolerance. To solve the linearized Navier-Stokes system
(2.3) at each Newton step we can use the Pressure Matrix Method to decouple
the calculation of pressure from the velocity field. The problem is solved in three
steps: we first compute an auxiliary velocity ũh, which is not divergence-free,
then we can calculate the pressure ph and then in the third step the corrected
velocity uk+1

h is recovered. See for example Quarteroni and Valli [21].

3 Parametrized formulation: affine parametric de-

pendence

We suppose that the domain we are considering is made of R parametrized

components: Ω̂ = (
⋃R

r=1
¯̂
Ωr), so that we rewrite (2.3) as follows, introducing the

“hat” to indicate equations in parametrized domains and dropping the subscript
h on the unknowns and test functions for simplicity of notation:





Â(û(k+1), ŵ) + B̂(p̂(k+1), ŵ) + Ĉ(û(k+1), û(k), ŵ) + Ĉ(û(k), û(k+1), ŵ) =

= 〈F̂ , ŵ〉 + Ĉ(û(k), û(k), ŵ) ∀ŵ ∈ Ŷh,

−B̂(q̂, û(k+1)) = 〈Ĝ0, q̂〉 ∀q̂ ∈ Q̂h,
(3.4)

where for 1 ≤ i, j ≤ d and ν̂i,j = νδi,j (summation convention is understood):

Â(û, ŵ) =
R∑

r=1

∫

Ω̂r

∂û

∂x̂i
ν̂ij

∂ŵ

∂x̂j
dΩ̂, (3.5)

B̂(p̂, ŵ) = −
R∑

r=1

∫

Ω̂r

p̂∇ · ŵdΩ̂, (3.6)
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Ĉ(û, v̂, ŵ) =
R∑

r=1

∫

Ω̂r

(û · ∇)v̂ · ŵdΩ̂, (3.7)

〈F̂ , ŵ〉 = 〈F̂s, ŵ〉 + 〈F̂ 0, ŵ〉, (3.8)

with

〈F̂s, ŵ〉 =
R∑

r=1

∫

Ω̂r

f̂ ŵdΩ̂, 〈F̂ 0, ŵ〉 = −〈Âĝin, ŵ〉, 〈Ĝ0, q̂〉 = 〈B̂q̂, ĝin〉. (3.9)

Now we want to build a system of P 2DEs (Parametrized Partial Differential
Equations) affinely depending on a set of geometrical parameters (µ), to be
specified later. Problem (3.4) is traced back to a reference domain by an affine
mapping on subdomains Ω̂r into Ωr. For any x̂ ∈ Ω̂r, r = 1, . . . , R, its image
x ∈ Ωr is given by

x = Gr(µ; x̂) = Gr(µ)x̂ + gr, 1 ≤ r ≤ R; (3.10)

we thus write on Ωr
∂

∂x̂i
=

∂xj

∂x̂i

∂

∂xj
= Gr

ji(µ)
∂

∂xj
. (3.11)

The discretized P 2DEs system depending on µ on the reference domain Ω reads:
for k ≥ 0, given u(k), find u(k+1) ∈ Y = (H1

ΓD
(Ω))d, p(k+1) ∈ Q = L2(Ω):





A(µ;u(k+1),w) + B(µ; p(k+1),w) + C(µ;u(k+1),u(k),w) + C(µ;u(k),u(k+1),w) =

〈Fs + F 0,w〉 + C(µ;u(k),u(k),w) ∀ w ∈ Yh,

B(µ; q,u(k+1)) = 〈G0, q〉 ∀ q ∈ Qh,
(3.12)

where:

A(µ,u,w) =
R∑

r=1

∫

Ωr

∂u

∂xi
νr

ij(µ)
∂w

∂xj
dΩ,

B(µ, p,w) = −
R∑

r=1

∫

Ωr

pχr
ij(µ)

∂wj

∂xi
dΩ,

C(µ,u,v,w) = −
R∑

r=1

∫

Ωr

uiπ
r
ij(µ)

∂vj

∂xi
wdΩ,

〈Fs,w〉 =

R∑

r=1

∫

Ωr

(
f̂ r|(Gr(µ))−1|

)
wdΩ; 〈F 0,w〉 = −〈Agin,w〉;

〈G0, q〉 = 〈Bq,gin〉;

the general formulation of the tensors for viscous terms is

νr
ij(µ) = Gr

ii′(µ)ν̂i′j′G
r
jj′(µ)|(Gr(µ))−1|, 1 ≤ i, j ≤ d, r = 1, ..., R, (3.13)
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the one of the tensors for pressure, divergence and convective terms is:

χr
ij(µ) = πr

ij(µ) = Gr
ij |(G

r(µ))−1|, 1 ≤ i, j ≤ d, r = 1, ..., R. (3.14)

Using the affine decomposition property to exploit and decouple the on-line
computational stage (many queries for different values of parameters) and the off-
line one (computed once in the reference domain and then stored) we introduce
the following elements:

Θq(i,j,r)(µ) = νr
ij(µ), Aq(i,j,r)(u,w) =

∫

Ωr

∂u

∂xi

∂w

∂xj
dΩ,

Φs(i,j,r)(µ) = χr
ij(µ), Bs(i,j,r)(p,w) = −

∫

Ωr

p
∂wi

∂xj
dΩ,

Υs(i,j,r)(µ) = πr
ij(µ), Cs(i,j,r)(u,u,w) =

∫

Ωr

uj
∂ui

∂xj
wdΩ,

A(Θ(µ),u,w) =

Qa∑

q=1

Θq(µ)A(u,w)q;

B(Φ(µ), p,w) =

Qb∑

s=1

Φs(µ)B(p,w)s;

C(Υ(µ),u,u,w) =

Qc∑

s=1

Υs(µ)C(u,u,w)s;

where s and q are condensed indexes for i, j, r. If Ω ⊂ R
d, then(Qa) = d × d ×

d × R, (Qb) = d × d × R and (Qc) = d × d × d × R.
The reduced basis approximation for the Navier-Stokes system (3.12) reads: for

k ≥ 0, for a given u
(k)
N find (u

(k+1)
N (µ), p

(k+1)
N (µ)) ∈ YN × QN , such that





A(µ;u
(k+1)
N (µ),w) + B(µ; p

(k+1)
N (µ),w) + C(µ;u

(k+1)
N (µ),u

(k)
N (µ),w)+

C(µ;u
(k)
N (µ),u

(k+1)
N (µ),w) = 〈F,w〉 + C(µ;u

(k)
N (µ),u

(k)
N (µ),w) ∀ w ∈ YN ,

B(µ; q,u
(k+1)
N (µ)) = 〈G, q〉 ∀ q ∈ QN .

(3.15)
To build the global approximation space we select suitable samples called snap-
shots µ ∈ Sµ

N = {µ1, . . . , µN}, where µn ∈ Dµ, n = 1, . . . , N and we solve N
times the Navier-Stokes problem (3.12) using the Galerkin finite element method
to obtain N solutions uh(µi) and ph(µi), i = 1, . . . , N .
The reduced basis pressure space is:

QN = span {ξn, n = 1, . . . , N}, (3.16)

where ξn = ph(µn). We now use the so-called supremizer solutions to enrich YN

(as done for example in Rovas [23] and Patera et al. [15]). More precisely, the
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reduced basis velocity space is given by:

YN = span {σn, n = 1, . . . , 2N} = (3.17)

= span {ζn, Tµn

ξn, n = 1, . . . , N},

where ζn = uh(µn) and Tµn
: Qh → Yh is the supremizer operator defined by

(Tµq,w)Y = B(µ; q,w), ∀ w ∈ Yh. (3.18)

We recall that we can write Tµn
ξ =

∑Qb

q=1 Φq(µn)T qξ for any ξ and µn thanks
to affine composition property and the linearity of the supremizer operator.

Remark 3.1 Note that in this case the reduced basis velocity space is depending
on every value µn of the parameter used to compute the solution ξn = ph(µn),
considered as basis function. This procedure allows us to simplify the basis con-
struction and to reduce the complexity of the problem, even if stability in this
case can be proved only computationally (heuristic approach). �

Other options, for which stability can be theoretically proven, are available (see
for example [24]) to get a different space YN for the velocity. For example: i)
a space which is µ-independent, using only T qξ components to enrich velocity
space. This option is useful if we want to apply an orthonormalization procedure
to restore algebraic stability; or ii) a space µ-dependent, using the online value
of the parameter in Φq. Let us define the two inf-sup constants:

βN (µ) = inf
q∈QN

sup
w∈YN

B(µ, q,w)

‖w‖Y ‖q‖Q
, (3.19)

and

βh(µ) = inf
q∈Qh

sup
w∈Yh

B(µ, q,w)

‖w‖Y ‖q‖Q
. (3.20)

The former relates the reduced basis subspaces, the latter to the standard finite
element spaces. Then it has been proven in [24] that

βN (µ) ≥ βh(µ) ≥ β0 > 0,∀µ ∈ Dµ. (3.21)

For a new sample µ the reduced basis solution is built as:

uN (µ) =
2N∑

j=1

uNj(µ)σj , pN (µ) =
N∑

l=1

pNl(µ)ξl.

The corresponding non-linear system becomes: for 1 ≤ i, j, h ≤ 2N, 1 ≤ l ≤ N ,
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∑2N
j=1 Aµ

iju
(k+1)
Nj (µ) +

∑N
l=1 Bµ

ilp
(k+1)
Nl (µ) +

∑2N
h=1

∑2N
j=1 u

(k)
Nh(µ)Cµ

ijhu
(k+1)
Nj (µ)+

+
∑2N

h=1

∑2N
j=1 u

(k+1)
Nh (µ)Cµ

ijhu
(k)
Nj(µ) = Fµ

i +
∑2N

h=1

∑2N
j=1 u

(k)
Nj(µ)Cµ

ijhu
(k)
Nh(µ)

∑2N
j=1 Bµ

jlu
(k+1)
Nj (µ) = Gµ

l , 1 ≤ l ≤ N,

(3.22)
with

Aµ
ij =

Qa∑

m=1

Θm(µ)A(σi, σj)
m, Bµ

il =

Qb∑

m=1

Φm(µ)B(σi, ξl)
m;

Cµ
ijh =

Qc∑

m=1

Υm(µ)C(σh, σj , σi)
m;

Fµ
i = 〈F, σi〉, Gµ

l = 〈G, ξl〉.

The k index refers to the Newton iteration. The form Cµ depends on 3 different
indexes and is assembled online for any given value of µ. Then for every k we
have to incorporate in Cµ the solution at the previous iteration to update the
system matrix and the right-hand-side. We can adopt the following stopping
criterium

‖u
(k+1)
N (µ) − u

(k)
N (µ)‖ ≤ ǫN

where ǫN is a prescribed tolerance. When the Stokes solution is available, as

in our case, it may be used as initial guess u
(0)
N . If we compare the assembling

and computational costs of Navier-Stokes reduced basis problem with respect to
Stokes problem we have to increase by O(KN3) operations for the solution of the
non-linear system (K is the number of Newton iterations). In fact we use more
efficient and faster solvers with splitting procedures. The other computational
cost comes from the assembling procedure of the matrix C (advection term),
whose theoretical assembling cost is O(Qc8N3). The assembling costs for A, B
and F are, respectively, O(Qa4N2), O(Qb2N2) and O(N). The system (3.22)
has the following block-structure:

(
A + C(k+1) B

BT 0

)(
u

(k+1)
N

p
(k+1)
N

)
=

(
F (k)

G

)
. (3.23)

Numerical results, which however refer only to cases with geometrical affine
parametric dependence, will be reported in Section 6.

4 Parametrized formulation: non-affine parametric

dependence

In this section we extend the previous formulation by considering a non-affine
mapping from the true subdomains Ω̂r into the reference ones denoted with Ωr.
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For any x̂ ∈ Ω̂r, r = 1, . . . , R, its image x ∈ Ωr is now given by

x = T r(µ; x̂), 1 ≤ r ≤ R; (4.24)

we thus write on Ωr

∂

∂x̂i
=

∂xj

∂x̂i

∂

∂xj
= T r

ji(µ, x)
∂

∂xj
. (4.25)

Referring to problem (3.12) each elements in the system has the following form,
for 1 ≤ i, j ≤ d:

A(µ;u,w) =
R∑

r=1

∫

Ωr

∂u

∂xi
νr

Tij
(µ, x)

∂w

∂xj
dΩ

B(µ; p,w) = −
R∑

r=1

∫

Ωr

pχr
Tij

(µ, x)
∂wj

∂xi
dΩ

C(µ;u,v,w) = −
R∑

r=1

∫

Ωr

uiπ
r
Tij

(µ, x)
∂vj

∂xi
wdΩ

〈Fs,w〉 =

R∑

r=1

∫

Ωr

(
f̂ r|(T r(µ, x))−1|

)
wdΩ.

In Section 7 we report a test case and we show the explicit forms of the previous
terms. The transformation tensors for diffusion bilinear forms with non-affine
mappings are defined as follows:

νr
Tij

(µ, x) = T r
ii′(µ, x)ν̂i′j′T

r
jj′(µ, x)|(T r(µ, x))−1|, 1 ≤ i, j ≤ d, r = 1, ..., R.

(4.26)
The tensors for pressure, divergence and advection forms are defined for non-
affine mappings as:

χr
Tij

(µ, x) = πr
Tij

(µ, x) = T r
ij(µ, x)|(T r(µ, x))−1|. (4.27)

To decouple the non-affine contributions we apply the empirical interpolation
procedure proposed in [1] to expand mapping terms and split the parameters
dependent contribution from the one depending only on spacial coordinates. We
can write:

νr
Tij

(µ, x) = Σ
Ma

ijr

m=1β
r
ijm(µ)γr

ijm(x), (4.28)

χr
Tij

(µ, x) = πr
Tij

(µ, x) = Σ
Mb

ijr

m=1α
r
ijm(µ)ωr

ijm(x), (4.29)

where m refers to the interpolation functions we use for each form (related with
the maximum interpolation error), i and j are indexes related to linear/bilinear
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form, r refers to subdomains. β and α are weights depending on the parameters
µ, while γ and ω are interpolation functions (“shape functions”) used as basis.

Let us recall the algorithm based on the empirical interpolation method
proposed by Maday et al. in [1]:

g(x, µ), is the non − affine mapping term (i.e. a shape).

The goal is to expand

gM (x, µ) = ΣM
m=1βm(µ)qm(x), (4.30)

as a sum of products decomposed in two parts: βm(µ) are parameters dependent
weights (computed many times for each value of µ); qm(x) are shape functions
without a parametric dependence (computed only once).
The main elements are the test shape functions and the interpolation points,
respectively:

W g
M = {γm = g(., µg

m), 1 ≤ m ≤ M}, with µg
m properly chosen,

TM = {t1, . . . tM}, 1 ≤ M ≤ Mmax, sets of interpolation points.

The interpolation algorithm is:

for M = 1, set t1 = argsupx∈Ω|γ1(x)|, q1 = γ1(x)/γ1(t1), (off − line)

then, for M = 2, . . . , Mmax : ΣM−1
j=1 σM−1

j qj(ti) = γM (ti), 1 ≤ i ≤ M − 1, (off − line)

rM (x) = γM (x) − ΣM−1
j=1 σM−1

j qj(x), tM = argsupx∈Ω|rM (x)|, (off − line)

qM (x) = rM (x)/rM (tM ); gM (x, µ) = ΣM
m=1βm(µ)qm(x), (off − line)

ΣM
j=1qj(ti)βj(µ) = g(ti, µ), 1 ≤ i ≤ M, (on − line).

To stop the procedure we impose ‖g(., µ) − gM (., µ)‖L∞(Ω) ≤ ǫmax where ǫmax

is an interpolation error. We go back to our problem and, in order to build an
effectively affine decomposition, we define:

Ψt(i,j,r,m)(µ) = βr
ijm(µ), At(i,j,r,m)(γ(x),u,w) =

∫

Ωr

γr
ijm(x)

∂u

∂xi

∂w

∂xj
dΩ, (4.31)

Υp(i,j,r,m)(µ) = αr
ijm(µ), Bp(i,j,r,m)(ω(x), p,w) = −

∫

Ωr

ωr
ijm(x)p

∂wi

∂xj
dΩ, (4.32)

Υp(i,j,r,m)(µ) = αr
ijm(µ), Cp(i,j,r,m)(ω(x),u,v,w) = −

∫

Ωr

ωr
ijm(x)uj

∂vi

∂xj
wdΩ,

(4.33)
for 1 ≤ r ≤ R, 1 ≤ i, j ≤ 2, 1 ≤ m ≤ max(Ma

ijr, M
b
ijr) (t and p are condensed

indexes of i, j, r, m quantities). We rewrite our terms as:

A(µ,u,w) =

Qa∑

t=1

Ψt(µ)At(γ(x),u,w),
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B(µ, p,w) =

Qb∑

p=1

Υp(µ)Bp(ω(x), p,w) ,

C(µ,u,v,w) =

Qc∑

p=1

Υp(µ)Cp(ω(x),u,v,w) ,

in this case Qa = Σd
j=1Σ

d
i=1Σ

RT

r=1M
a
ijr; Qb = Qc = Σd

j=1Σ
d
i=1Σ

RT

r=1M
b
ijr. We

can now solve the Navier-Stokes problem written in (3.12) on the reference do-
main Ω for some snapshots values of parameter µ with the aim of building the
reduced basis spaces. The formulation in this case is the same as the one in
the previous section. We use the same supremizer option (the one with the µn

off-line value) so that we have a reduced basis velocity space YN (3.17) which is
µ independent. The only difference is the use of the effectively affine dependence
of B(µ; q,w) on the parameter which reads:

Tµn

ξ =

Qb∑

p=1

Υp(µn)T pξ, (4.34)

for any ξ and µ, where T : Qh → Yh. We may write each T p component of 4.34
as

(T pξ,w)Y = Bp(ω, q,w), ∀ w ∈ Yh.

Referring to the reduced basis non-linear system (3.22) we have the following
sub-matrices A, B and C, respectively:

Aµ
ij =

Qa∑

z=1

Ψz(µ)Az(γ, σi, σj), 1 ≤ i, j ≤ 2N,

Bµ
il =

Qb∑

z=1

Υz(µ)Bz(ω, σi, ξl), 1 ≤ i ≤ 2N, 1 ≤ l ≤ N,

and

Cµ
ijh =

Qc∑

z=1

Υz(µ)Cz(ω, σi, σj , σh), 1 ≤ i, j, h ≤ 2N.

Numerical results on the test case of a furrowed channel will be reported in
Section 7.

5 Parametrized formulation: affine and non-affine

combined parametric dependence

In this section we combine the formulations introduced in the two previous sec-
tions to allow for the application to parametrized domains with both affine (in
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some subdomains) and non-affine (in the others) parametric dependence, as al-
ready done for the Stokes problem in [29]. In this case we use a different suprem-
izer option, building reduced basis approximation space which is depending on
the value of the “on-line” parameter µ. It is more complex and computation-
ally expensive however it guarantees an “a-priori” stability of the method. We
consider again the parametrized system of Navier-Stokes equations, whose for-
mulation on the reference domain Ω is the following: find (u(µ), p(µ)) ∈ Y ×Q:
{

A(µ;u(µ),w) + B(µ; p(µ),w) + C(µ;u(µ),u(µ),w) = 〈F,w〉 ∀ w ∈ Y,
B(µ; q,u(µ)) = 〈G0, q〉 ∀ q ∈ Q.

(5.35)
The problem has been traced back to a reference domain by an affine map-

ping on some subdomains Ω̂r
G into Ωr

G and by a non-affine mapping on the

remaining subdomains Ω̂r
T into Ωr

T . More precisely, the physical domain Ω̂

is the union of two (finite) families of subdomains {Ω̂r
G, r = 1, . . . , RG} and

{Ω̂r
T , r = 1, . . . , RT }. Then Ω̂ = int(

⋃RG

r=1
¯̂
Ωr

G ∪
⋃RT

r=1
¯̂
Ωr

T . For any x̂ ∈ Ω̂r
G,

r = 1, . . . , RG, its image x ∈ Ωr
G is given by (3.10) and (3.11). On the other

hand, for any x̂ ∈ Ω̂r
T , r = 1, . . . , RT , its image x ∈ Ωr

T is given by (4.24) and
(4.25). In the reference domain Ω we have:

A(µ;u,w) =

RG∑

r=1

∫

Ωr
G

∂u

∂xi
νr

Gij
(µ)

∂w

∂xj
dΩ+ (5.36)

RT∑

r=1

∫

Ωr
T

∂u

∂xi
νr

Tij
(µ, x)

∂w

∂xj
dΩ

B(µ; p,w) = −

RG∑

r=1

∫

Ωr
G

pχr
Gij

(µ)
∂wj

∂xi
dΩ+ (5.37)

−

RT∑

r=1

∫

Ωr
T

pχr
Tij

(µ, x)
∂wj

∂xi
dΩ

C(µ;u,v,w) =

RG∑

r=1

∫

Ωr
G

uiπ
r
Gij

(µ)
∂vj

∂xi
wdΩ+ (5.38)

−

RT∑

r=1

∫

Ωr
T

uiπ
r
Tij

(µ, x)
∂vj

∂xi
wdΩ

〈F,w〉 = 〈Fs,w〉 + 〈F 0,w〉, (5.39)

where

〈Fs,w〉 =

RG∑

r=1

∫

Ωr
G

(
f̂ rdet(Gr(µ))−1

)
wdΩ +

RT∑

r=1

∫

Ωr
T

(
f̂ rdet(T r(µ, x))−1

)
wdΩ,

(5.40)
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〈F 0,w〉 = −〈Agin,w〉; 〈G0, q〉 = 〈Bq,gin〉.

The transformation tensors for diffusion bilinear forms with affine and non-affine
mappings are defined, respectively, as follows:

νr
Gij

(µ) = Gr
ii′(µ)ν̂i′j′G

r
jj′(µ)det(Gr(µ))−1, 1 ≤ i, j ≤ d, r = 1, ..., RG, (5.41)

νr
Tij

(µ, x) = T r
ii′(µ, x)ν̂i′j′T

r
jj′(µ, x)det(T r(µ, x))−1, 1 ≤ i, j ≤ d, r = 1, ..., RT .

(5.42)
The tensors for pressure, divergence and advection forms are defined, respec-
tively, for affine and non-affine mappings as:

χr
Gij

(µ) = πr
Gij

(µ) = Gr
ijdet(Gr(µ))−1, (5.43)

χr
Tij

(µ, x) = πr
Tij

(µ, x) = T r
ij(µ, x)det(T r(µ, x))−1. (5.44)

For the non-affine parts we apply, as already proposed, the empirical interpola-
tion procedure to expand non-affine mapping terms and decouple the parameters
dependent contribution from the one depending only on spacial coordinates. We
write:

νr
Tij

(µ, x) = Σ
Ma

ijr

m=1β
r
ijm(µ)γr

ijm(x), (5.45)

χr
Tij

(µ, x) = Σ
Mb

ijr

m=1α
r
ijm(µ)ωr

ijm(x), (5.46)

where m refers to the number of interpolation functions we use for each form (re-
lated with max interpolation error), i and j are indexes related to linear/bilinear
form, r is the subdomain index, β and α are weighing quantities depending on
the parameters µ, γ and ω are interpolation functions used as basis.

Furthermore, we define

Θq(i,j,r)(µ) = νr
Gij

(µ), A
q(i,j,r)
G (u,w) =

∫

Ωr
G

∂u

∂xi

∂w

∂xj
dΩ, (5.47)

Φs(i,j,r)(µ) = χr
Gij

(µ) = πr
Gij

(µ), B
s(i,j,r)
G (p,w) = −

∫

Ωr
G

p
∂wi

∂xj
dΩ, (5.48)

C
s(i,j,r)
G (u,v,w) =

∫

Ωr
G

ui
∂vi

∂xj
wdΩ, (5.49)

for 1 ≤ r ≤ RG, 1 ≤ i, j ≤ d (q and s are condensed indexes of i, j, r quantities),
and

Ψt(i,j,r,m)(µ) = βr
ijm(µ), A

t(i,j,r,m)
T (γ(x),u,w) =

∫

Ωr
T

γr
ijm(x)

∂u

∂xi

∂w

∂xj
dΩ, (5.50)

Υp(i,j,r,m)(µ) = αr
ijm(µ), B

p(i,j,r,m)
T (ω(x), p,w) = −

∫

Ωr
T

ωr
ijm(x)p

∂wi

∂xj
dΩ, (5.51)
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C
p(i,j,r,m)
T (ω(x),u,v,w) =

∫

Ωr
T

ωr
ijm(x)ui

∂vi

∂xj
wdΩ, (5.52)

for 1 ≤ r ≤ RT , 1 ≤ i, j ≤ 2, 1 ≤ m ≤ max(Ma
ijr, M

b
ijr) (t and p are condensed

indexes of i, j, r, m quantities used to simplify notation: each value of t or p
represents a different combination of the previous four indexes i, j, r, m). We
apply an effectively affine decomposition:

A(µ,u,w) =

Qa
G∑

q=1

Θq(µ)Aq
G(u,w) +

Qa
T∑

t=1

Ψt(µ)At
T (γ(x),u,w),

B(µ, p,w) =

Qb
G∑

s=1

Φs(µ)Bs
G(p,w) +

Qb
T∑

p=1

Υp(µ)Bp
T (ω(x), p,w) ,

C(µ,u,v,w) =

Qc
G∑

s=1

Φs(µ)Cs
G(u,v,w) +

Qc
T∑

p=1

Υp(µ)Cp
T (ω(x),u,v,w) .

If Ω ⊂ R
d, then Qa

G = d×d×d×RG, Qb
G = d×d×RG Qc

G = d×d×d×RG; Qa
T =

Σd
j=1Σ

d
i=1Σ

RT

r=1M
a
ijr; Qb

T = Σd
j=1Σ

d
i=1Σ

RT

r=1M
b
ijr and Qc

T = Σd
j=1Σ

d
i=1Σ

RT

r=1M
b
ijr.

The non-linear problem (5.35) has to be discretized and then linearized to
be solved, by an iterative method as seen in Section 3.

In the reduced basis approximation we choose properly (for instance by
an optimization algorithm as proposed in [28]) a set of sample parameters
Sµ

N = {µ1, . . . , µN}, where µn ∈ Dµ, n = 1, . . . , N .
Correspondingly, we take a set of couples (uh(µn), ph(µn)) which are approx-
imate solutions of the Navier-Stokes problem (5.35) using the finite element
method. Then the reduced basis pressure space is still taken as

QN = span {ξn, n = 1, . . . , N}, where ξn = ph(µn),

while for the reduced basis velocity space we take into consideration the option
in which the space is µ dependent:

Y µ
N = span {ζn, n = 1, . . . , N ; Tµξn, n = 1, . . . , N}, where ζn = uh(µn).

The reduced basis approximation problem reads: find (uN (µ), pN (µ)) ∈ YN×QN

s.t.:
{

A(µ;uN (µ),w) + B(µ; pN (µ),w) + C(µ;uN (µ),uN (µ),w) = 〈F,w〉 ∀ w ∈ YN ,
B(µ; q,uN (µ) = 〈G0, q〉 ∀ q ∈ QN .

(5.53)
We rewrite for computational convenience Y µ

N using the effectively affine depen-
dence of B(µ; q,w) on the parameter and the linearity of Tµ:

Tµξ =

Qb
G∑

q=1

Φq(µ)T q
Gξ +

Qb
T∑

p=1

Υp(µ)T p
T ξ (5.54)
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for any ξ and µ, where:

(T q
Gξ,w)Y = Bq

G(q,w) ∀ w ∈ Yh,

(T p
T ξ,w)Y = Bp

T (ω, q,w) ∀ w ∈ Yh,

which allows us to write:

Y µ
N = span {

Q
b

G∑

k=1

Φk(µ)σkn +

Qb
T∑

k′=1

Υk′

(µ)σ̃k′n, n = 1, . . . , 2N},

where Q
b
G = Qb

G + 1, ΦQ
b

G = 1.
For n = 1, . . . , N :

σkn = 0, for k = 1, . . . , Qb
G;

σ̃k′n = 0, for k′ = 1, . . . , Qb
T ;

σ
Q

b

Gn
= ζn = uh(µn).

For n = N + 1, . . . , 2N :

(σkn,w)Y = Bk
G(ξn−N ,w),∀w ∈ Yh, for k = 1, . . . , Qb

G; (5.55)

σ
Q

b

Gn
= 0;

(σ̃kn,w)Y = Bk
T (ω, ξn−N ,w),∀w ∈ Yh, for k = 1, . . . , Qb

T . (5.56)

For a new value of the parameter µ we look for a solution given by a combination
of previously computed stored solutions as basis functions, i.e.:

uN (µ) =
2N∑

j=1

uNj(µ)
( Q

b

G∑

k=1

Φk(µ)σkj +

Qb
T∑

k′=1

Υk′

(µ)σ̃k′j

)
,

pN (µ) =
N∑

l=1

pNl(µ)ξl,

whose unknowns uNj and pNl satisfy the following non-linear system:
{ ∑2N

j=1 Aµ
ijuNj(µ) +

∑N
l=1 Bµ

ilpNl(µ) +
∑2N

h=1

∑2N
j=1 uNh(µ)Cµ

ijhuNj(µ) = Fi, 1 ≤ i ≤ 2N,∑2N
j=1 Bµ

jluNj(µ) = Gl, 1 ≤ l ≤ N.

(5.57)
To solve it we apply the Newton method which yields the following iteration:

for k ≥ 0 given u
(k)
Nj , find u

(k+1)
Nj and p

(k+1)
Nl such that





∑2N
j=1 Aµ

iju
(k+1)
Nj (µ) +

∑N
l=1 Bµ

ilp
(k+1)
Nl (µ) +

∑2N
h=1

∑2N
j=1 u

(k)
Nh(µ)Cµ

ijhu
(k+1)
Nj (µ)+

+
∑2N

h=1

∑2N
j=1 u

(k+1)
Nh (µ)Cµ

ijhu
(k)
Nj(µ) = Fµ

i +
∑2N

h=1

∑2N
j=1 u

(k)
Nj(µ)Cµ

ijhu
(k)
Nh(µ)

∑2N
j=1 Bµ

jlu
(k+1)
Nj (µ) = Gµ

l , 1 ≤ l ≤ N, 1 ≤ i ≤ 2N.

(5.58)
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The sub-matrices A, B and C are given by:

Aµ
ij =

Qa
G∑

z=1

Q
b

G∑

k′=1

Q
b

G∑

k′′=1

Θz(µ)Φk′

(µ)Φk′′

(µ)Az
G(σk′i, σk′′j)+

+

Qa
T∑

z=1

Qb
T∑

k′=1

Qb
T∑

k′′=1

Ψz(µ)Υk′

(µ)Υk′′

(µ)Az
T (γ, σ̃k′i, σ̃k′′j), 1 ≤ i, j ≤ 2N ;

Bµ
il =

Q
b

G∑

z=1

Qb
G∑

k′=1

Φz(µ)Φk′

(µ)Bz
G(σk′i, ξl)+

+

Qb
T∑

z=1

Qb
T∑

k′=1

Υz(µ)Υk′

(µ)Bz
T (ω, σ̃k′i, ξl), 1 ≤ i ≤ 2N, 1 ≤ l ≤ N ;

Cµ
ijh =

Qc
G∑

z=1

Q
b

G∑

k′=1

Q
b

G∑

k′′=1

Q
b

G∑

k′′′=1

Φz(µ)Φk′

(µ)Φk′′

(µ)Φk′′′

(µ)Cz
G(σk′i, σk′′j , σk′′′h)+

+

Q
c

T∑

z=1

Qb
T∑

k′=1

Qb
T∑

k′′=1

Qb
T∑

k′′′=1

Υk(µ)Υk′

(µ)Υk′′

(µ)Υk′′′

(µ)Cz
T (ω, σ̃k′i, σ̃k′j , σ̃k′h), 1 ≤ i, j, h ≤ 2N ;

Fi =

Q
b

G∑

k′=1

Φk′

(µ)〈F, σk′i〉 +

Qb
T∑

k′=1

Υk′

(µ)〈F, σ̃k′i〉, 1 ≤ i ≤ 2N ;

Gl = 〈G0, ξl〉, 1 ≤ l ≤ N.

In compact form the linearized problem (5.58) can therefore be written as:

(
A + C(k+1) B

BT 0

)(
u

(k+1)
N

p
(k+1)
N

)
=

(
F (k)

G

)
. (5.59)

This reduced basis formulation is more involved than the one introduced in
Section 4 due to (i) the coupling between affine and non-affine maps in differ-
ent subdomains, (ii) the use of a different supremizer which is µ dependent,
yielding a different reduced basis velocity approximation space. This results
in an increased on-line complexity. By accounting also for the computation of
supremizer components in the velocity space the following number of opera-

tions is needed in order to build reduced basis matrices: O(Qa(Q
b
)24N2) for

sub-matrix A, O((Q
b
)22N2) for B, O(Qc(Q

b
)38N3) for C, O(Q

b
N) for F and

O(N3) for the “inversion” of the full reduced basis matrix (5.59) at each Newton

iteration, where Qa = Qa
T +Qa

G, Q
b
= Q

b
G +Qb

T , Qc = Qc
G +Qc

T . The quantities
Qa

G, Qb
G and Qc

G are depending only on the number of subdomains with affine
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mappings (RG), while quantities Qa
T , Qb

T and Qc
T are depending also on the

number of “shape functions” (γ(x) and ω(x)) related with interpolation error
(εmax) and the number of subdomains with non-affine mappings (RT ).

Some numerical results obtained by the reduced basis approximation intro-
duced in this section will be reported in Section 8.

6 Some preliminary results: a simple channel

For our first test on the use of reduced basis for Navier-Stokes equations we deal
only with affine mapping on a rectangular domain (R = 1, d = 2), parame-
trized by two quantities D and t, see Figure 1 (right). The parameters range is:
0.1 ≤ D ≤ 1.5 and 0.1 ≤ t ≤ 1.5.
To solve the parametrized Navier-Stokes problem in the domain outlined in Fig-
ure 1 we have imposed zero Dirichlet conditions on the boundary ΓD, Neumann
homogeneous conditions on the inflow ΓNi and outflow ΓNo: τ = (ν ∂u

∂n̂
−pn̂) = 0,

with n̂ normal unit vector.
We have considered a forcing term f = 10 · (x, y)T in order to create a flow
acceleration, to have a non-zero velocity in y-direction and not only a parabolic
velocity profile. Using the compact notation of Section 3 (3.13 and 3.14) and
transformation (3.11) we get the following tensor for diffusion, divergence and
transport forms, respectively:

ν = ν̃

[
t
D

0

0 D
t

]
, χ = π =

[
t 0
0 D

]
,

where ν̃ = 0.04Nsm−2 is the viscosity.
Taylor-Hood finite elements, i.e. P

2 elements for velocity (with supremizer) and
P

1 for pressure, have been used to build offline approximation basis functions
[21]. The problem has been solved using the pressure-matrix method. The av-
erage Reynolds number considered was of order 102 (a low Reynolds number).
Changing the parameter D (channel diameter) yields a variation of the Reynolds
number.
At this step we have applied the reduced basis method and assembled the approx-
imation spaces as described in Section 3. The basis is assembled as in Figure 1
(left) where we report the value of D and t, corresponding to each uh(µ) solution
used as basis function increasing N and where µ = (D, t).

Figure 2 shows numerical results (mean and max H1 and L2 relative errors
on velocity and pressure, respectively, on a large number of configurations) at
different N . The reduced basis solutions have been compared directly with the
approximate finite element solutions: the associated H1 relative error for velocity
and L2 relative error for pressure are computed.
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Figure 1: Parameters (D, t) distribution during basis assembling (left) and the
simple domain configuration considered (right).
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Figure 2: H1 and L2 relative errors on velocity and pressure, first test with 2
varying parameters (D, t).

7 Furrowed channel test

Our second test deals with non-affine mapping on a rectangular domain (R = 1),
considering a channel with an upper wall parametrized by a sinusoidal law, see
Figure 3 (left). This may be regarded as a simplified stenotic arterial flow, that
was already investigated e.g. by Sobey and Stephanoff [31] and [32]. We have
used the formulation introduced in Section 4. We briefly recall the assumptions
that we have made during this study. To solve the parametrized Navier-Stokes
problem in the domain outlined in Figure 3 we have imposed zero Dirichlet
conditions on the boundary ΓD, Neumann non-homogeneous conditions on the
inflow ΓNi (τn̂ = 1, τ

t̂
= 0, where τ = (ν ∂u

∂n̂
− pn̂), with n̂ and t̂ normal and

tangential directions, respectively) and Neumann homogeneous conditions on
outflow ΓNo (τn̂ = 0, τ

t̂
= 0).
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We consider one parameter µ ranging in [−0.8, 0.8] to describe the upper arterial
wall in the physical domain, through x̂2 = f(x̂1, µ) = 1 + µsin(2πx̂1) (we have
a single domain subject to a unique non-affine mapping). Figures 3-5 show
some simulations to better describe the fluid dynamics phenomena involved in
this case of study. The upper curved wall is responsible of the variation of
the channel section and thus of the velocity gradient. Interesting phenomena
to be “captured” by reduced basis method are the vertical velocity behavior
(see Figure 5 on the right) and the development of a secondary flow (to be
superimposed to the mainstream channel) when |µ| increases (see Figure 4 on
the right). In Sobey [31] an accurate study of both steady and unsteady flows has
been carried out dealing with furrowed channels at different Reynolds number,
in particular focusing the attention over the secondary flows in the hollow zone
of the channel. In our case the Reynolds number ranges between 102 and 4 ·103.
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Figure 3: Portion of the geometrical domain for curved wall test model problem
at µ = −0.4 (left) and velocity (absolute value) for µ = 0.4, Re = 100 (right).
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Figure 4: Values of pressure (left) and values of vertical velocity (right), for
µ = 0.7 and Re = 100.

Referring to Section 4 we have ΩG = ∅ and ΩT = Ω, so RT = 1.
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Figure 5: Absolute value of velocity (left) and values of vertical velocity (right),
for µ = 0.15 and Re = 100.

The coordinate transformation is T : Ω̂ → Ω, x = T (x̂), with

(x1, x2) = T (x̂1, x̂2) = (x̂1,
1

f(x̂1, µ)
x̂2) (7.60)

in Ω. Then,
dx̂1dx̂2 = f(x1, µ)dx1dx2,

and the following relations hold (with fx1
:= df

dx1
):

{
∂û

∂x̂2
= 1

f(x1,µ)
∂u

∂x2
,

∂û

∂x̂1
= ∂φ

∂x1
− x2

fx1
(x1,µ)

f(x1,µ)
∂u

∂x2
.

(7.61)

∇ · û =
∂u1

∂x1
− x2

fx1
(x1, µ)

f(x1, µ)

∂u1

∂x2
+

1

f(x1, µ)

∂u2

∂x2
. (7.62)

Using the compact notation (4.26) and (4.27) and transformation (7.60) we get
the following tensor for diffusion and divergence (and advection) forms, respec-
tively:

νT = ν

[
f(x1, µ) −f ′

x1
(x1, µ)x2

−f ′
x1

(x1, µ)x2
1

f(x1,µ) +
f ′2

x1
(x1,µ)

f(x1,µ) x2
2

]
, (7.63)

χT = πT =

[
f(x1, µ) −f ′

x1
(x1, µ)x2

0 1

]
, (7.64)

where ν is the viscosity [Nsm−2] whose value was varied in simulating flows
at different Reynolds number. Referring to (4.30) we get 5 different coefficient
functions gj

M (x, µ) to expand.
We apply empirical interpolation (4.28) and (4.29) to the tensors (7.63) and
(7.64) and we impose a maximum interpolation error εmax, thus considering
different Mmax “shape functions” for each gj

M (x, µ). Each gj
M (x, µ) represents a

different coefficient for a different term of our problem (j = 5 in this test case).
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Owing to empirical interpolation we expand each tensor component to apply an
effectively affine decomposition:

νT = ν

[
Σ

Ma
11

m=1β11m(µ)γ11m(x) Σ
Ma

12

m=1β12m(µ)γ12m(x)

Σ
Ma

21

m=1β21m(µ)γ21m(x) Σ
Ma

22

m=1β22m(µ)γ22m(x)

]
.

Note that this tensor is symmetric. Moreover,

χT = πT =

[
Σ

Mb
11

m=1α11m(µ)ω11m(x) Σ
Mb

12

m=1α12m(µ)ω12m(x)
0 1

]
.

The subdomain index r is omitted (in this case R = 1).
At this step we may apply the reduced basis formulation to this case and assemble
the approximation spaces YN (3.17) and QN (3.16).

7.1 Results for low Reynolds number

We report some numerical results dealing with the solution of the furrowed
channel rebuilt by reduced basis method. First we consider low Reynolds number
(∼ 100). Figures 6 and 7 show convergence results (mean and maximum H1 and
L2 relative errors on velocity and pressure, respectively, testing a large number of
configurations) at different N and for different values of maximum interpolation
error εmax. At the end of the test we have carried out also a comparison between
empirical interpolation (using gj

M (x, µ)) and true functions (gj(x, µ)). We can
see that for εmax ≤ 10−8 we have accurate results that are not dominated or
affected by interpolation error. When the interpolation error is dominating, the
reduced basis error is characterized by a constant “plateau” and is not diminished
by increasing N (see for example the case in which εmax ≥ 10−6).

1 2 3 4 5 6 7 8 9
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

H1 mean rel.error at different interpolation error (magic points)

N

H
1

 r
e

l.
e

rr
.

1e−5
1e−6
1e−8

1 2 3 4 5 6 7 8 9
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

L2 mean rel.error (pressure) at different interpolation errors (magic points)

N

L
2

 r
e

l.
e

rr
.

1e−5
1e−6
1e−8

Figure 6: H1 and L2 relative mean error on velocity and pressure (ν = 0.1) at
different ǫmax imposed on all gj

M (x, µ) (a large number of testing configurations).
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Figure 7: H1 and L2 relative max error on velocity and pressure (ν = 0.1) at
different ǫmax imposed on all gj

M (x, µ) ( a large number of testing configuration).

7.2 Results for moderate Reynolds number

A further test case is concerned with moderate Reynolds number (∼ 4 ·103). We
have reported in Figure 8 convergence results using a max interpolation error
εmax ≤ 10−6. The comparison is always made between the “true” approximated
solution by finite element method and the “interpolated” one by reduced basis.
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Figure 8: H1 and L2 relative error (max and mean) on velocity and pressure
(ν = 0.04) (testing a great number of configurations).

7.3 Reduced basis computational costs

At the end of this section we make some comments on the computational costs
when using the reduced basis in the on-line stage at different Reynolds number.
This completes the framework related with assembling and computational costs.
For simplicity we consider the case of the problem of the furrowed channel with
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one varying parameter and at different Reynolds number (at different viscosity
values). Figure 9 shows on-line reduced basis computational cost (cputime on
a IBMrT42 ThinkPad with a processor Pentium M 1.80 GHz and 1.0 Gb of
Ram) for increasing N , compared with the computational cost of a finite ele-
ment numerical simulation; the Reynolds number is Re ≤ 400. We can see that
reduced basis computational costs are ∼ 20% of the finite element off-line solu-
tions if we choose N = 12 corresponding to an H1 error on velocity of O(10−6),
as shown in the picture on the right. The reduced basis approximation spaces
have been optimized during the assembling procedures [28]. When increasing
the Reynolds number (400 ≤ Re ≤ 4000) the computational saving of reduced
basis techniques are at least of two orders of magnitude (i.e 1%) as shown in
Figure 10, where on the right we have also a zoom representing online compu-
tational cost when increasing N . Results in fact depend on the choice of the
initial guess for Newton iterations: in our case we have used Stokes solution
(easily calculated and stored). Other elements influencing computational costs
are the setting of the tolerance for the Newton algorithm (difference between the
solutions of two successive iterations), in our case set to 10−8. The numerical
approximation of steady Navier-Stokes equations has been carried out by using a
parametrized version of MLife, a FEM library (developed by F. Saleri at MOX)
in Matlab-PDE toolbox environment where we have considered P

2−P
1 elements

for velocity and pressure, respectively, over a triangulation of O(104) elements
(see also Gresho and Sani [9]). The sparse linear system has been solved using
pressure-matrix method (which is a block LU type decomposition of the system
matrix) to compute velocity in two steps and to decouple the calculation of pres-
sure from velocity (see [21]). The iterative methods used to solve the linearized
system at each iteration have been GMRES and Bi-CGSTAB [22]. To improve
computational efficiency we have used the Cahouet-Chabard preconditioner, see
[4].

We observe that the use of reduced basis is providing real-time solutions (or
related outputs) of a non-linear parametrized problems, whose solution would
be quite expensive even if considering efficient FEM solvers. The importance
of real-time accurate solutions increases when considering optimization prob-
lems involving also non-affine geometrical parametric dependence, as seen in the
example of the furrowed channel.

8 The bypass problem

As last example, we consider a parametrized arterial bypass, as represented in
Figure 11 the configuration is represented in terms of the vector of parameters
µ = {t, D, L, S, H, θ, υ} ∈ Dµ ⊂ R

P with Dµ given by:
[tmin, tmax]×[Dmin, Dmax]×[Lmin, Lmax]×[Smin, Smax]×[Hmin, Hmax]×[θmin, θmax]×
[υmin, υmax]. This test problem features both affine and non-affine parameters
dependence in different subdomains and it represents an application of the for-
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Figure 9: Online average computational costs of reduced basis in comparison
with finite element simulation (left) and H1 reduced basis velocity error increas-
ing N (right) for channel flow at low Reynolds numbers.
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Figure 10: Online average computational costs of reduced basis for channel flow
at higher Reynolds numbers.

mulation introduced in Section 5. The aim of this test is to combine the study
of affine and non-affine terms in the same non-linear problem by varying dif-
ferent geometrical parameters and then to test the convergence of the reduced
basis approximation, to extract output information and to carry out a sensitiv-
ity analysis on parameters. Referring to notation in Section 5 we have RG = 3
(number of subdomains with affine dependence, precisely Ω2, Ω3, Ω4), RT = 1
(number of subdomains with non-affine dependence, i.e Ω1). The coordinate
transformation in Ω1 with non-affine parameter dependence is given by:

{
x1 = 1

H
x̂1

x2 = 1
t
(x̂2 − (υH2x1(x1 − 1) + Hx1 tan(θ))).

(8.65)
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The role of parameters t and H is to stretch subdomain Ω1 (as L, S, D stretch
the remaining subdomains), the parameter υ introduces a curvature in the walls
of the incoming branch of the bypass and θ is responsible for a rigid rotation by
letting the graft angle vary. The tensors for viscous bilinear terms are given by:

ν1
T = ν

[ t
H

−(tan θ + 2υHx1 − υH)

−(tan θ + 2υHx1 − υH) (1+(tan θ+2υHx1−υH)2)
t

H

]
; (8.66)

ν2
G = ν

[ S
D

0

0 D
S

]
; ν3

G = ν
[ t

D
0

0 D
t

]
; ν4

G = ν
[ L

D
0

0 D
L

]
. (8.67)

The tensors for pressure, divergence and transport terms are given by:

χ1
T = π1

T =
[ t −H(tan θ + 2υHx1 − υH)

0 H

]
; χ2

G = π2
G =

[ S 0
0 D

]
; (8.68)

χ3
G = π3

G =
[ t 0

0 D

]
; χ4

G = π4
G

[ L 0
0 D

]
. (8.69)

We apply empirical interpolation expansion to the components of tensors ν1
T , χ1

T

and π1
T and we build the reduced basis approximation spaces for velocity and

pressure.
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Figure 11: Geometrical scheme for the bypass test problem (physical domain at
left and reference domain at right).

We have carried out some tests based on the same geometry considering
five different varying parameters (we have frozen L and H). In particular we
are interested in varying graft angle θ and curvature υ (defining the upstream
geometry) and the ratio t

D
. In Figures 12 and 13 we report numerical results

(max and mean H1 errors on velocity and L2 errors for pressure) considering
several configurations at different N for two different maximum interpolation
error εmax = 10−5 and then εmax = 10−8; these strict tolerances prevent inter-
polation error to overwhelm our approximation with the constant “plateau” in
error plots.
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Figure 12: H1 relative errors on velocity with different ǫmax interpolation error
imposed on all gj

M (x, µ) (testing hundreds of different configurations with 5
different parameters varying).

8.1 Outputs sensitivities

We conclude this section with two different studies on the bypass problem pro-
viding a comparison between Stokes and Navier-Stokes solutions (and outputs
of interest) and some considerations about the influence of curvature of the up-
per stream geometry. The ratio t

D
is the most important parameter and it is

responsible of recirculation in the host artery (see [27]), but also curvature has
a role (see [28]). The ratio S

D
becomes important if we freeze t

D
and so the graft

angle θ.
Figure 14 (left) shows a comparison between the vorticity functional output,
defined as s(µ) =

∫
Ωd

(∂u
∂x

− ∂v
∂y

)dΩ, calculated with Stokes and Navier-Stokes
equations. We can see that the Stokes model is a good approximation only if
the ratio t

D
is less than unity and this is our case, otherwise if the bypass diam-

eter t is too small with respect to the arterial diameter D a strong recirculation
arises in the host vessel and also vorticity increases considerably. These phe-
nomena are not well captured by the Stokes linearized model. Usually the value
of the quantity t

D
is in the range [0.85 − 0.96]. This test gives us important in-

formation about the fidelity of our model and it allows a generalization of results
available in the literature, especially provided by experimental research activity
and surgical experience.
Figure 14 (right) shows the behavior of vorticity where we vary the curvature
of the upstream (inflow) geometry. Increasing the curvature υ the vorticity di-
minishes: this behavior can be explained by the fact that curvature is guiding
the flow more smoothly. An interesting analysis can be obtained introducing
the Dean number, representing the ratio of the square root of the product of the
inertial and centrifugal forces to the viscous forces, defined as follows

De = 4
[D
R

] 1

2

Re, (8.70)
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Figure 13: L2 relative errors on pressure with different ǫmax interpolation error
imposed on all gj

M (x, µ) (testing hundreds of configurations with 5 different
parameters varying).

where R is the radius of curvature and Re the Reynolds number. See also
Doorly and Sherwin [30]. If the curvature is zero the Dean number is zero too.
In the case we have considered, the range of the Dean number was [0, 2.31] ·Re.
By increasing the Dean number (and so curvature, the inverse of the curvature
radius) makes the maximum of the 2D velocity profile to increase, but at the
same time this maximum is displaced away from the center of curvature. Note
that De = 0 corresponds to a case in which we have a centered velocity profile of
Hagen-Poiseuille type. In our case the displacement of the peak velocity profile
allows the blood to be driven into the host vessel more smoothly and to better
adapt the upstream inflow condition at the junction geometry. In our case the
critical zone of the bypass near the upper wall has lower mean velocity. The
introduction of the upstream curvature has been discussed also in Papaharilaou,
Doorly and Sherwin [16]. Results in Figure 14 (right) refers to a graft angle of
45 degree and a ratio t

D
= 1.

9 Conclusions

We have extended the use of reduced basis methodology to non-linear problems
in domains with non-affine parametric dependence. This generalization has al-
lowed us to approximate flows in parametrized domains, e.g. blood flows in
arterial bypasses depending on physical and geometrical parameters. The aim
has been to provide (a) a sensitivity analysis for relevant geometrical and physi-
cal quantities and (b) rapid and reliable prediction of integral functional outputs
(such as fluid mechanics indexes). The goal of this investigation is (i) to develop
numerical methods for optimization and design in fluid mechanics, and (ii) to
provide an input-output relationship led by models with lower complexity and
computational costs than the complete solution of fluid dynamics equations by
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a classical finite element method.
When we are considering problems with an increasing complexity, such as the
ones with non-linearities and non-affine parametrization, the use of reduced ba-
sis method becomes even more competitive and computational savings are more
relevant.
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